utq.edu.iqutq.edu.iq/magazines/docutq2016/78.docx · web viewjournal of thi-qar university vol.11...

30
Journal of Thi-Qar University Vol.11 No.4 DES 2016 Existence Results for Nonlinear Quasi- hemivariational Inequality Systems Ayed E. Hashoosh, Mohsen Alimohammady and Ghufran A. Almusawi Department of Mathematics, University of Mazandaran , Iran; Email: [email protected] ¿ Department of Mathematics, University of Thi-Qar, Iraq; Email [email protected] [email protected] ABSTRACT This paper aims at establishing the existence solutions of a non-standard quasi-hemivariational inequality‚ whose solutions are discussed in a subset K n of a reflexive Banach space X n for every n= 1 ‚i. In addition, we introduce two applications. The first one shows the relationship between our inequality problems and equilibrium problems. The second one applies the extend some results concerning nonlinear quasi-hemivariational inequalities. 90 www.Jutq.utq.edu.iq Web Site of the Journal

Upload: tranthuy

Post on 26-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

Existence Results for Nonlinear Quasi-hemivariational Inequality Systems

Ayed E. Hashoosh, Mohsen Alimohammadyand Ghufran A. Almusawi

Department of Mathematics, University of Mazandaran,Iran; Email: [email protected]

¿ Department of Mathematics, University of Thi-Qar,Iraq; Email [email protected]

[email protected]

ABSTRACT

This paper aims at establishing the existence solutions of a non-standard quasi-hemivariational inequality‚ whose solutions are discussed in a subset K n of a reflexive Banach space X n for every n=1‚ i. In addition, we introduce two applications. The first one shows the relationship between our inequality problems and equilibrium problems. The second one applies the extend some results concerning nonlinear quasi-hemivariational inequalities.

الملخص

الغير التغايرية نصف شبه المتراجحات لنظم حلول وجود لنشر يهدف البحث هذاالجزئية. المجموعة في نوقشت الحلول ان حيث K قياسية n بناخ فضاء Xمن n

1لكل ‚i=n.

. التوازن ومشاكل متراجحتنا مشاكل بين االول تطبيقين قدمنا ذلك الى باإلضافةالمتعلقة. النتائج بعض لتوسع عليها حصلنا التي الرئيسية نتيجتنا يطبق الثاني اما

. خطية والغير تغايريه نصف الشبه بألمتراجحات

Keywords

Quasi-hemivariational inequality; Clarkes generalized gradient; locally Lipschitz functional; equilibrium problems.Mathematics subject classification 2010: 47H04; 47H05; 47J20; 49J53; 26D12.

90www.Jutq.utq.edu.iq Web Site of the Journal

Page 2: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

91www.Jutq.utq.edu.iq Web Site of the Journal

Page 3: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

1. IntroductionThe theory of hemivariational inequalities was introduced P.D.Panayiotopoulos at the beginning of the 1980s (see [18] and [19]). Within a very short period of time‚ this theory witnessed a remarkable development in both pure and applied mathematics. It has been proved very efficient to describe a variety of mechanical problems and engineering sciences‚ economics‚ differential inclusion and optimal control (see [5-8‚12, 15, 16‚ 18‚ 21‚ 22] and [25]). In these papers‚ based on Clarkesgeneralized directional derivative and Clarke’s generalized gradient for locally Lipchitz functions‚ the researchers study the existence and uniqueness of solutions by using such as fixed point Theorems‚ KKM Theorems‚ critical point Theory‚ surjectivity Theorems for pseudomonotone and coercive operators (see [1, 3‚ 4‚ 11, 13, 14‚ 20‚ 23, 24] and [26]). Generally, in the last few years‚ there were many authors were who interested in the study of various kinds of hemivariational inequalities and systems of hemivariational inequalities‚ these inequalities are a generalization of the variational inequalities‚ and related problems such as equilibrium problems. In order to‚ it is very useful to understand several problems of mechanics and engineering for non- convex‚ non- smooth energy functionals.Quasi- hemivariational inequalities arise from hemivariational inequalities if in addition some constraints have to be taken into account. The solution of these inequality gives the position of the state equilibrium of the structure.The main purpose of this work is to contribute in establishing the existence solutions for systems of generalized quasi- hemivariational inequalities. In order to achieve the aim‚ the study is divided into the following sections. In section 2‚ we refer to some definitions and results that assist us in the study. In section 3 we formulate the system of generalized quasi- hemivariational inequality and prove the main results. In the last section of the paper‚ two applications are given. The first one present the relationship between our inequality problems and equilibrium

92www.Jutq.utq.edu.iq Web Site of the Journal

Page 4: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

problems. The second one apply of our inequality to a system of generalized quasi- hemivariational inequalities involving integrals of Clarke’s generalized directional derivatives.

2. Preliminaries with basic assumptions

Throughout this paper‚ we assume that En are Banach space and that En¿ are

the topological dual space of the Banach space En ‚white ⟨ ∙ ‚ ∙ ⟩ n and ‖∙‖n denote the duality pairing between En and En

¿ ‚respectively for every n=1‚ i.

In what follows‚ we are going to recall some definitions and notions from non-smooth analysis which will be used in this paper.

Assume that K is a nonempty‚ closed and convex subset of a Banach space En and assume that F : K × K → R us a given bifunction satisfying the property F (u ‚u )=0 ‚for every u∈K . An equilibrium problem (for short‚ (EP)). In the sense of Blum‚ Mu and Zoettli (see [17]) is a problem of the form:

Find x∈K such that F ( x ‚ y )≥ 0 ‚∀ y∈K .

