uva-dare (digital academic repository) quantitative ...82 (16) popham, d. l.; foster, s. j....

22
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) UvA-DARE (Digital Academic Repository) Quantitative proteomics of food pathogenic Bacilli - a quest for biomarkers Stelder, S.K. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Stelder, S. K. (2016). Quantitative proteomics of food pathogenic Bacilli - a quest for biomarkers. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date:09 Aug 2021

Upload: others

Post on 10-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Quantitative proteomics of food pathogenic Bacilli - a quest for biomarkers

Stelder, S.K.

Publication date2016Document VersionFinal published version

Link to publication

Citation for published version (APA):Stelder, S. K. (2016). Quantitative proteomics of food pathogenic Bacilli - a quest forbiomarkers.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an opencontent license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, pleaselet the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the materialinaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letterto: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. Youwill be contacted as soon as possible.

Download date:09 Aug 2021

Page 2: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

81

References

(1) NHS. Food poisoning - Causes http://www.nhs.uk/Conditions/Food-poisoning/Pages/Causes.aspx (accessed Dec 9, 2015).

(2) USDA. Foodborne Illness: What Consumers Need to Know http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/foodborne-illness-and-disease/foodborne-illness-what-consumers-need-to-know/CT_Index (accessed Dec 9, 2015).

(3) Lampel, K. A.; Center for Food Safety and Applied Nutrition (U.S.). Bad bug book: foodborne pathogenic microorganisms and natural toxins handbook.; CreateSpace: North Charleston, S.C., 2014.

(4) Muys, G. T. Microbial safety and stability of food products. Antonie Van Leeuwenhoek 1975, 41 (1), 369–371.

(5) Markland, S. M.; Farkas, D. F.; Kniel, K. E.; Hoover, D. G. PathogenicPsychrotolerant Sporeformers: An Emerging Challenge for Low-Temperature Storage of Minimally Processed Foods. Foodborne Pathog. Dis.2013.

(6) Stenfors Arnesen, L. P.; Fagerlund, A.; Granum, P. E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32 (4), 579–606.

(7) Ravel, J.; Fraser, C. M. Genomics at the genus scale. Trends Microbiol. 2005, 13 (3), 95–97.

(8) Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.; Alloni, G.; Azevedo, V.; Bertero, M.; Bessieres, P.; Bolotin, A.; Borchert, S.; et al. The completegenome sequence of the gram-positive bacterium Bacillus subtilis. Nature1997, 390 (6657), 249–256.

(9) Cutting, S. M. Bacillus probiotics. Food Microbiol. 2011, 28 (2), 214–220.(10) Alcaraz, L.; Moreno-Hagelsieb, G.; Eguiarte, L. E.; Souza, V.; Herrera-Estrella,

L.; Olmedo, G. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 2010, 11(1), 332.

(11) Lechner, S.; Mayr, R.; Francis, K. P.; PRUss, B. M.; Kaplan, T.; Wiessner-Gunkel, E.; Stewart, G. S. A. B.; Scherer, S. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 1998, 48 (4), 1373–1382.

(12) Moeller, R.; Schuerger, A. C.; Reitz, G.; Nicholson, W. L. Protective roleof spore structural components in determining Bacillus subtilis sporeresistance to simulated Mars surface conditions. Appl. Environ. Microbiol.2012.

(13) Kroos, L.; Zhang, B.; Ichikawa, H.; Yu, Y.-T. N. Control of sigma factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 1999, 31 (5), 1285–1294.

(14) Steichen, C. T.; Kearney, J. F.; Turnbough, C. L. Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for sporegermination and outgrowth. Mol. Microbiol. 2007, 64 (2), 359–367.

(15) Ball, D. A.; Taylor, R.; Todd, S. J.; Redmond, C.; Couture-Tosi, E.; Sylvestre, P.; Moir, A.; Bullough, P. A. Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol. Microbiol. 2008, 68 (4), 947–958.

Page 3: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

82

(16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, SporeCortex, Teichoic Acids, S-Layers, and Capsules. In Bacillus subtilis and Its Closest Relatives; Sonenshein, A. L., Hoch, J. A., Losick, R., Eds.; AmericanSociety of Microbiology, 2002; pp 21–41.

(17) Abhyankar, W.; Pandey, R.; Ter Beek, A.; Brul, S.; de Koning, L. J.; de Koster, C. G. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol. 2015, 45, 54–62.

reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J. Biochem. (Tokyo) 2006, 139 (5), 887–901.

(19) Fernandes, C. G.; Plácido, D.; Lousa, D.; Brito, J. A.; Isidro, A.; Soares, C. M.; Pohl, J.; Carrondo, M. A.; Archer, M.; Henriques, A. O. Structural andFunctional Characterization of an Ancient Bacterial TransglutaminaseSheds Light on the Minimal Requirements for Protein Cross-Linking. Biochemistry (Mosc.) 2015, 54 (37), 5723–5734.

(20) Henriques, A. O.; Melsen, L. R.; Moran, C. P., Jr. Involvement of superoxidedismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 1998, 180(9), 2285–2291.

(21) Setlow, P. Spores of Bacillus subtilis: their resistance to and killing byradiation, heat and chemicals. J. Appl. Microbiol. 2006, 101 (3), 514–525.

(22) Friedline, A. W.; Zachariah, M. M.; Johnson, K.; Thomas, K. J.; Middaugh, A. N.; Garimella, R.; Powell, D. R.; Vaishampayan, P. A.; Rice, C. V. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy. J. Phys. Chem. B 2014, 118 (30), 8945–8955.

(23) Matz, L.; Beaman, T. C.; Gerhardt, P. Chemical composition of exosporiumfrom spores of Bacillus cereus. J. Bacteriol. 1970, 101 (1), 196.

(24) Lequette, Y.; Garenaux, E.; Tauveron, G.; Dumez, S.; Perchat, S.; Slomianny, C.; Lereclus, D.; Guerardel, Y.; Faille, C. Role Played by ExosporiumGlycoproteins in the Surface Properties of Bacillus cereus Spores and inTheir Adhesion to Stainless Steel. Appl. Environ. Microbiol. 2011, 77 (14), 74905–4911.

