uncertainty quantification framework for modeling...

67
Uncertainty Quantification Framework for Modeling Prediction Michael Frenklach Columbia University October 10, 2014 Supported by: NSF, AFOSR, DOE‐NNSA (PSAAP II) Collaborators: ‒ Andy Packard ‒ W. A. Lester, Jr. (DFT) ‒ P. Westmoreland (ALS) ‒ N. Slavinskaya (SynGas) ‒ R. Feely, P. Seiler, T. Russi, D. Yeates, X. You, F. Lei, D. Edwards, D. Zubarev, W. Speight

Upload: others

Post on 11-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Uncertainty Quantification Framework for Modeling Prediction

Michael Frenklach

Columbia UniversityOctober 10, 2014

Supported by: NSF, AFOSR, DOE‐NNSA (PSAAP II)

Collaborators:

‒ Andy Packard‒ W. A. Lester, Jr. (DFT)‒ P. Westmoreland (ALS)‒ N. Slavinskaya (SynGas)‒ R. Feely, P. Seiler, T. Russi, D. Yeates, X. You, F. Lei, 

D. Edwards, D. Zubarev, W. Speight

Page 2: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• Introduction: UQ-predictive modeling

• Bound-To-Bound Data Collaboration

• Introductory case: Energetics of water clusters

• Full-blown case: Combustion of natural gas

Page 3: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 4: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

“Model predicts data” ?

“Model predicts reasonably well the experimental behavior”

“…excellent agreement between model and data.”

“Model falls short in predicting experimental data”

“The model predictions match reasonably well the experimental data” 

“The model well predicts the data”

“Model matches the experimental data”

“The prediction matches very well with experimental data”

“Simulation agrees well with the data”

“Good agreement was found between the model and the data”

Page 5: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 6: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

WWW 2012 Lyon, France

We develop a temporal modeling framework adapted from physics and signal processing …

The results … indicate that by using our framework …. we can achieve significant improvements in prediction compare to baseline models …

Page 7: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

•Predictive  UQ‐Predictive

•Physics‐based models with the focus on data

•Validation is part of the process

•Dimensionality reduction is part of the process

•Practicality  use of surrogate models (Emulators)

•Data/Models• Access, sharing, documentation, …

• Reproducibility

Page 8: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

model(dif eq, nonlinear)

Page 9: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

model(dif eq, nonlinear)

Page 10: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 11: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 12: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 13: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

x2

x3

x1,min x1 x1,max

prior knowledge on parametersexperimental uncertainties

B2B‐DC

y2

y3

L1 y1 U1

HD

─ an optimization‐based framework for combining models and data to ascertain the collective information content

Page 14: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Phys Rev Lett 112: 253003 (2014)

Page 15: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

•empirical: force‐field – guessed potential, empirically fitted; …

•semi‐empirical HF – quantum “core” with some terms replaced by parameters fitted to data (AM1, RM1, PM3, PM6, ZINDO, …)

•DFT with fitted parameters: meta‐GGA (Truhlar, M05,M06,M11,…), double‐hybrid DFT (Grimme), ...

•“static” outcome: the optimized model  needs (constant) retuning

•the optimum is not unique!•partial loss of information (two‐step process)

DFT HF DFT MP2XC X X C CX C CX1 1E E E E E

trainingdata

parameters

blindprediction

model‐based UQ

Page 16: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

GGA HF GGA MP2XC X X C C 1 1E E E E E Model :

use E intervals computed for          

dimer, trimer, tetramer, and 

pentamer

to predict E interval of hexamer

Data Solve for:

Page 17: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

GGA HF GGA MP2XC X X C C1 1E E E E E

VIP

high‐level theory result (or experiment)

Combined Feasible SetHexamer prediction (kcal/mol):Source Min Max Range

Over Feasible Set 267.7 269.7 2.0

Segarra‐Marti et al. 265.9 270.0 4.1

Page 18: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

•mixture of mostly methane with other light gases

• lowest emissions among fossil fuels;  no soot;   smallest carbon footprint

•various, expanding sources (biofuels, artificial synthesis,…)

•plenty and cheap; booming US (and world) economy

• technology issues/needs• varying compositions – hard to categorize empirically

• prediction needs: emissions, combustion efficiency, …

Page 19: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Methane Combustion: CH4 + 2 O2 CO2 + 2 H2O

300+ reactions, 50+ species

Foundation

•A physically‐based model

• The network is complex, but the governing equations (rate laws) are known

•Uncertainty exists, but much is known where the uncertainty lies (rate parameters)

•Numerical simulations with parameters fixed to certain values may be performed “reliably”