Definition 2.1: [8] A functionalJ : E → R is said to be locally Lipchitz if every point u∈E possesses a neighborhooh W such that

|J (a )−J (b)|≤ Mu‖a−b‖E∀ a‚b∈W .

For a constant M u≥ 0 which depends on W .

Definition 2.2: [8] Assume that J : E → R is a locally Lipchitz. The generalized derivative of J at the point u∈E in the direction z∈ E is denoted by J0 (u ‚z ) ‚

i.e.,

J0 (u ‚z )=lim supa → uλ↘0

J ( a+λz )−J (a)λ .

Similarly, one can define the partial generalized derivative and partial generalized gradient of locally Lipchitz functional in the rth variable.

93www.Jutq.utq.edu.iq Web Site of the Journal

Page 5: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

Definition 2.3: [8] Assume that ∅ : E1× …× Er × … En→ R be a locally lipschitz function in the rth variable. The partial generalized derivative of ∅ (u1 ‚ … ‚ur ‚…‚u i) at the point ur∈E r in the direction zr∈Er ‚denoted by ∅ 0 ( u1‚ … ‚ur ‚ … ‚ui ; zr ) ‚is

∅ 0‚r (u1 ‚… ‚ur ‚… ‚u i; zr )=lim sup

ar → ur

λ↘0

∅ (u1‚ …‚ ar+ λzr‚ …‚ u i)−∅ (u1 ‚ …‚ ar ‚ … ‚ui)λ

.

While the partial generalized gradient of the mapping

ur↦ f (u1 ‚ … ‚ur ‚ … ‚ui) denoted by ∂r∅ (u ) ( u1‚… ‚ ur ‚… ‚ui ) ‚∀ zr∈ Er that is

∂r∅ (u ) ( u1‚ …‚ ur ‚… ‚ ui )={ςr∈E ¿r :∅ 0

‚r (u1‚ …‚ur‚ …‚u i; zr ) ≥ ⟨ ςr ‚ zr ⟩ E r }.

Definition2.4: [8] Assume that E is a Banach space and J : E → R is locally lipschitz functional. We say that J is a regular (in the sense of Clarkes) at u∈E if for each z∈ E the one sided directional derivative J ' (u ‚ z ) exists and J0 (u ‚ z )=J ' (u ‚ z ) . We say that J is regular at every point u∈E.

Proposition 2.5: [8] Let J : E → R be a function on a Banach space E ‚ which is locally Lipchitz of rank M u near the point z∈ E ‚then

i) The z↦ J 0 (u ‚ z ) is subadditive‚ finite‚ positively homogeneous and satisfies

ii) J0 (u ‚z ) ≤ M u‖z‖;iii) J0 (u ‚z ) is upper semicontinuous as a function of (u ‚ z ) one can

found a proof it in [19].

Definition 2.6: The generalized gradient of J at u∈E ‚which is a subset of a dual space E¿ ‚is define by

∂ J (u )= {ξ∈E ¿ : ⟨ξ ‚ z ⟩ ≤ J0 (u ; z )‚∀ z∈ E }.

Lemma 2.7. [8] Assume that ∅ : E1× …× Ei → R is a regular‚ locally Lipchitz functional. Then the following are satisfied:

94www.Jutq.utq.edu.iq Web Site of the Journal

Page 6: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

(1)∂∅ (u1‚… ‚ ur ‚ …‚ ui )⊂∂1∅ (u1 … ‚ ur ‚ …‚ ui ) …× ∂i∅ (u ) (u1 ‚… ‚ur ‚… ‚u i );(2)∅ ( u1‚… ‚ ur ‚… ui ‚ z1… ‚ zr ‚… ‚ zi ) ≤∑

i=1

n

∅‚ r0 (u1‚… ‚ur ‚… ‚ ui ) ;(3)∅ ( u1‚ … ‚ur ‚ … ‚ui ‚0 ‚ … ‚zr ‚… ‚0 ) ≤∅ ‚r

0 (u1‚ …‚ ur‚ …‚ u i; zr ).

Definition2.8. Assume that T : E → E¿ and η : E × E → E are two single valued. T is said to be η- monotone‚ if for each x ‚ y∈domT such that

⟨ Tx−Ty ‚η(x ‚ y) ⟩ ≥0.(2.1)

At the end of this section‚ we recall Tarafdar fixed point theorem for set – valued mapping [25] which we shall use to prove the main results of the study.

Theorem 2.9. Assume that K ⊂E is a nonempty and convex of Hausdorff topology vector space E ‚and that α : K⊸K be a set valued map such the following are satisfied

(i) For each u∈K ‚ α (u) is a nonempty convex subset of K .(ii) For each z∈ K ‚ α−1 ( z )= {u∈K : z∈α (u ) } contain an open set O z

which may be empty.(iii) ¿ z∈ K O z=K .(iv) There exists a nonempty set U 0 contained in a compact subset U1

of K such that S=¿z∈K O zcis either empty or compact‚ where

O zc is the complement of O z∈K .

Then there exists a point u0∈K such that u0∈α(u0).

3. Formulation of the problem and main results:

Assume that Kn is a nonempty bounded‚ closed and convex subset of a real reflexive Banach space X n where n a positive integer. Our aim is to study the following system of nonlinear quasi- hemivariational inequality: (NQHIS)

Find (u1 ‚… ‚ ui )∈K1× … × K i .