(25) Faille, C.; Tauveron, G.; Le Gentil-Lelièvre, C.; Slomianny, C. Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on thespore adhesion on surfaces of food processing lines. J. Food Prot. 2007, 70(10), 2346–2353.

(26) Faille, C.; Lequette, Y.; Ronse, A.; Slomianny, C.; Garénaux, E.; Guerardel, Y. Morphology and physico-chemical properties of Bacillus sporessurrounded or not with an exosporium: consequences on their ability toadhere to stainless steel. Int. J. Food Microbiol. 2010, 143 (3), 125–135.

(27) Todd, S. J.; Moir, A. J. G.; Johnson, M. J.; Moir, A. Genes of Bacillus cereusand Bacillus anthracis Encoding Proteins of the Exosporium. J. Bacteriol.2003, 185 (11), 3373–3378.

(28) Henriques, A. O.; Moran, C. P.; others. Structure and assembly of thebacterial endospore coat. Methods 2000, 20 (1), 95–110.

(29) McKenney, P. T.; Eichenberger, P. Dynamics of spore coat morphogenesis inBacillus subtilis. Mol. Microbiol. 2012, 83 (2), 245–260.

(30) Beall, B.; Driks, A.; Losick, R.; Moran, C. P. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol.1993, 175 (6), 1705–1716.

(31) Roels, S.; Driks, A.; Losick, R. Characterization of spoIVA, a sporulation

Page 4: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

83

gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 1992, 174 (2), 575–585.

(32) Bailey-Smith, K.; Todd, S. J.; Southworth, T. W.; Proctor, J.; Moir, A. TheExsA Protein of Bacillus cereus Is Required for Assembly of Coat andExosporium onto the Spore Surface. J. Bacteriol. 2005, 187 (11), 3800–73806.

(33) Ozin, A. J.; Henriques, A. O.; Yi, H.; Moran, C. P. Morphogenetic proteinsSpoVID and SafA form a complex during assembly of the Bacillus subtilisspore coat. J. Bacteriol. 2000, 182 (7), 1828–1833.

(34) Zheng, L. B.; Donovan, W. P.; Fitz-James, P. C.; Losick, R. Gene encoding amorphogenic protein required in the assembly of the outer coat of theBacillus subtilis endospore. Genes Amp Dev. 1988, 2 (8), 1047–1054.

(35) Giorno, R.; Bozue, J.; Cote, C.; Wenzel, T.; Moody, K.-S.; Mallozzi, M.; Ryan, M.; Wang, R.; Zielke, R.; Maddock, J. R.; et al. Morphogenesis of the Bacillusanthracis Spore. J. Bacteriol. 2007, 189 (3), 691–705.

(36) Bressuire-Isoard, C.; Bornard, I.; Henriques, A. O.; Carlin, F.; Broussolle, V. Sporulation temperature reveals a requirement for CotE in the assemblyof both the coat and exosporium layers of Bacillus cereus spores. Appl. Environ. Microbiol. 2015, AEM.02626–15.

(37) Zhang, J.; Fitz-James, P. C.; Aronson, A. I. Cloning and characterization of acluster of genes encoding polypeptides present in the insoluble fractionof the spore coat of Bacillus subtilis. J. Bacteriol. 1993, 175 (12), 3757–3766.

anthracis. Microbiology 2004, 150 (2), 355–363.(39) Steichen, C. T.; Kearney, J. F.; Turnbough, C. L. Characterization of the

Exosporium Basal Layer Protein BxpB of Bacillus anthracis. J. Bacteriol.2005, 187 (17), 5868–5876.7

(40) Johnson, M. J.; Todd, S. J.; Ball, D. A.; Shepherd, A. M.; Sylvestre, P.; Moir, A. ExsY and CotY Are Required for the Correct Assembly of theExosporium and Spore Coat of Bacillus cereus. J. Bacteriol. 2006, 188 (22), 7905–7913.

(41) Boydston, J. A. The ExsY Protein Is Required for Complete Formation of the Exosporium of Bacillus anthracis. J. Bacteriol. 2006, 188 (21), 7440–7448.

(42) Terry, C.; Shepherd, A.; Radford, D. S.; Moir, A.; Bullough, P. A. YwdL inBacillus cereus: Its Role in Germination and Exosporium Structure. PLOSONE 2011, 6 (8), e23801.

(43) Fazzini, M. M.; Schuch, R.; Fischetti, V. A. A Novel Spore Protein, ExsM, Regulates Formation of the Exosporium in Bacillus cereus and Bacillusanthracis and Affects Spore Size and Shape. J. Bacteriol. 2010, 192 (15), 4012–4021.

(44) Thompson, B. M.; Waller, L. N.; Fox, K. F.; Fox, A.; Stewart, G. C. The BclBglycoprotein of Bacillus anthracis is involved in exosporium integrity. J. Bacteriol. 2007, 189 (18), 6704–6713.

(45) Thompson, B. M.; Stewart, G. C. Targeting of the BclA and BclB proteinsto the Bacillus anthracis spore surface. Mol. Microbiol. 2008, 70 (2), 421–434.

(46) Sylvestre, P.; Couture-Tosi, E.; Mock, M. A collagen-like surfaceglycoprotein is a structural component of the Bacillus anthracis

Page 5: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

84

exosporium. Mol. Microbiol. 2002, 45 (1), 169–178.

and other Bacillus spp in foodstuffs. EFSA J. 2005, 175,1–48.(48) Pirttijärvi, T. S.; Andersson, M. A.; Salkinoja-Salonen, M. S. Properties

of Bacillus cereus and other bacilli contaminating biomaterial-basedindustrial processes. Int. J. Food Microbiol. 2000, 60 (2-3), 231–239.

(49) Schulten, S. M.; in’t Veld, P. H.; Nagelkerke, N. J. D.; Scotter, S.; de Buyser, M. L.; Rollier, P.; Lahellec, C. Evaluation of the ISO 7932 standard for theenumeration of Bacillus cereus in foods. Int. J. Food Microbiol. 2000, 57 (1-72), 53–61.

(50) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature2003, 422 (6928), 198–207.

(51) Issaq, H.; Veenstra, T. Two-dimensional polyacrylamide gel electrophoresis(2D-PAGE): advances and perspectives. BioTechniques 2008, 44Supplement (4), 697–700.t

(52) Unlü, M.; Morgan, M. E.; Minden, J. S. Difference gel electrophoresis: asingle gel method for detecting changes in protein extracts. Electrophoresis1997, 18 (11), 2071–2077.