• There is an accumulating experimental portfolio on the system

• The model is reduced in size for applications

theoryexperiments

numerical simulations

Page 20: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

flow‐reactor measurements

theoreticalrate constants

laboratory flame measurements

PREDICTION:ignition delay in HCCI engine

Page 21: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Dataset unitU = ( U, L, M )

Dataset unitU2 = (U2, L2, M2)

Dataset unitU3 = (U3, L3, M3)

Dataset unitU4 = (U4, L4, M4)

Dataset unitU5 = (U5, L5, M5)

Dataset unitUe = ( Ue, Le, Me )

y1

y2

y3

x1

x2

x3Dataset{Ue}

Model parameters

Feasible set of x, FIf empty, inconsistent,  otherwise, consistent

Feasible set of x, FIf empty, inconsistent,  otherwise, consistent

Experiment, EL y U

Model, M(x)

Dataset imposes constraints

,e e eL M U e x

xe forms n‐dimensional hypercube

,min ,max:ni i ix x x x

HD

Page 22: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

yupper

ylower

yexpt

M(x1,x2)

H

prior knowledge

bounds on x1feasible set

F

Page 23: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

a set of individual uncertainties does not represent the true compound uncertainty

a realistic feasible set:

Page 24: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• build surrogate models for individual responses  y(rather than for overall objective)

• construct global objective from individual responses (higher fidelity)

modelresponse

ODEModel

x1x2

T P C

y

parameters

2 22 1 20 11 1 2 1,2 1,1 2, 22x x xy x xa a a a a ax x surrogatemodel

2mincomputed observed xall responses

yyw

Page 25: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• build surrogate models for individual responses(rather than for overall objective)

• construct global objective from individual responses (higher fidelity)

modelresponse

ODEModel

x1x2

T P C

y

parameters

2 22 1 20 11 1 2 1,2 1,1 2, 22x x xy x xa a a a a ax x surrogatemodel

2mincomputed observed xall responses

yyw

0

0.2

0.4

0.6

0.8

1

45 2 17 11 3 9 58 1 29 33 47 4 73 82 5 6 98 …

|sensitivity| (×uncertainty)

active variables

dimensionality reduction

Page 26: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• build surrogate models for individual responses(rather than for overall objective)

• construct global objective from individual responses (higher fidelity)

modelresponse

ODEModel

x1x2

T P C

y

parameters

2mincomputed observed xall responses

yyw

dimensionality reduction

flamespeed P2 x1,x2,x7,x23,…•••

ignitiondelay P2 x1,x4,x5,x17,…•••

speciesconc P2 x3,x4,x7,x12,…•••

dimensionality of individual response 

dimensionality of optimization

Page 27: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Uncertainty is constrained by:• prior knowledge of parameters,  xH, the “H cube” • observed data/models,   M(x)D,  the “D cube”

Prediction model: f(x)‒establish possible range of f(x), constrained by

: maxx

UL

M x

r f rr x

: minx

UL

M x

p f pp x

min maxx x

M x M x

f x f x

Hard‐to‐solve optimization

Computable bounds, easily verified as valid

Hard‐to‐solve optimization

Computable bounds, easily verified as valid

inner innerouter outer

If f and M are quadratic, then the min and max problems  SDPand p’s and r’s bounds are

• computable • easily verified as valid• same for their global sensitivities

Page 28: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

all parameters are within prior bounds, 

A dataset is consistent if the Feasible Set is nonempty;i.e., there exists a parameter vector that satisfies: 

1,min 1 1,max

2,min 2 2,max

x x xx x x

e e eL M U x

all model predictions are within experimental boundsx1

x2

x3

y1

y2

y3

H

D

numerical measure of consistency

1 1 ,

max

e e e

DH

L M U e

C

x

x

Page 29: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

0Consistent

Feasible Set

0Inconsistent

Feasible Set

J. Phys. Chem. A 108:9573 (2004)

Page 30: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Wiesner et al. 199627 active variables

Lemon et al. 200334 active variables

0

inconsistent consistent

cons

iste

ncy

mea

sure

+0.24

0.03

J. Phys. Chem. A 110:6803 (2006)

Page 31: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

prediction

para

model

moeter

delm

prediction

parameterinterval

uncertainty

ex

p

p

re

er

dict

imeninterval

uncert

io

aintyt

n

Page 32: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

1:2experiment

uncertainty

predictioninterva M M M M

L U Ll

U

max min max min

1:2parameter

uncertaint

predictioninterv M M M M

xa

xy

x xl

Page 33: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

ofto

i

jYYpredictiuncertainty in

uncertainty in ob servingngSensitivity

Yi Yj

Page 34: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

-0.1 0.0 0.1 0.2 0.3

H + O2 → O + OH

OH + CO → H + CO2

CH3 + CH3 → H + C2H5

H + C2H4 + (M) → C2H5 + (M)