95www.Jutq.utq.edu.iq Web Site of the Journal

Page 7: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

{⟨T1 (u1 ‚… ‚u i )‚η1 (u1 ‚ v1 ) ⟩ X 1

+H 1 (u1 ‚ …‚ ui ) j10 ( A1u1‚… ‚ A1u i; A1 η1 (u1‚ v1 ))

≥ ⟨ F1 (u1 ‚… ‚ui )‚ v1−u1 ⟩ X 1

… … … … … … … … … … … … … … …⟨T i (u1‚ …‚ u i) ‚ ηi (ui ‚v i ) ⟩X i

+H i (u1‚ …‚ ui ) ji0 ( A iu1 ‚… ‚ A iu i; Ai ηi (ui‚ v i ))

≥ ⟨ F i ( u1‚… ‚ui ) ‚v i−ui ⟩ Xi

For all ( v1‚ … ‚v i )∈K 1× …× K i . Assume that X1 ‚… ‚ X i are reflexive Banach space and that E1 ‚… ‚ Ei are Banach space. We assume that there exist compact linear operators An : Xn → En for every n=1‚ i. In addition, let us assume that ηn : Xn × Xn→ Xn are single- valued functions‚ and J : E1× …× En→ R is a regular locally Lipchitz functional‚ for every n=1‚ i.

Notations: For every n=1‚ i. Then ° X=X1× …× X i ; E=E1× …× Ei and E=K1× … × K i ° u=(u1‚ …‚ ui) and Au=( A1 u1‚ …‚ A iui)

° η (u ‚ v )=(η1 (u1‚ v1 ) ‚ … ‚ηi (ui‚ v i )); Aη (u . v )=( A1η1 (u1 ‚ v1 ) ‚ …‚ A iηi (ui ‚ v i ))° Tn and F n: X 1× …× X i → X n

¿are nonlinear operators such that:

⟨ Fu ‚v−u ⟩X=∑n=1

i

⟨ Fn (u1 ‚ … ‚u i )‚ vn−un ⟩X n

⟨ Tu ‚η(u ‚ v)⟩ X=∑n=1

i

¿¿¿

° H n: X1× …× X i → R∪ {+∞ } is a non negative and continuous on K n such that

H (u )=∑n=1

i

( u1‚… ‚ui ) .

Hypotheses: For every n=1‚ i. Then the following assertions are fulfilled

H F : ⟨ Fn (u1 ‚… ‚u i )‚ vn−un ⟩X n≤ lim inf

m⟨ Fn (u1

m‚ …‚u im)‚ vn−un

m⟩Xn‚

Where (u1m‚ … ‚ ui

m )⇀ ( u1‚… ‚ ui ) as m→ ∞ and vn∈ Xn is fixed.

H η : The mapping ηi ( ∙‚ ∙ ) : X i × X i → X i satisfied the following conditions

96www.Jutq.utq.edu.iq Web Site of the Journal

Page 8: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

(1) ηn (un ‚ un )=0∀un∈ Xn ;

(2) ηn (un ‚0 ) is a linear operator ∀un∈Xn ;

(3) ηn (unm‚ vn )⇀η (un ‚vn ) ‚whenever un

m⇀un.

H T :

(1) lim supm

⟨Tn (u1m ‚… ‚ ui

m) ‚ηn (unm‚ vn )⟩X n

≤ ⟨T n (u1‚… ‚ ui ) ‚ ηn (un ‚vn )⟩ X n

where (u1

m‚ … ‚uim )⇀ ( u1‚… ‚ ui ) as m→ ∞ and vn∈ Xn is fixed;

(2) vn↦∑n=1

i

⟨T n (u1‚ …‚ u i) ‚ ηn (un‚vn ) ⟩X n is a convex ∀un∈Xn

H H : lim supm

H i (u1m ‚… ‚ ui

m)=H i (u1‚… ‚ui ) whenever unm⇀un as m→ ∞.

Theorem 3.1. Assume that the nonempty‚ bounded‚ closed and convex set Kn⊂Xn for every n=1‚ i .If the conditions H F ‚H η‚ H T and H H satisfy‚ then the system of nonlinear quasi- hemivariational inequalities (NQHZIS) admits at least one solution.

In what follows‚ we are going to present the following vector quasi- hemivariational inequality:

(VQHI) find u∈K ‚such that

⟨ T nη(u‚ v) ⟩+H (u ) J 0 ( Au ; Aη (u ‚ v ) ) ≥ ⟨ Fu‚ v−u ⟩ X(3.1)

For all v∈K

Proposition 3.2. Assume that the assumptions H F ‚H η‚ H T and H H satisfy‚ and that (u1

0‚… ‚ui0 )∈K 1× …× K i is a solution of the inequality

(VQHI)‚ then u0 is a solution of the system (NQHI).Proof. Indeed‚ if we fix a point un∈K n for every n=1‚ i and for n ≠ h . We assume that uh=uh

0. Therefore‚from lemma 1.8 and H η(1)‚

0 ≤ ⟨Tu0‚ η (u0‚ v )⟩ X+H (u¿¿0)J0( A u0; Aη(u0 ‚ v ))−⟨ F u0‚ v−u0 ⟩X ¿

97www.Jutq.utq.edu.iq Web Site of the Journal

Page 9: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

≤∑h=1

i [ ⟨T h (u10 ‚… ‚u i

0 ) ‚ ηh (uh0 ‚ vh ) ⟩Xh

+H h (u10 ‚ … ‚ ui

0 )J h0 ( A u1

0 ‚ … ‚ui0; Aηh (uh

0 ‚ vh ))− ⟨ Fh (u1

0 ‚… ‚ ui0 ) ‚ vh−uh

0 ⟩X h]

¿ ⟨T n (u10 ‚ … ‚u i

0 )‚ ηn(un0 ‚vn)⟩X n

+H n (u10‚… ‚ui

0 ) Jn0 ( A u1

0 ‚ … ‚ui0 ; Aηn (un

0 ‚vn ) )−⟨ Fn (u10‚… ‚ ui

0 ) ‚ vn−un0 ⟩X n

‚∀n=1.i

.