(53) Ong, S.-E.; Mann, M. Mass spectrometry–based proteomics turnsquantitative. Nat. Chem. Biol. 2005, 1 (5), 252–262.

(54) Zhu, W.; Smith, J. W.; Huang, C.-M. Mass Spectrometry-Based Label-FreeQuantitative Proteomics. J. Biomed. Biotechnol. 2010, 2010, 1–7.

(55) Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitativemass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.2007, 389 (4), 1017–1031.

(56) Bantscheff, M.; Lemeer, S.; Savitski, M. M.; Kuster, B. Quantitative massspectrometry in proteomics: critical review update from 2007 to thepresent. Anal. Bioanal. Chem. 2012.

(57) Liu, H.; Sadygov, R. G.; Yates, J. R. A Model for Random Sampling andEstimation of Relative Protein Abundance in Shotgun Proteomics. Anal. Chem. 2004, 76 (14), 4193–4201.

(58) Rosenberger, G.; Koh, C. C.; Guo, T.; Röst, H. L.; Kouvonen, P.; Collins, B. C.; Heusel, M.; Liu, Y.; Caron, E.; Vichalkovski, A.; et al. A repository of assays toquantify 10,000 human proteins by SWATH-MS. Sci. Data 2014, 1, 140031.

(59) Tate, S.; Hunter, C. MS/MS ALL with SWATHTM Acquisition.(60) Chapman, J. D.; Goodlett, D. R.; Masselon, C. D. Multiplexed and data-

MULTIPLEXED AND DATA-INDEPENDENT TANDEM MS. Mass Spectrom. Rev. 2014, 33 (6), 452–470.

(61) Gokce, E.; Shuford, C. M.; Franck, W. L.; Dean, R. A.; Muddiman, D. C. Evaluation of Normalization Methods on GeLC-MS/MS Label-FreeSpectral Counting Data to Correct for Variation during Proteomic

J. Am. Soc. Mass Spectrom. 2011, 22 (12), 2199–2208.(62) Rappsilber, J.; Ryder, U.; Lamond, A. I.; Mann, M. Large-scale proteomic

analysis of the human spliceosome. Genome Res. 2002, 12 (8), 1231–1245.(63) Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M.

of absolute protein amount in proteomics by the number of sequencedpeptides per protein. Mol. Cell. Proteomics 2005, 4 (9), 1265–1272.

(64) Wang, W.; Zhou, H.; Lin, H.; Roy, S.; Shaler, T. A.; Hill, L. R.; Norton, S.;

Page 6: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

85

metabolites by mass spectrometry without isotopic labeling or spikedstandards. Anal. Chem. 2003, 75 (18), 4818–4826.

(65) Wang, G.; Wu, W. W.; Zeng, W.; Chou, C.-L.; Shen, R.-F. Label-Free Protein

Reproducibility, Linearity, and Application with Complex Proteomes. J. Proteome Res. 2006, 5 (5), 1214–1223.

(66) Silva, J. C.; Gorenstein, M. V.; Li, G.-Z.; Vissers, J. P. C.; Geromanos, S. J.

acquisition. Mol. Cell. Proteomics MCP 2006, 5 (1), 144–156.(67) Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate

Proc. Natl. Acad. Sci. 1999, 96 (12), 6591–6596.

(68) Washburn, M. P.; Ulaszek, R.; Deciu, C.; Schieltz, D. M.; Yates, J. R. Analysisof Quantitative Proteomic Data Generated via Multidimensional Protein

Anal. Chem. 2002, 74 (7), 1650–1657.

Proteome-Wide Precision Measurements of Protein Expression UsingMass Spectrometry. J. Am. Chem. Soc. 1999, 121 (34), 7949–7950.

(70) Ong, S.-E. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteomics 2002, 1 (5), 376–386.

(71) Ong, S.-E.; Mann, M. A practical recipe for stable isotope labeling by aminoacids in cell culture (SILAC). Nat. Protoc. 2007, 1 (6), 2650–2660.

(72) Schwanhäusser, B.; Gossen, M.; Dittmar, G.; Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. PROTEOMICS 2009, 9 (1), 205–209.

(73) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded

Nat. Biotechnol. 1999, 17 (10), 994–999.7(74) Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.;

Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS. Anal. Chem. 2003, 75 (8), 1895–1904.

(75) Ross, P. L. Multiplexed Protein Quantitation in Saccharomyces cerevisiaeUsing Amine-reactive Isobaric Tagging Reagents. Mol. Cell. Proteomics 2004, 3 (12), 1154–1169.

(76) Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labelingby iTRAQ: A new tool for quantitative mass spectrometry in proteomeresearch. PROTEOMICS 2007, 7 (3), 340–350.7

(77) Schmidt, A.; Kellermann, J.; Lottspeich, F. A novel strategy for quantitativeproteomics using isotope-coded protein labels. PROTEOMICS 2005, 5 (1), 4–15.

(78) Gerber, S. A.; Rush, J.; Stemman, O.; Kirschner, M. W.; Gygi, S. P. Absolute

tandem MS. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (12), 6940–6945.(79) Beynon, R. J.; Doherty, M. K.; Pratt, J. M.; Gaskell, S. J. Multiplexed

concatenated signature peptides. Nat. Methods 2005, 2 (8), 587–589.

Page 7: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

86

(80) Brownridge, P.; Holman, S. W.; Gaskell, S. J.; Grant, C. M.; Harman, V. M.; Hubbard, S. J.; Lanthaler, K.; Lawless, C.; O’cualain, R.; Sims, P.; et al. Global

QconCAT strategy. PROTEOMICS 2011.(81) Abhyankar, W.; Beek, A. T.; Dekker, H.; Kort, R.; Brul, S.; de Koster, C. G.

coat protein fraction. PROTEOMICS 2011, 11 (23), 4541–4550.(82) Kennedy, R. S.; Malveaux, F. J.; Cooney, J. J. Effects of glutamic acid on

sporulation of Bacillus cereus and on spore properties. Can. J. Microbiol.1971, 17 (4), 511–519.7

(83) de Vries, Y. P.; Hornstra, L. M.; de Vos, W. M.; Abee, T. Growth and

Temporal Expression of Genes for Key Sigma Factors. Appl. Environ. Microbiol. 2004, 70 (4), 2514–2519.

