ultra-stable flashlamp-pumped laser a.brachmann, j.clendenin, t.galetto, t.maruyama, j.sodja,...

19
Ultra-stable flashlamp-pumped laser Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Upload: madlyn-oliver

Post on 05-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Ultra-stable flashlamp-pumped laserUltra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner,

M.WoodsM.Woods

Page 2: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

OutlineOutline

IntroductionLaser System SetupRecent ModificationsExperimental ResultsConclusions and

Summary

Page 3: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

IntroductionIntroduction SLAC built Flashlamp-pumped

Ti:Sapphire laser system

Installation in 1993 at the SLAC PES

Generation of polarized electrons in combination with SLAC’s Polarized Electron Gun

Recent Modifications result in increased stability and output power

Page 4: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Benefit of low jitterBenefit of low jitter

• Statistics of experiments

• Reduce Beam loading

• Reduction of residual dispersion and wakefields

• Facilitates beam tuning and minimizes losses

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

500

1000

1500

2000

2500

Day

s

Jitter [%]

Time needed to achieve 100 ppbfor E-158 assymmetry statistics (for 120 Hz rep. Rate) (assumption that laser is only source of jitter)

Page 5: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Laser System SetupLaser System SetupCavity

CCD

HBS

Spectrometer

‘SLICE’ Photodiode

F=750mmF=500mm‘SLICE’ -PC‘TOPS’ -PC

PL PLPL

/2

flashlamps

/2Brewster Ti:Sapphire

PL: PolarizerPC: Pockels cell

‘LONGPULSE’ Photodiode

Page 6: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Laser system peripheryLaser system periphery

• SLAC built pulsed power supply

• SLAC built cooling water system (closed loop > 16 M)

• Commercial Pockels cell driver

• SLAC built HV power supply and control of TOPS Pockels cell

• Variety of Controls & Diagnostics integrated into control system (Power supply, Pockels cell HV, Photodiodes, Spectrometer, CCD)

Page 7: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Parameters of operationParameters of operation

2 4 6 8 10

2

4

6

8

10

Arbitrary Units

Arb

itra

ry U

nits

Modestructure Multimodal (higher order modes

dominate)

Wavelength Tunable (805 nm, 850 nm)

Bandwidth 0.7 nm

Repetition rate 120 Hz

Peak power of cavity(15 s pulse)

45 mJ

‘Used’ power(50 – 370 ns pulse)

60 J (~ 600 J possible)

Stability 0.5 %

Page 8: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Temporal pulse profile and timing Temporal pulse profile and timing setupsetup

0 5 10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 250

2

4

6

8

10

12

14

16

18

20

A

mpl

itude

[Vol

ts]

Time [microseconds]

100 - 370 nsSlice

Slic

e R

egio

n

Sta

nd

ard

de

via

tion

/ M

ea

n *

10

0

Time [microseconds]

Page 9: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Recent modificationsRecent modifications Cavity optimization according to thermal

lensing included in resonator modelling results

Elimination of cavity halfwave plate reduces element sensitive to optical damage

Wavelength change to 805 nm required by new photocathode yields higher output power Operation near gain maximum for Ti:Sapphire material

Page 10: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Thermal lensingThermal lensing

0.7 0.8 0.9 1.0 1.1 1.2 1.3

2000

2040

2080

2120

2160

2200

2240

2280a

xis

dia

me

ter

[m]

distance from center of cavity [m]

minor axis diameter major axis diameter

Page 11: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Cavity simulationsCavity simulationsThermal lens

L1 L2

flat

2 mcc5 mcc

w0

Rx

wx

x

Page 12: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Spotsize within gain medium as a function Spotsize within gain medium as a function

of thermal lens and mirror spacingof thermal lens and mirror spacing

0.8 1.0 1.2 1.4 1.6 1.8 2.00.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.8 1.0 1.2 1.4 1.6 1.8 2.00.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

f - thermal lensf - thermal lens

2 mccw

0 [m

m]

5 mccL2 [mm]

400 500 600 700 800 900 1000 1100

Page 13: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Wavefront radius of curvature as a Wavefront radius of curvature as a function of thermal lens and mirror function of thermal lens and mirror

spacingspacing

0.8 1.0 1.2 1.4 1.6 1.8 2.00

1

2

3

4

5

6

7

8

9

10

0.8 1.0 1.2 1.4 1.6 1.8 2.00

1

2

3

4

5

6

7

8

9

10

2 mccC

urva

ture

of w

avef

ront

[m]

L2 [mm] 400 500 600 700 800 900 1000 1100

f - thermal lensf - thermal lens

5 mcc

Page 14: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Laser stability and eLaser stability and e-- beam beam stability near target are highly stability near target are highly

correlatedcorrelated

0.460.54Jitter [%]

3.95E+1141.35MEAN

TORO 488 TMIT

Slice J

(Photodiode)

(500

data points)

40.8 41.2 41.6 42.00

20

40

60

80

100

120

freq

uenc

y

Slice J3.90 3.95 4.00

0

20

40

60

80

100

120

TORO 488 TMIT (1011)

Page 15: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Optical damage on cavity halfwave Optical damage on cavity halfwave plate surfaces (damaged coating)plate surfaces (damaged coating)

Page 16: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Controlled crystallographic Controlled crystallographic orientation of laser rodorientation of laser rod

Page 17: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Power supply stability as a Power supply stability as a function of high voltage levelfunction of high voltage level

7600 7700 7800 7900 8000 8100 8200

8100

7600 7700 7800 7900 8000 8100 82000

5

10

15

20

25

30

fre

qu

en

cy [%

]

BACT [V]

7600

7600 7700 7800 7900 8000 8100 8200

7700

7600 7700 7800 7900 8000 8100 8200

7800

7600 7700 7800 7900 8000 8100 8200

7900

7600 7700 7800 7900 8000 8100 8200

8000

0.1497.8

0.2057.9

0.2128.0

0.2158.1

0.0597.7

0.0947.6

Jitter [%]HV [kV]

Page 18: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

Conclusions and SummaryConclusions and Summary Stable operation of laser systems required for

polarized e-beams is achieved

‘Home built’ systems preferred over commercial systems – greater flexibility– better support– straightforward integration into existing control

system

Development laboratory with duplicate system is essential if continuous production is required

Page 19: Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods

ReferencesReferences

Humensky et al.; SLAC’s Polarized Electron Source Laser System and Minimization of Electron Beam Helicity Correlations for the E-158 Parity Violation Experiment; NIM; to be published

Brachmann et al.; SLAC’s Polarized Electron Source Laser System for the E-158 parity violation experiment; Proceedings of SPIE, Volume 4632, 211-222, 2002