This means that (u10‚… ‚ui

0 )∈K 1× …× K i is a solution of the inequality (NQHIS).∎

Remark 3.3. The mapping vn↦ J0‚ n (( u1‚ …‚ ui ) ‚ ηn (un ‚vn )) is a convex for

every (u¿¿1 ‚… ‚ui)∈E1× …× Ei ¿. It follows from the convexity of J0

‚n ((u1‚… ‚ui ) ‚vn ) and linearity of ηn (un ‚ ∙ ) For every n=1‚ i.

Remark 3.4. Since A is a linear compact operator we obtain that A vn converges strongly to some A v∈K and u∈K ‚ Aη ( vn‚u ) ‚ converges strongly to Aη ( vn‚ u ).

Applying this fact‚ together with Proposition 2.4(2) ‚ we get that

lim ¿ n J0 ( A vn; Aη ( vn‚u ))≤ J0 ( Av ; Aη (u ‚ v ) ). (3.2 )

In what follows‚ we are going to prove of Theorem 3.1.

Proof. According to Proposition 3.2‚ it is enough to prove that problem (VQHI) has at least one solution. We argue by contradiction‚ let us assume that (VQHI) has no solution. Then for each u∈K there exists v∈K such that

⟨ Tu‚ η(u ‚ v )⟩X +H (u ) J0 ( Au; Aη (u ‚ v ) )<⟨ Fu ‚ v−u ⟩ X (3.3)

Let as consider the set ψ⊂K × K as follows

ψ= {(u ‚v )∈K × K : ⟨Tu ‚ η (u ‚ v ) ⟩X+H (u ) J0 ( Au; Aη (u ‚ v )) ≥ ⟨ Fu ‚ v−u ⟩ X } .(3.4)

We shall prove ψ satisfies the conditions of Tarafdar Lemma for weak topology of the space X . Let α : K ⊸K defined by

98www.Jutq.utq.edu.iq Web Site of the Journal

Page 10: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

α (u )={v∈ K : (v ‚ u )∉ψ }∙(3.5)

Claim 1: α (u ) is nonempty and convex ∀ u∈K .

Obviously‚α (u ) is a nonempty for each u∈K . Let us choose v' ‚v ' '∈α (u ) ‚ t∈(0 ‚1) and v t=t v '+ (1−t ) v ' ' . Using H T(2) ‚one can have

⟨T (u )‚ η (u ‚v t )⟩ X=∑n=1

i

¿¿¿

∀ t∈ ( 0‚1 ) ‚so v↦ ⟨T (u )‚ η (u ‚ v t )⟩ X is convex. On the other hand, Remark (1,8)

and continuity of H ‚ we deduce that the mapping v↦H (u)J 0 ( Au ; Aη (u ‚ v ) ) is convex. Applying the fact that the mapping v↦ ⟨ F (u )‚ v−u ⟩ X is an affine‚ then α (u) is a convex for a fixed u∈K .

Claim 2. [α−1(v)]c= {u∈K : (v ‚u )∈ψ } is weakly set in K .

It is enough to prove that for any fixed point v∈K ‚ the function G : K → R ‚

G (u )= ⟨T (u )‚ η (u ‚v ) ⟩ X+H (u ) J 0 ( Au ; Aη (u ‚v ) )−⟨ F (u )‚ v−u ⟩X (3.6)

is weakly upper semi continuous. This is equivalent to say that mappings:

⟨ T (u ) ‚ η (u‚ v ) ⟩ ‚ H (u ) J 0 ( Au ; Aη (u ‚v ) ) is weakly upper semi continuous while the mapping ⟨ F (u ) ‚ v−u ⟩Xis weakly lower semi continuous for the fixed v∈K . Assume that {um }⊂K be a sequence such that um⇀u∈K as m→ ∞ .From H η(3) and H T for every n=1‚ i ‚then

lim supm

⟨T (um ) η(um‚ v)⟩ X=lim supm

∑n=1

i

⟨T n (u1m‚… ‚ ui

m ) ‚ηn(unm ‚ vn)⟩Xn

≤∑n=1

i

lim¿ m ⟨ Tn (u1m ‚ … ‚ui

m )‚ ηn(unm‚ vn)⟩X n

≤∑n=1

i

⟨T n (u1 ‚… ‚ ui ) ‚ ηn(un ‚ vn)⟩ Xn

99www.Jutq.utq.edu.iq Web Site of the Journal

Page 11: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

¿ ⟨ T (u ) ‚η(u ‚v )⟩ X

This means that the mapping u⟼ ⟨Tu ‚ η(u ‚ v)⟩ is weakly u.s.c.