(84) de Vries, Y. P.; Atmadja, R. D.; Hornstra, L. M.; de Vos, W. M.; Abee, T.

Appl. Environ. Microbiol.2005, 71 (6), 3248–3254.

(85) Henriques, A. O.; Moran, Jr, C. P. Structure, assembly, and function of thespore surface layers. Annu Rev Microbiol 2007, 61, 555–588.

(86) Baron, F.; Cochet, M.-F.; Grosset, N.; Madec, M.-N.; Briandet, R.; Dessaigne, S.; Chevalier, S.; Gautier, M.; Jan, S. Isolation and characterization of apsychrotolerant toxin producer, Bacillus weihenstephanensis, in liquid eggproducts. J. Food Prot. 2007, 70 (12), 2782–2791.

(87) Stenfors, L. P.; Granum, P. E. Psychrotolerant species from the Bacilluscereus group are not necessarily Bacillus weihenstephanensis. FEMSMicrobiol. Lett. 2001, 197 (2), 223–228.7

(88) Helgason, E.; Okstad, O. A.; Caugant, D. A.; Johansen, H. A.; Fouet, A.; Mock, M.; Hegna, I.; Kolsto, A.-B. Bacillus anthracis, Bacillus cereus, and Bacillusthuringiensis---One Species on the Basis of Genetic Evidence. Appl. Environ. Microbiol. 2000, 66 (6), 2627–2630.

(89) Schmidt, T. R.; Scott, E. J.; Dyer, D. W. Whole-genome phylogenies of thefamily Bacillaceae and expansion of the sigma factor gene family in theBacillus cereus species-group. BMC Genomics 2011, 12 (1), 430.

(90) Ehling-Schulz, M.; Messelhäusser, U. Bacillus “next generation” diagnostics:

Front. Microbiol. 2013, 4.(91) Lapidus, A.; Goltsman, E.; Auger, S.; Galleron, N.; Ségurens, B.; Dossat, C.;

Land, M. L.; Broussolle, V.; Brillard, J.; Guinebretiere, M.-H.; et al. Extendingthe Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem. Biol. Interact. 2008, 171 (2), 236–249.

(92) Darling, A. E.; Mau, B.; Perna, N. T. progressiveMauve: Multiple GenomeAlignment with Gene Gain, Loss and Rearrangement. PLOS ONE 2010, 5(6), e11147.

(93) Institute for Genome Sciences - Analysis Engine ae.igs.umaryland.edu(accessed Sep 2, 2014).

(94) Galens, K.; Orvis, J.; Daugherty, S.; Creasy, H. H.; Angiuoli, S.; White, O.; Wortman, J.; Mahurkar, A.; Giglio, M. G. The IGS Standard OperatingProcedure for Automated Prokaryotic Annotation. Stand. Genomic Sci.2011, 4 (2), 244–251.

Page 8: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

87

(95) Manatee manatee.sourceforge.net (accessed Sep 2, 2014).(96) Aziz, R. K.; Bartels, D.; Best, A. A.; DeJongh, M.; Disz, T.; Edwards, R. A.;

Formsma, K.; Gerdes, S.; Glass, E. M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008, 9(1), 75.

(97) Scopes, R. K. Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 1974, 59 (1), 277–282.

(98) Vizcaíno, J. A.; Deutsch, E. W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J. A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchangeprovides globally coordinated proteomics data submission anddissemination. Nat. Biotechnol. 2014, 32 (3), 223–226.

(99) Gillis, A.; Mahillon, J. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future. Viruses 2014, 6 (7), 2623–2672.

(100) Maaloe, O.; Kjeldgaard, N. O. Control of macromolecular synthesis; a study of DNA, RNA, and protein synthesis in bacteria (Boek, 1966) [WorldCat.org] http://www.worldcat.org/title/control-of-macromolecular-synthesis-a-study-of-dna-rna-and-protein-synthesis-in-bacteria/oclc/561292 (accessed Aug 5, 2014).

(101) Bremer, H.; Dennis, P. P.; others. Modulation of chemical composition andother parameters of the cell by growth rate. Escherichia Coli Salmonella Cell. Mol. Biol. 1996, 2, 1553–1569.

(102) Rudra, D. What better measure than ribosome synthesis? Genes Dev.2004, 18 (20), 2431–2436.

(103) Lempiäinen, H.; Shore, D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 2009, 21 (6), 855–863.

(104) Fuchs, T. M.; Neuhaus, K.; Scherer, S. Life at Low Temperatures. In The Prokaryotes; Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 375–420.

(105) El-Sharoud, W. M.; Graumann, P. L. Cold shock proteins aid coupling of transcription and translation in bacteria. Sci. Prog. 2007, 90 (Pt 1), 15–27.

(106) Ermolenko, D. N.; Makhatadze, G. I. Bacterial cold-shock proteins. Cell. Mol. Life Sci. CMLS 2002, 59 (11), 1902–1913.

(107) Horn, G.; Hofweber, R.; Kremer, W.; Kalbitzer, H. R. Structure and functionof bacterial cold shock proteins. Cell. Mol. Life Sci. 2007, 64 (12), 1457–1470.

(108) Microbial Reactions; Fiechter, A., Aiba, S., Atkinson, B., Böing, J., Bylinkina, E., Dellweg, H., Demain, A. L., Finn, R., Fukui, S., Kieslich, K., et al., SeriesEds.; Advances in Biochemical Engineering/Biotechnology; Springer BerlinHeidelberg: Berlin, Heidelberg, 1982; Vol. 23.

(109) Majewski, R. A.; Domach, M. M. Simple constrained-optimization view of Biotechnol. Bioeng. 1990, 35 (7), 732–738.

(110) Chang, D.-E.; Shin, S.; Rhee, J.-S.; Pan, J.-G. Acetate Metabolism in a ptaMutant ofEscherichia coli W3110: Importance of Maintaining AcetylCoenzyme A Flux for Growth and Survival. J. Bacteriol. 1999, 181 (21), 6656–6663.