H + CH3 + (M) → CH4 + (M)

OH + CH3 → CH2* + H2O

C2H5 + O2 → HO2 + C2H4

H + O2 + H2O → HO2 + H2O

HCO + H2O → H + CO + H2O

H + HCO → H2 + CO

HO2 + CH3 → OH + CH3O

O + H2 → H + OH

H + OH + M → H2O + M

H + HO2 → OH + OH

sensitivity“w.r.t. value” vs “w.r.t. uncertainty” 

laminar flame speed in a stoichiometric atmospheric C2H6‐air mixture

J. Phys. Chem. A 112:2579 (2008)

Lower00.20.40.6

1 11 21 31 41 51 61 71

lower0

0.001

0.002

1 11 21 31 41 51 61 71 81 91101

sensitivity of methanedataset consistency

to uncertainty in experimental observations

to uncertainty in model parameters

upper boundlower bound

upper boundlower bound

Page 35: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Initial prediction from prior info

Final prediction

Mp(x1,x2)

Page 36: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

p pMM x x

p

p

p

pmax

m

:

n

,

i

e e e e e

M

L

M M

d U

M

M e

x

x

x x

xx

x x

subject tofeasible set

is the range of values Mp takes over the set of feasible values of parameters

prediction interval

Page 37: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

35th Combust. Symp. 2014

PREDICTION FEATURE PREDICTION INTERVAL

O Peak Value [2.7, 4.3] × 10‐2

O Peak Location [1.9, 2.2] cmOH Peak Value [3.0, 3.6] × 10‐2

OH Peak Location [1.60, 1.67] cmC2H3 Peak Value [0.09, 1.15] × 10‐4

C2H3 Peak Location [0.6,   3.9  ] × 10‐2 cm

Page 38: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Including Experimental ObservationsOnly prior knowledge

prior knowledge

feasible set

1I Posterior Range

Prior Range

Information Gain:

Int. J. Chem. Kinet. 36:57 (2004)

0

0.2

0.4

0.6

0.8

1

ig.1

a

ig.2

ig.6

b

ig.t2

ig.s

t1b

ig.s

t3b

ig.s

t4b

ch3.

c1b

ch3.

t1b

ch3.

t2

ch3.

t3

ch3.

t4

ch3.

stc7

oh.1

b

oh.3

a

co.t1

a

co.c

1b

oh.3

c

co.t1

c

co.c

1d

oh.s

t8

co.s

c8

bco.

t2

bco.

t4

bco.

t6

bch2

o.t1

bch2

o.t3 f1 f3 f6

stf8

sch.

c11

sch.

c13

nfr1

nfr3 nf7

nf12 nfr5

Page 39: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

arg min curexperim

curparameen t

pts

ters

o

:

0

TCC

parametersexpr

c

emen

ur

tssubject to

Given a budget T, determine the best strategy for reducing the uncertainty in model prediction

1a

C

currentcost

uncertainty,

16

18

20

22

05

1015

20

050

100150

200

50

100

200

0

total cost

range predicted for C2H6 flame speed (cm/s)

J. Phys. Chem. A 112:2579 (2008)

Page 40: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Slavinskaya, et al., 2013, 2014

flame speeds ignition delays

Page 41: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Factor

Compute gradients of f(x) at points of 

Perform SVD of F;  this gives S

Sample r‐subspace ofH to build surrogate design

Tf g Sx x

C2H2 flat flame (ALS)

12 responses, 51 active variables

Yeates et al. 7th US Combust. 2011

While a M(x) formally depends on all n active variables, in reality it mostly vary in r « nlinear combinations of the variables.

For creating a surrogate of M(x) we would like to do the design in the r‐dimensional space.

Page 42: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• Even in case of rigorous Bayesian, use of a prescribed prior (e.g., Gaussian) underestimates the uncertainty in prediction (Phillip Stark, “Constraints versus Priors”, 2012)AND we unlikely to have Gaussian priors!