One the other hand‚ from Remark 3.4‚ H H and J0(u ‚ v) is u.s.c. Then

lim supm

H (um ) J0 ( A um; Aη (um‚ v ))≤ limm

[∑n=1

i

H n (u1m ‚…‚ ui

m )−∑n=1

i

H n ( u1‚ …‚ui )]J0 ( A um; Aη (ui

m‚ v i ))+ limm

∑n=1

i

H n

(u1‚ … ‚ui)J 0 ( A um ; Aη (uim ‚v i ))

≤ 0+limm

∑n=1

i

Hn

(u1 ‚ … ‚ui)J 0 ( A um ; Aη (u im‚ v i) )

¿ H (u ) J 0 ( Au ; Aη (u‚ v ) ).

Finally, by applying H F ‚one can get

⟨ Fu ‚ v−u ⟩ X=∑n=1

i

⟨Fn (u1 ‚… ‚u i )‚ vn−un ⟩X n

≤ lim infm

∑n=1

i

⟨Fn (u1m ‚ … ‚ui

m )‚ vn−unm⟩X n

¿ lim infm

⟨F (um ) ‚v−um ⟩ X n.

Therefore‚G is weakly u.s.c. Hence‚ the set {u∈K :G (u ) ≥ β } is weakly closed

for every β∈ R . Taking β=0 ‚we get that [α−1 (v ) ]c is weakly closed.

Claim 3: K=α−1 ( v ) .

It is sufficing to prove that K ⊂α−1 ( v ). Let u∈K ‚so by 3.3, there exists v∈K such that v∈α (u ) ‚ this means that u∈α−1 (v ). Therefore‚ K ⊂ (α−1 ( v ) ) .

Claim 4: S=¿v∈K [α−1 ( v ) ]c is empty or weakly compact.

Since [α−1 (v ) ]c is weakly closed on a nonempty‚ bounded‚ closed and convex set K of reflexive Banach space X ‚then K is weakly compact set. Hence‚ S is

100www.Jutq.utq.edu.iq Web Site of the Journal

Page 12: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

weakly compact set as it an intersection of weakly closed subsets of weakly compact. Therefore.by conditions (T 1−T 2 ) of Lemma Tarafrar‚ there exists

u0∈α (u0 ) which implies

0=⟨T u0 ‚ η (u0 ‚v ) ⟩+H (u0 ) J0 ( A u0 ; Aη (u0‚ v ))− ⟨ F u0‚ v−u0 ⟩ X<0.

So‚ we have reached a contradiction. Therefore‚ (NQHIS) admits at least one solution.

H S : let (u1 ‚… ‚ui ) ‚( v1‚ …‚ v i )∈ X1 ×… × X i for every n=1‚ i .

(i) ηn (un ‚ vn )+ηn ( vn‚un )=0 ∀ un∈X n;

(ii) ⟨T n (u1‚ … ‚ ui ) ‚ ηn (un ‚ vn ) ⟩X n+ ⟨Tn ( v1… ‚v i ) ‚ηn ( vn‚ un ) ⟩X n

≥ 0 ;

(iii) vK⟼∑n=1

i

⟨T n (u1 ‚ … ‚ui ) ‚ηn ( un‚ vn )⟩ Xn is weakly l.s.c;

(iv) For each vi∈ X i ‚the mapping

v⟼∑n=1

i

⟨T n (u1‚ … ‚ui ) ‚ηn (un‚ vn )⟩ X nis concave.

lemma 3.5. suppose that H S holds. Then the following hold

(i) T is η−¿ monotone operator.(ii) The mapping u⟼ ⟨Tu ‚ η(u ‚ v)⟩ X is weakly u.s.c ∀ v∈X .

(iii) vk⟼∑n=1

i

⟨T n (u1‚… ‚ ui ) ‚ ηn (un ‚vn ) ⟩ X nis weakly l.s.c;

(iv) For each vi∈ X i the mapping

v⟼∑n=1

i

⟨T n (u1‚ … ‚ui ) ‚ηn (un‚ vn )⟩ X n is concave.

Lemma 3.5. suppose that H S holds. Then the following hold

(i) T is η –monotone operator.(ii) The mapping u⟼ ⟨Tu ‚ η(u ‚ v)⟩ X is weakly u.s.c ∀ v∈X .(iii) The mapping v⟼ ⟨Tu ;η (u‚ v )⟩X is convex ∀u∈X .

101www.Jutq.utq.edu.iq Web Site of the Journal

Page 13: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

Proof. From H S (i−ii )‚we have

⟨ Tu−Tv ‚ η (u‚ v ) ⟩X= ⟨Tu ‚ η (u‚ v ) ⟩X− ⟨Tv ‚ η (u ‚ v ) ⟩X

¿∑n=1

i

⟨T n ( u1‚… ‚ui ) ‚ηn (un ‚vn ) ⟩X n

−∑n=1

i

⟨T n (v1‚ …‚ v i )‚ ηn (un‚ vn )⟩ Xn

¿∑n=1

i

⟨T n ( u1‚… ‚ui ) ‚ηn (un ‚vn ) ⟩X n

+∑n=1

i

⟨T n (v1 ‚… ‚v i ) ‚ηn ( vn ‚un )⟩ X n

≥ 0.