(111) Chin, J. P.; Megaw, J.; Magill, C. L.; Nowotarski, K.; Williams, J. P.; Bhaganna, P.; Linton, M.; Patterson, M. F.; Underwood, G. J. C.; Mswaka, A. Y.; et al. Solutes determine the temperature windows for microbial survival and

Page 9: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

88

growth. Proc. Natl. Acad. Sci. 2010, 107 (17), 7835–7840.7(112) Budde, I.; Steil, L.; Scharf, C.; Völker, U.; Bremer, E. Adaptation of Bacillus

subtilis to growth at low temperature: a combined transcriptomic andproteomic appraisal. Microbiology 2006, 152 (3), 831–853.

(113) Jones, J. D.; O’Connor, C. D. Protein acetylation in prokaryotes. PROTEOMICS 2011, 11 (15), 3012–3022.

(114) Zhang, J.; Sprung, R.; Pei, J.; Tan, X.; Kim, S.; Zhu, H.; Liu, C.-F.; Grishin, N. V.; Zhao, Y. Lysine Acetylation Is a Highly Abundant and Evolutionarily

Mol. Cell. Proteomics 2009, 8(2), 215–225.

(115) Wang, Q.; Zhang, Y.; Yang, C.; Xiong, H.; Lin, Y.; Yao, J.; Li, H.; Xie, L.; Zhao, W.; Yao, Y.; et al. Acetylation of Metabolic Enzymes Coordinates CarbonSource Utilization and Metabolic Flux. Science 2010, 327 (5968), 1004–71007.

(116) Yu, B. J.; Kim, J. A.; Moon, J. H.; Ryu, S. E.; Pan, J.-G. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 2008, 18 (9), 1529–1536.

(117) Lindbäck, T.; Fagerlund, A.; Rødland, M. S.; Granum, P. E. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiol. Read. Engl. 2004, 150 (Pt 12), 3959–3967.

(118) Gohar, M.; Gilois, N.; Graveline, R.; Garreau, C.; Sanchis, V.; Lereclus, D. Acomparative study of Bacillus cereus, Bacillus thuringiensis and Bacillusanthracis extracellular proteomes. PROTEOMICS 2005, 5 (14), 3696–3711.

(119) Stelder, S. K.; Mahmud, S. A.; Dekker, H. L.; de Koning, L. J.; Brul, S.; de

Psychrotolerant Pathogenic Food Spoiler Bacillus weihenstephanensis Type Strain WSBC 10204. J. Proteome Res. 2015, 14 (5), 2169–2176.

(120) Garcia, D.; der Voort, M. van; Abee, T. Comparative analysis of Bacillusweihenstephanensis KBAB4 spores obtained at different temperatures. Int. J. Food Microbiol. 2010, 140 (2-3), 146–153.

(121) Faille, C.; Lequette, Y.; Ronse, A.; Slomianny, C.; Garénaux, E.; Guerardel, Y. Morphology and physico-chemical properties of Bacillus sporessurrounded or not with an exosporiumConsequences on their ability toadhere to stainless steel. Int. J. Food Microbiol. 2010, 143 (3), 125–135.

(122) Planchon, S.; Dargaignaratz, C.; Levy, C.; Ginies, C.; Broussolle, V.; Carlin, F. Spores of Bacillus cereus strain KBAB4 produced at 10°C and 30°Cdisplay variations in their properties. Food Microbiol. 2011, 28 (2), 291–297.

(123) Kort, R.; O’Brien, A. C.; van Stokkum, I. H. M.; Oomes, S. J. C. M.; Crielaard, W.; Hellingwerf, K. J.; Brul, S. Assessment of heat resistance of bacterial

dipicolinic acid release. Appl. Environ. Microbiol. 2005, 71 (7), 3556–3564.(124) Janssen, F. W.; Lund, A. J.; Anderson, L. E. Colorimetric Assay for Dipicolinic

Acid in Bacterial Spores. Science 1958, 127 (3288), 26–27.7(125) Stelder, S. K. Supplementary Data https://drive.google.com/

folderview?id=0B9j012ixwj50ck4tRDZXSGticHM (accessed Jan 26, 2016).(126) Sinai, L.; Rosenberg, A.; Smith, Y.; Segev, E.; Ben-Yehuda, S. The Molecular

Timeline of a Reviving Bacterial Spore. Mol. Cell 2015, 57 (4), 695–707.7(127) Mongkolthanaruk, W.; Robinson, C.; Moir, A. Localization of the GerD

spore germination protein in the Bacillus subtilis spore. Microbiology 2009,

Page 10: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

89

155 (4), 1146–1151.(128) Magge, A.; Granger, A. C.; Wahome, P. G.; Setlow, B.; Vepachedu, V. R.;

Loshon, C. A.; Peng, L.; Chen, D.; Li, Y. -q.; Setlow, P. Role of Dipicolinic Acidin the Germination, Stability, and Viability of Spores of Bacillus subtilis. J. Bacteriol. 2008, 190 (14), 4798–4807.

(129) Melly, E.; Genest, P. C.; Gilmore, M. E.; Little, S.; Popham, D. L.; Driks, A.; Setlow, P. Analysis of the properties of spores of Bacillus subtilis preparedat different temperatures. J. Appl. Microbiol. 2002, 92 (6), 1105–1115.

(130) Aronson, A. I.; Fitz-James, P. Structure and morphogenesis of the bacterialspore coat. Bacteriol. Rev. 1976, 40 (2), 360–402.

(131) Brownridge, P.; Beynon, R. J. The importance of the digest: Proteolysis andMethods 2011, 54 (4), 351–360.

(132) Üstok, F. I.; Chirgadze, D. Y.; Christie, G. Structural and functional analysisof SleL, a peptidoglycan lysin involved in germination of Bacillus spores: Crystal structures for the Bacillus spore lytic enzyme SleL. Proteins Struct. Funct. Bioinforma. 2015, n/a – n/a.

(133) Chirakkal, H.; O’Rourke, M.; Atrih, A.; Foster, S. J.; Moir, A. Analysis of sporecortex lytic enzymes and related proteins in Bacillus subtilis endosporegermination. Microbiol. Read. Engl. 2002, 148 (Pt 8), 2383–2392.

(134) Isticato, R.; Pelosi, A.; De Felice, M.; Ricca, E. CotE Binds to CotC andCotU and Mediates Their Interaction during Spore Coat Formation inBacillus subtilis. J. Bacteriol. 2009, 192 (4), 949–954.