• Approximations, even seemingly “harmless”, may lead to substantial differences in prediction of uncertainty (Russi et al, Chem. Phys. Lett. 2010)

• Optimization‐based methods, transferring uncertainty in two‐steps — from data to parameters and then from parameters to prediction — necessarily overestimate the predicted uncertainty

Baulch et al. 2005

Page 43: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

An ongoing collaborative study withJerome Sacks, National Institute of Statistical SciencesRui Paulo, ISEG Technical University of LisbonGonzalo Garcia‐Donato, Universidad de Castilla‐La Mancha, Spain

B2B‐DC prediction for this blind target is [ 1.89  2.12]

BayesianExample: GRI‐Mech 3.0• 102 active variables• 76 experimental targets• predicting one “blind”

Example: H2/O2• 21 active variables• 12 experimental targets• predicting one “blind”

Bayesian

B2Bsampling F

Page 44: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

•current inability of truly predictive modeling– conflicting data in/among sources– poor documentation of data/models– no uncertainty reporting or analysis– not much focus on integration of data

• resistance to data sharing– no personal incentives– no easy‐to‐use technology

•no recognition of the problem

Page 45: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• is mathematically rigorous, numerically efficient, and UQ‐richapproach to analysis of practical systems

• is data‐centric, handles heterogeneous data, and is easily scalable to a large number of data sets

• is scalable to a large number of parameters through Solution Mapping features, combined with the Active Space Discovery

•establishes a clear measure of consistency among data and models, and identifies the cause of inconsistency if detected

•“measures” information content of an experiment‒ assess an impact of a given or planned experiment (“what if”)‒ design new experiments/theory that impact the most

•reduces uncertainties of known and predicts correctly uncertainty of unknown

Page 46: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 47: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies
Page 48: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

•What causes/skews model predictiveness?

•Are there new experiments to be performed, old repeated, theoretical studies to be carried out?

•What impact could a planned experiment have?

•What is the information content of the data?

•What would it take to bring a given model to a desired level of accuracy?

Page 49: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

from algorithm-centric view

to data-centric view

outputinput codedata data

Page 50: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

2

iidata model

k2 k1

devi

atio

ns

Page 51: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

(top) Cool et al., Rev. Sci. Instrum. 76,  094102 (2005)(bottom) Courtesy of Sandia CRF ‐ http://www.sandia.gov/ERN/images/CRF‐Science.jpg

Integrated signal

Page 52: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Concentration profile

Data Analysisy = f(x,c)

Calibration, c

Model

Assumptions

Integrated signal

Page 53: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Concentration profile

Data Analysisy = f(x,c)

Calibration, c

Model

Assumptions

Integrated signal

Page 54: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Data Analysisy = f(x,c)

Calibration, c

Model

Integrated signal

Instrumental Model

Page 55: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

O, OH, C2H3

– Peak Value– Peak Location

PREDICTION FEATURE PREDICTION INTERVALO Peak Value [2.73, 4.29] × 10‐2

O Peak Location [1.87, 2.20] cmOH Peak Value [2.97, 3.59] × 10‐2

OH Peak Location [1.60, 1.67] cmC2H3 Peak Value [0.09, 1.15] × 10‐4

C2H3 Peak Location [0.60, 3.90] × 10‐2 cm

Page 56: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

hypothesis collectionof data model

predictionhypothesis collection

of data model-experiments-theory

Page 57: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

hypothesis collectionof data model

predictionhypothesis collection

of data model

SENSITIVITY ANALYSIS:What conditions will maximize sens to k?

Page 58: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

hypothesis collectionof data model

predictionhypothesis collection

of data model

UNCERTAINTY QUANTIFICATION:What experiment will be most informative?

Page 59: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

?

flame codeinput

conditions

reaction model

validation datathermo and transport data

prediction

Page 60: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Volume of sphereVolume of cube

dimension

Page 61: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

pM x pM x

pM x

Page 62: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

Data analysis performed

in isolationleads to loss of information

Page 63: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

hypothesis|data data|hypothesis hypothesis

Page 64: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

priorlikelihoodposterior

hypothesis|data data|hypothesis hypothesis

model /analysis

Page 65: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

priorlikelihoodposterior

hypothesis|data data|hypothesis hypothesis

model /analysis

Page 66: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

• Quadratic surrogates enable mathematically rigorous, numerically efficient, and UQ‐rich approach of B2B‐DC to practical systems

• Quadratics work in practice because model parameters are limited‒ by physical constraints;  e.g., 0  < k < collision limit‒ by reaction theory / chemical analogy‒ by prior experimental / theoretical studies‒ and can be linearized; e.g., by the log transformation

• And if they do not work, then‒ rational quadratics (“native” with B2B framework)‒ a two‐level surrogate approach

first, use machine learning to build “high‐order surrogates”,e.g., Gaussian Process, Kriging, ‐SVM, Polynomial Chaos

then, build/use on‐demand piece‐wise quadratics from the high‐order surrogates

J. Phys. Chem. A 110:6803 (2006)

Page 67: Uncertainty Quantification Framework for Modeling Predictionccmsc.utah.edu/images/publications/presentation... · •Uncertainty exists, but much is known where the uncertainty lies

L y U

y2

y3

Dy1

L ‒ M(x) U +

y = M(x) +

L′ M(x) U′

surrogate model

fitting error

D