Prove second assertion‚ let {um }⊂X be a sequence which converges weakly to some u∈ X . According to H S (i−ii ) and the verity that um →u ‚one can obtain

lim supm

⟨T (um ) ‚η(um‚ v)⟩ X=lim supm

∑n=1

i

⟨T n (u1m‚… ‚ui

m )‚ ηn (unm‚ vn )⟩X n

−lim infm

∑n=1

i

⟨T n (u1m‚ …‚ui

m )‚ ηn (vn ‚ unm ) ⟩X n

¿−∑n=1

i

lim infm

⟨Tn (u1m ‚… ‚ui

m )‚ηn (vn‚unm )⟩X n

≤−∑n=1

i

⟨Tn (u1 ‚… ‚u i )‚ ηn ( vn‚un )⟩ Xn

¿∑n=1

i

⟨T n ( u1‚… ‚ui ) ‚ηn (un ‚ vn ) ⟩X n

102www.Jutq.utq.edu.iq Web Site of the Journal

Page 14: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

¿ ⟨ Tu‚ η(u ‚v )⟩X

Prove third assertion‚ let u ‚ v ' ‚ v ' ' ∈X then‚ by H S ( i−iv )such thatv t=t v '+ (1−t ) v ' ' ∀ t ∈ (0 ‚1 )‚then

⟨ Tu ‚η (u ‚ v ) ⟩X=∑n=1

i

⟨Tn (u1 ‚… ‚ ui )‚ ηn (un‚ tv n' (1−t ) vn

' ') ⟩X n

−∑n=1

i

⟨Tn (u1 ‚…‚u i )‚ ηn ( tvn' (1−t ) vn

' ' ‚ un ) ⟩X n

≤−∑n=1

i

t ¿¿¿

−∑n=1

i

(1−t)¿¿¿

¿∑n=1

i

t ⟨Tn (u1 ‚ … ‚ui )‚ ηn (un‚ vn' )⟩X n

+∑n=1

i

(1−t )⟨T n (u1‚ …‚ u i) ‚ ηn (un‚ vn' ' ) ⟩X n

¿ t ⟨Tu ‚η(u ‚ v ')⟩X +(1− t ) ⟨Tu ‚η ( u‚ v ' ' ) ⟩X.

Theorem 3.6. Assume that the nonempty‚ bounded‚ closed and convex set Kn⊂Xn for every n=1‚ i . If the condition H F ‚ H η‚ H S and H H satisfy‚ then the system of nonlinear quasi- hemivariational inequalities (NQHIS) admits at least one solution.

Proof. Suppose that the set ψ⊂K × K defined as follows:

ψ= {(u ‚v )∈K × K : ⟨Tv ‚η (u ‚ v ) ⟩X +H (u ) J 0 ( Au ; Aη (u ‚v ) )− ⟨ Fu‚ v−u ⟩ X ≥ 0} .

One can follow the same steps in the Theorem 3.1 to conclude that the conditions required in Tarafdar fixed point Theorem are hold. Therefore‚ there exists u0∈K such that

103www.Jutq.utq.edu.iq Web Site of the Journal

Page 15: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

⟨Tv ‚ η (u0‚ v )⟩ X+H (u0 ) J0 ( A u0 ; Aη (u0‚ v ))≥ ⟨ F u0‚ v−u0 ⟩ X .(3.7)

Since T is η-monotone operator‚ so

⟨ Tu−Tv ‚ η(u ‚v )⟩X ≥0.(3.8)

Adding (3.7) and (3.8) we have u0 solves (VQHVI)‚ which applying Proposition.

In order to highlight the advantage of our inequality problem dedicate the last section to two applications‚ one in equilibrium problem and the other in an abstract nonlinear quasi-hemivariational inequality.

4. APPLICATIONS4.1. First application

In this subsection‚ we present a result one the connection between equilibrium problems and our inequalities in the case T is set-valued. It is clear any solution of the quasi-hemivariational inequality is a solution of the equilibrium problem‚ where the equilibrium bifunction Λ (u ‚v ) : K × K → R is defined by

Λ (u ‚v )=¿ z∈T (u) ⟨ z ‚ η(u ‚v )⟩X +H (u ) J 0 ( Au ; Aη (u ‚v ) )− ⟨ Fu‚ v−u ⟩X . (4.1 )u ‚v∈K .In what following‚ let rewrite (3.3) where T is set- valued:Find u∈K and z∈T (u) such that

⟨ z ‚ η(u ‚ v) ⟩X+H (u ) J 0 ( Au ; Aη (u ‚ v ) ) ≥ ⟨ Fu ‚v−u ⟩ X (4.2)∀ v∈K .The next result was introduced by B. Allechea‚ V. Radulescu and M. Sebaouia in [2]. We extend this result.Corollary 4.1. If a set-valued T : X⊸ X ¿ has a nonempty‚convex and weak¿

compact values‚then any solution of the equilibrium problem (EP) is a solution of the problem (4.2).Proof. Let u¿∈ K⊂ X such that Λ (u¿ ‚ v )≥ 0 for every v∈K . Arguing by contradiction. Let us assume that problem (4.2) has no solutions. So‚ there exists vz∈K for any z∈T (u¿ ) in which

104www.Jutq.utq.edu.iq Web Site of the Journal

Page 16: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

⟨ z ‚ η (u¿ ‚v z)⟩X +H (u¿) J 0 ( A u¿ ; Aη (u¿ ‚ v z ))−⟨ F u¿ ‚v z−u¿⟩ X<0.Define P : X ¿ × K × K → R such that

P ( z ‚ v ‚u¿ )≔ ⟨ z ‚ η(u¿ ‚v )⟩ X+H (u¿ ) J0 ( A u¿ ; Aη ( v ‚u¿ ) )− ⟨ F u¿‚ v−u¿ ⟩X