(135) Imamura, D.; Kuwana, R.; Takamatsu, H.; Watabe, K. Proteins Involved inFormation of the Outermost Layer of Bacillus subtilis Spores. J. Bacteriol.2011, 193 (16), 4075–4080.

(136) Yao, B.; Zhang, L.; Liang, S.; Zhang, C. SVMTriP: a method to predictantigenic epitopes using support vector machine to integrate tri-peptidesimilarity and propensity. PLOS ONE 2012, 7 (9), e45152.7

2010.(138) Lövgren, A.; Zhang, M.; Engström, A.; Dalhammar, G.; Landén, R. Molecular

characterization of immune inhibitor A, a secreted virulence proteasefrom Bacillus thuringiensis. Mol. Microbiol. 1990, 4 (12), 2137–2146.

(139) Leski, T. A.; Caswell, C. C.; Pawlowski, M.; Klinke, D. J.; Bujnicki, J. M.; Hart, S.

of Bacillus cereus Group Organisms and Their Application in Bacillusanthracis Detection and Fingerprinting. Appl. Environ. Microbiol. 2009, 75(22), 7163–7172.

(140) Abhyankar, W.; Hossain, A. H.; Djajasaputra, A.; Permpoonpattana, P.; Ter Beek, A.; Dekker, H. L.; Cutting, S. M.; Brul, S.; de Koning, L. J.; de Koster, C. G. In Pursuit of Protein Targets: Proteomic Characterization of BacterialSpore Outer Layers. J. Proteome Res. 2013, 12 (10), 4507–4521.

(141) Barlass, P. J.; Houston, C. W.; Clements, M. O.; Moir, A. Germination of Bacillus cereus spores in response to L-alanine and to inosine: the rolesof gerL and gerQ operons. Microbiol. Read. Engl. 2002, 148 (Pt 7), 2089–2095.

(142) Caro-Astorga, J.; Pérez-GarcÃa, A.; de Vicente, A.; Romero, D. A genomic

Front. Microbiol. 2015, 5.(143) Lai, E. M.; Phadke, N. D.; Kachman, M. T.; Giorno, R.; Vazquez, S.; Vazquez,

Page 11: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

90

J. A.; Maddock, J. R.; Driks, A. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 2003, 185 (4), 1443.

(144) Giorno, R.; Mallozzi, M.; Bozue, J.; Moody, K.-S.; Slack, A.; Qiu, D.; Wang, R.; Friedlander, A.; Welkos, S.; Driks, A. Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore. Microbiology 2009, 155 (4), 1133–1145.

(145) Nicolas, P.; Mader, U.; Dervyn, E.; Rochat, T.; Leduc, A.; Pigeonneau, N.; Bidnenko, E.; Marchadier, E.; Hoebeke, M.; Aymerich, S.; et al. Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture inBacillus subtilis. Science 2012, 335 (6072), 1103–1106.

(146) Takamatsu, H.; Kodama, T.; Nakayama, T.; Watabe, K. Characterization of the yrbA Gene ofBacillus subtilis, Involved in Resistance and Germinationof Spores. J. Bacteriol. 1999, 181 (16), 4986–4994.

(147) Ragkousi, K.; Setlow, P. Transglutaminase-Mediated Cross-Linking of GerQin the Coats of Bacillus subtilis Spores. J. Bacteriol. 2004, 186 (17), 5567–5575.

new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J. Bacteriol. 2003, 185 (7), 2315–2329.

(149) Bagyan, I.; Hobot, J.; Cutting, S. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 1996, 178(15), 4500–4507.

(150) Cruz-Mora, J.; Pérez-Valdespino, A.; Gupta, S.; Withange, N.; Kuwana, R.; Takamatsu, H.; Christie, G.; Setlow, P. The GerW Protein Is Not Involvedin the Germination of Spores of Bacillus Species. PLOS ONE 2015, 10 (3), e0119125.

(151) Li, Y.; Butzin, X. Y.; Davis, A.; Setlow, B.; Korza, G.; Üstok, F. I.; Christie, G.; Setlow, P.; Hao, B. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillusspecies in vitro and during spore germination. J. Bacteriol. 2013, 195 (11), 2530–2540.

(152) Bagyan, I.; Noback, M.; Bron, S.; Paidhungat, M.; Setlow, P. CharacterizationGene 1998,

212 (2), 179–188.

�Amyloid 1997, 4 (4), 240–252.

(154) Bacillus cereus ATCC14579 in UniProtKB http://www.uniprot.org/uniprot/?query=bacillus+cereus+ATCC14579&sort=score&format=*(accessed Jan 20, 2016).

(155) Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat.1979, 7 (1), 1–26.7

(156) Davison, A. C.; Hinkley, D. V. Bootstrap methods and their application; Cambridge University Press: Cambridge, 1997.

(157) Gould, G. W.; Hurst, A. The bacterial spore; Academic Press, 1969.(158) Chewapreecha, C.; Harris, S. R.; Croucher, N. J.; Turner, C.; Marttinen, P.;

Cheng, L.; Pessia, A.; Aanensen, D. M.; Mather, A. E.; Page, A. J.; et al. Dense

Nat. Genet. 2014, 46 (3), 305–309.(159) Mullerova, D.; Krajcikova, D.; Barak, I. Interactions between Bacillus subtilis

Page 12: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

91

early spore coat morphogenetic proteins. FEMS Microbiol. Lett. 2009, 299(1), 74–85.

(160) de Francesco, M.; Jacobs, J. Z.; Nunes, F.; Serrano, M.; McKenney, P. T.; Chua, M.-H.; Henriques, A. O.; Eichenberger, P. Physical Interaction betweenCoat Morphogenetic Proteins SpoVID and CotE Is Necessary for SporeEncasement in Bacillus subtilis. J. Bacteriol. 2012, 194 (18), 4941–4950.

(161) Rajkovic, A.; Uyttendaele, M.; Dierick, K.; Samapundo, S.; Botteldoorn,

implicated in food poisoning. 2008, 8316.

(162) Gould, G. W. Symposium on bacterial spores: IV. Germination and theproblem of dormancy. J. Appl. Bacteriol. 1970, 33 (1), 34–49.