One can easily show that for any v∈K ‚the mapping defined on X ¿ by z⟼ P ( z ‚ v ‚ u¿ )

Is weak¿-continuous. Let S≔−P so‚ S is weak¿-continuous with respect to first variable where S ( z ‚ v ‚u¿ )>0. Define Υ v ‚u¿ : X → R such that Υ v ‚u¿(z)≔ S(z ‚v ‚ u¿) is weak¿-continuous too‚ So,∀ z∈T (u¿) there exists vz∈K such thatx∈ ¿v∈K ‚ ρ>0 {w :S ( z ‚v ‚ u¿)> ρ }=¿ v∈ K ‚ ρ>0Υ v ‚u¿

−1 ( ρ ‚+∞ )is weak¿-open. Which shows

T (u¿)⊂¿v∈K Υ v ‚u¿−1 ( ρ ‚+∞) .

Since T (u¿) is weak ¿-compact‚there is a finite sub cover Υ v1 ‚u¿

−1 ( ρ1‚+∞ )‚ …‚Υ v n1 ‚u¿−1 ( ρn‚+∞ )‚i.e.,

T (u¿ )⊂¿i=1¿n Υ vi ‚u¿−1 ( ρi‚+∞ ) .

Letting ρ=min {ρi‚ …‚ ρ n }. So,T (u¿)⊂¿i=1¿n Υ vi ‚u¿

−1 ( ρ‚+∞ ) .For every z∈T (u¿) then

Maxn=1 ‚i

S ( z ‚v ‚ u¿)> ρ

It means thatMinn=1‚ i

S ( z ‚ v ‚u¿)← ρ .

For every z∈T (u¿ ). One can easily show that z⟼ P ( z ‚ v i‚ u¿ )

is convex and proper with domain containing T (u¿) . Then by Theorem 21.1 in

[23] there exists λ ≥ 0 ‚ such that ∑i=1

n

λi=1 for every n=1‚ i . So

‚∑i=1

n

λ i P ( z ‚ v i‚ u¿ )← ρ. It means that

∑i=1

n

λi [ ⟨ z ‚η(u¿ ‚v i)⟩X +H (u¿) J 0 ( A u¿ ; Aη (u¿ ‚ v i ))−⟨ F u¿ ‚ v i−u¿ ⟩X ]← ρ .

105www.Jutq.utq.edu.iq Web Site of the Journal

Page 17: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

Set v¿=∑i=1

n

λi v i . Therefore‚ by use remark (3.3) and remark (3.4) we have

¿¿for every z∈T (u¿ )‚ which implies that Λ(u¿ ‚v¿)<0 is a contradiction.

4.2. Second application. In this subsection‚ we are going to apply our main result‚ expressed in the previous section for systems of an abstract nonlinear quasi- hemivariational inequality. We assume that Ωis a bounded‚ open subset of RN . j : Ω× RN × … × RN → R is a Carathe'odory function and that j(z ‚… ‚∙) is a locally Lipchitz for every z∈Ω and the following conditions hold:

H j : there exists an∈Lp

p−1 ¿ in which

|wn|≤ an (x )+bn ( x )|y|p−1 (1< p<∞ )(4.3)

is almost z∈Ωand every w n∈∂n j(z ‚ y1 ‚… ‚ y i) and every y=( y1‚ …‚ y i)∈ RN × … × RN. Let us assume that

A=( A1‚ …‚ A i ): X1× …× Xn → Lp (Ω ‚ RN ) ×… × Lp ( Ω‚ R N ) and that J ∘ A : K1 ×… × K i → R is define by

J ( Au )=∫Ω

j ( z ‚ A1u1 ( z )‚ …‚ A i ui ( z ) ) dz .

One can apply the Aubin-Clarke theorem [5] to get that

Jn0 ( Au; An vn)¿≤∫

Ω

J n0 ( z ‚ A1 u1 ( z ) ‚ … ‚ A i u i ( z ) ; An vn (z ) ) dz .

For every n=1‚ i and vn∈ Xn. Since H n : X1× … × X i∈R∪ {+∞ } is a non negative and continuous on Kn. Then

H n (u1‚ …‚ u i) Jn0 ( Au; An vn )≤ H n(u1 ‚… ‚ui)∫

Ω

J n0 ( z ‚ A1 u1 (z ) ‚… ‚ A i ui ( z ) ; An vn ( z) ) dz .

Corollary 4.2. Assume that the nonempty‚ bounded‚ closed and convex set Kn⊂Xn for every n=1‚ i. If the conditions H F ‚H T ‚H i ‚ H H and η (un ‚ vn )=vn−un are satisfies. Then the following system of nonlinear quasi-hemivariational inequalities admits at least one solution. Finding (u1 ‚ … ‚ui )∈K1× … × K i ‚ in which

⟨T 1 (u1‚ … ‚ ui ) ‚ v1−u1 ⟩+H 1 (un )∫Ω

j10

❑¿¿

106www.Jutq.utq.edu.iq Web Site of the Journal

Page 18: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

− An un ( x )¿dx ≥ ⟨F1 ( u1‚ … ‚ui ) ‚v1−u1 ⟩X 1

… … … … … … … … … … …… … …… … …(4.4 )

⟨T i (u1‚ … ‚ ui ) ‚ vi−u i ⟩+H i (un)∫ ji0

Ω( A1u1 ( x )‚… ‚ Ai¿ui ( x ); An vn ( x )− Anun ( x ))dx ≥ ⟨F i (u1‚… ‚ ui ) ‚ v i−u i ⟩X i

.¿

For all (v¿¿1 ‚… ‚ v i)∈ K1× … × K i ¿.It is worth mentioning that this kind of inequalities was studied by several authors (see [10‚22]).

107www.Jutq.utq.edu.iq Web Site of the Journal

Page 19: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

References

[1] M. Alimohammady and A. E. Hashoosh, Existence theorems for α(u,v)-monotone of nonstandard hemivariational inequality, Advances in Math. 10(2) (20)15) 3205-3212.

[2] B. Alleche and V. Radulescu‚ Equilibrium problem techniques in the qualitative analysis of quasi-hemivariational inequalities. Accepted. To appear in Optimization (2014).

[3] B. Alleche‚V. Radulescu‚ M. Sebaoui‚ The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities‚ Optim.‚ 9 (2015) 483–503.

[4] I. Andrei and N. Costea‚Nonlinear hemivariational inequalities and applications to non- smooth mechanics‚Adv. Nonlinear Var. Inequal. 13 (2010) 1–17.

[5] J. P. Aubin‚and F. H. Clarke‚Shadow prices and duality for a class of optimal control problems‚SIAM J. Control Optim. 17 (1979) 567–586.

[6] M. Berger‚Nonlinearity and Functional Analysis Academic Press‚New York (1977).

[7] S. Carl‚V. Khoi Le‚and D. Motreanu‚Nonsmooth Variational Problems and Their Inequal- ities‚Springer Monographs in Mathematics‚Springer‚New York‚ (2007).

[8] F. H. Clarke‚ Optimization and Nonsmooth Analysis‚ Wiley (1983).

[9] C. Costea and V. Radulescu‚Inequality problems of quasi-hemivariational type involving set-valued operators and a nonlinear term J. Glob. Optim. 52 (2012) 743–756.

108www.Jutq.utq.edu.iq Web Site of the Journal

Page 20: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

[10] N. Costea, C. Varga‚Systems of nonlinear hemivariational inequalities and applications‚Topological Methods in Nonlinear Analysis. 1 (2003) 39-67.

[11] K. Fan‚ Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984) 519–537.

[12] A. E. Hashoosh, M. Alimohammady and M. K. Kalleji, Existence Results for Some Equilibrium Problems involving α-Monotone Bifunction, International Journal of Mathematics and Mathematical Sciences, 2016 (2016) 1-5.

[13] A. E. Hashoosh and M. Alimohammady, On well-posedness of generalized equilibrium problems involving α-monotone bifunction, Journal of Hyperstructures, accepted.

[14] A. E. Hashoosh and M. Alimohammady, Existence and uniqueness results for a nonstandard variationl-hemivariational inequalities with application, Int. J. Industrial Mathematics (2016), accepted.

[15] S. Mig,rski‚A. Ochal and M. Sofonea‚ Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders‚ Nonlinear Anal. 10 (2009) 3738–3748.

[16] S. Mig,rski‚ A. Ochal and M. Sofonea‚ Weak solvability of antiplane frictional contact problems for elastic cylinders‚ Nonlinear Anal. 1 (2010) 172–183.

[17] J. Nash‚ Non-cooperative games‚ Annals of Mathemat-ics‚ 54 (1951) 268-295.

[18] P. Panagiotopoulos‚ Hemivariational Inequalities: Applications to Mechanics and Engineering‚ Springer-Verlag‚ New York Boston/Berlin‚ (1993).

109www.Jutq.utq.edu.iq Web Site of the Journal

Page 21: utq.edu.iqutq.edu.iq/Magazines/docutq2016/78.docx · Web viewJournal of Thi-Qar University Vol.11 No.4 DES 2016 109  Web Site of the Journal

Journal of Thi-Qar University Vol.11 No.4 DES 2016

[19] P. D. Panagiotopoulos, Nonconvex energy functions. Hemi-variational inequalities and sub-stationarity principles‚ Acta Mech. 42 (1983) 160–183.

[20] N. S. Papageorgiou and S. T. Kyritsi-Yiallourou‚ Handbook of Applied Analysis. Advances in Mechanics and Mathematics‚ Springer‚ Dordrecht 19 (2009).

[21] V. Radulescu‚ D. Repovs; Partial Differential Equations with Variable Exponents: Varia- tional Methods and Qualitative Analysis‚ CRC Press ‚Taylor Francis Group‚Boca Raton FL (2015).

[22] D. Repovs and C. Varga‚ A Nash type solution for hemivariational inequality systems‚ Non- linear Analysis 74 (2011) 5585-5590.

[23] R. T. Rockefeller‚ Convex Analysis‚ Princeton University Press‚ New Jersey (1970).

[24] R. F. Susan-Resigaa‚ S. Munteanb‚ A. Stuparua‚ A. I. Bosioca‚ C. Tanasa and C. Ighiana‚ A variational model for swirling flow states with stagnant region‚ European Journal of Mechanics‚ 55 (2016) 104–115.

[25] E. Tarafdar‚ A fixed point theorem equivalent to the Fan Knaster Kuratowski Mazurkiewicz Theorem‚ J. Math. Anal. Appl. 2 (1987) 475-479.

[26] R. U. Verma‚ A-monotonicity and its role in nonlinear variational inclusions‚ J. Optim. Theory Appl. 129 (2006) 457–467.

110www.Jutq.utq.edu.iq Web Site of the Journal