(163) Ghosh, S.; Setlow, P. Isolation and Characterization of SuperdormantSpores of Bacillus Species. J. Bacteriol. 2009, 191 (6), 1787–1797.

(164) Pandey, R.; Ter Beek, A.; Vischer, N. O. E.; Smelt, J. P. P. M.; Brul, S.; Manders, E. M. M. Live Cell Imaging of Germination and Outgrowth of IndividualBacillus subtilis Spores; the Effect of Heat Stress Quantitatively Analyzedwith SporeTracker. PLOS ONE 2013, 8 (3), e58972.

(165) Carrera, M.; Zandomeni, R. O.; Sagripanti, J.-L. Wet and dry density of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 2008, 105 (1), 68–77.

(166) Carrera, M.; Zandomeni, R. O.; Fitzgibbon, J.; Sagripanti, J.-L. Differencebetween the spore sizes of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 2007, 102 (2).

(167) Zheng, L. B.; Donovan, W. P.; Fitz-James, P. C.; Losick, R. Gene encoding amorphogenic protein required in the assembly of the outer coat of theBacillus subtilis endospore. Genes Dev. 1988, 2 (8), 1047–1054.

(168) Costa, T.; Serrano, M.; Steil, L.; Volker, U.; Moran, C. P.; Henriques, A. O. The Timing of cotE Expression Affects Bacillus subtilis Spore CoatMorphology but Not Lysozyme Resistance. J. Bacteriol. 2007, 189 (6), 2401–2410.

(169) Monroe, A.; Setlow, P. Localization of the Transglutaminase Cross-LinkingSites in the Bacillus subtilis Spore Coat Protein GerQ. J. Bacteriol. 2006, 188 (21), 7609–7616.

temperature on the impact of the nutrients inosine and l-alanine onBacillus cereus spore germination. Food Microbiol. 2008, 25 (1), 202–206.

(171) Hall, R. H. Biosensor technologies for detecting microbiologicalfoodborne hazards. Microbes Infect. 2002, 4 (4), 425–432.

(172) Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in foodand water. Enzyme Microb. Technol. 2003, 32 (1), 3–13.

(173) Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overviewof foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28 (2), 232–254.

(174) Gilmartin, N.; O’Kennedy, R. Nanobiotechnologies for the detection andreduction of pathogens. Enzyme Microb. Technol. 2012, 50 (2), 87–95.

(175) European Food Safety Authority (EFSA). Technical Guidance on theassessment of the toxigenic potential of Bacillus species used in animal nutrition.

Page 13: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

92

(176) Spaulding, U. K.; Christensen, C. J.; Crisp, R. J.; Vaughn, M. B.; Trauscht, R. C.; Gardner, J. R.; Thatcher, S. A.; Clemens, K. M.; Teng, D. H. F.; Bird, A.; etal. RAZOR EX anthrax air detection system. J. AOAC Int. 2012, 95 (3), 860–891.

(177) Ryu, C.; Lee, K.; Yoo, C.; Seong, W. K.; Oh, H.-B. Sensitive and rapidquantitative detection of anthrax spores isolated from soil samples byreal-time PCR. Microbiol. Immunol. 2003, 47 (10), 693–699.7

(178) Cheun, H. I.; Makino, S.-I.; Watarai, M.; Erdenebaatar, J.; Kawamoto, K.; Uchida, I. Rapid and effective detection of anthrax spores in soil by PCR. J. Appl. Microbiol. 2003, 95 (4), 728–733.

(179) Fischer, C.; Hünniger, T.; Jarck, J.-H.; Frohnmeyer, E. G.; Kallinich, C.; Haase, I.; Hahn, U.; Fischer, M. Food Sensing: Aptamer-Based Trapping of B. cereus

J. Agric. Food Chem. 2015.

(180) de Boer, P.; Caspers, M.; Sanders, J.-W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R. Amplicon

including bacterial spores. Microbiome 2015, 3, 30.(181) Tamborrini, M.; Holzer, M.; Seeberger, P. H.; Schurch, N.; Pluschke, G.

Anthrax Spore Detection by a Luminex Assay Based on MonoclonalAntibodies That Recognize Anthrose-Containing Oligosaccharides. Clin. Vaccine Immunol. 2010, 17 (9), 1446–1451.7

(182) Stoddard, R. A.; Quinn, C. P.; Schiffer, J. M.; Boyer, A. E.; Goldstein, J.; Bagarozzi, D. A.; Soroka, S. D.; Dauphin, L. A.; Hoffmaster, A. R. Detectionof anthrax protective antigen (PA) using europium labeled anti-PA

J. Immunol. Methods2014, 408, 78–88.

(183) Cohen, N.; Mechaly, A.; Mazor, O.; Fisher, M.; Zahavy, E. Rapid HomogenousTime-Resolved Fluorescence (HTRF) Immunoassay for AnthraxDetection. J. Fluoresc. 2014, 24 (3), 795–801.

(184) Ghosh, N.; Gupta, N.; Gupta, G.; Boopathi, M.; Pal, V.; Goel, A. K. Detection

surface plasmon resonance. Diagn. Microbiol. Infect. Dis. 2013, 77 (1), 14–719.

(185) spinoff 2005-Keeping the Air Clean and Safe—An Anthrax SmokeDetector https://spinoff.nasa.gov/Spinoff2005/ps_2.html (accessed Dec16, 2015).

(186) Farquharson, S.; Shende, C.; Smith, W.; Huang, H.; Inscore, F.; Sengupta, A.; Sperry, J.; Sickler, T.; Prugh, A.; Guicheteau, J. Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERSassay. The Analyst 2014, 139 (24), 6366–6370.

(187) Torres-Chavolla, E.; Alocilja, E. C. Aptasensors for detection of microbialand viral pathogens. Biosens. Bioelectron. 2009, 24 (11), 3175–3182.

(188) Zhen, B.; Song, Y.-J.; Guo, Z.-B.; Wang, J.; Zhang, M.-L.; Yu, S.-Y.; Yang, R.-F. [In

spores by SELEX]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochim. Biophys. Sin. 2002, 34 (5), 635–642.

(189) Bruno, J. G.; Kiel, J. L. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. BioTechniques 2002, 32 (1), 178–180, 182–183.

Page 14: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

93

(190) Ikanovic, M.; Rudzinski, W. E.; Bruno, J. G.; Allman, A.; Carrillo, M. P.; Dwarakanath, S.; Bhahdigadi, S.; Rao, P.; Kiel, J. L.; Andrews, C. J. Fluorescence assay based on aptamer-quantum dot binding to Bacillusthuringiensis spores. J. Fluoresc. 2007, 17 (2), 193–199.7

(191) Susmel, S.; Guilbault, G. G.; O’Sullivan, C. K. Demonstration of labelessdetection of food pathogens using electrochemical redox probe andscreen printed gold electrodes. Biosens. Bioelectron. 2003, 18 (7), 881–889.

(192) Vaughan, R. D.; Carter, R. M.; O’Sullivan, C. K.; Guilbault, G. G. A QuartzCrystal Microbalance (QCM) Sensor for the Detection of Bacillus cereus. Anal. Lett. 2003, 36 (4), 731–747.

performance of a direct-charge transfer biosensor for detecting Bacilluscereus in selected food matrices. Biosyst. Eng. 2008, 99 (4), 461–468.

(194) Harmsen, M. M.; De Haard, H. J. Properties, production, and applicationsof camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol.2007, 77 (1), 13–22.7

(195) Alocilja, E. C.; Radke, S. M. Market analysis of biosensors for food safety. Biosens. Bioelectron. 2003, 18 (5-6), 841–846.

Page 15: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

94

Page 16: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

95

Published work

Stelder, S. K, .; Mahmud, S. A.; Dekker, H. L.; de Koning, L. J.; Brul, S.; de Koster, C.

Pathogenic Food Spoiler Bacillus weihenstephanensis Type Strain WSBC 10204. Journal of Proteome Research 2015, 14 (5), 2169–2176.

Page 17: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

96

Page 18: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

97

SummaryQuantitative proteomics of food pathogenic Bacilli– a quest for biomarkers

Food manufacturers have a variety of methods at their disposal to ensure foodsare microbially safe. However, due to increasing demands from consumersfor minimally processed foods of high sensory or textural quality the severityof these treatments is frequently mild. Frequently being able to survive suchtreatments, bacteria of the genus Bacillus present a pressing issue. Comprisingspore-forming, Gram-positive, aerobic or facultative anaerobic bacteria thegenus contains a group of pathogenic bacteria known as Bacillus cereus sensu lato.Within this group Bacillus cereus and weihenstephanensis are both notorious foodpathogens indicated to be of particular concerns to the dairy and processedready-to-eat food industry. Both potentially produce cereulide toxin as well asseveral enterotoxins which are harmful to humans. Upon ingestion of the toxinsor the spores of these bacteria, they can cause either vomiting or diarrhoearespectively. Spores are a metabolically dormant, extremely resistant cell typecapable of surviving in extreme environments The mild treatments used in thefood industry used to eliminate bacteria are then unable to kill or inactivatespores present.

To detect Bacillus cereus and ensure food safety, current ISO guidelines (ISO 7932, ISO 21871) are based around incubation on agar plates for 24 hours or evenlonger. Developing a platform for direct detection of spores would allow for better, faster and ultimately cheaper detection methods. In order to develop such

reliable interaction with the sensor, and be accessible to the receptor moleculeof the sensor it is supposed to bind to.

Spores acquire their unique resistance properties from the characteristicintricate structure of protective layers. The outermost layers, the inner coat, outer coat and exosporium, primarily consist of proteins. Therefore we set outto identify and quantify the proteome of spores of food pathogenic Bacilli, as well obtain information on protein localisation within in the spore.

In Chapter 2, in order to make B. weihenstephanensis tractable for studies thetype strain Bacillus weihenstephanensis WSBC10204 (DSM11821) has been sequenced. Annotation of the newly created genome sequence allowed for acomplete proteome prediction and subsequent analysis by bottom-up mass

6°C or 30°C have been compared which revealed considerable differences andindicated several hundred (uncharacterized) proteins as being subproteome

processes have been newly

routes and a different role for the urea cycle. Furthermore, a possible post-translational regulatory function for acetylation is suggested. Toxin productionwas determined to be largely independent of growth temperature.

Page 19: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

98

In Chapter 3, spore proteome analysis of B. weihenstephanensis gives animpression of the reproducibility of the spore proteome under varyingsporulation conditions, in this case temperature, and the robustness of

which are sporulation temperature dependent. Several proteome variations(N-acetylmuramoyl-L-alanine amidase, N-acetylmuramoyl-L-alanine amidasefamily protein, GerD, SpoVAD) have been correlated to spore characteristics

B. weihenstephanensis

In Chapter 4, the abundance of 21 spore proteins of B. cereus has been

QconCAT in a heterogeneous system. In this manner 5.66% ±0.51 of the total

to classify proteins by function, i.e. structural or otherwise. Furthermore, determining protein stoichiometry provides insight into the way either knownor potential interactors may relate to each other. Finally, the potential of themost abundant proteins for use as biomarkers is assessed using the immunogenicepitope prediction algorithm SVMTriP.

In Chapter 5, the methods developed for analysis of the spore insolublefraction are applied to a CotE knockout mutant strain. As CotE is requiredfor proper formation of the exosporium layer, the knockout strain lacks anintact exosporium layer. Several proteins normally located in this outermostexosporium layer are reported to be absent or of lower abundance in sporeinsoluble fraction isolates of the CotE knockout mutant. As such, informationon protein localisation on a proteome wide scale is obtained and potentialinteractions between proteins are indicated.

As a result of these investigations we are able to identify robust, abundant andaccessible spore protein biomarkers which may be implemented in a biosensor platform used to detect spores of food pathogenic Bacilli.

Page 20: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

99

SamenvattingKwantitatieve proteomics van voedselpathogene Bacillen– een zoektocht naar biomarkers

Voedselproducenten hebben verschillende methoden tot hun beschikking omte verzekeren dat voedsel microbieel veilig is. Echter, er ontstaat een steedsgrotere vraag vanuit consumenten naar producten die minimaal bewerkt en vanhoge sensorische kwaliteit zijn. Als gevolg hiervan zijn de gebruikte methodenvaak mild wat een probleem naar voren brengt in de vorm van bacteriën vanhet genus Bacillus die deze methoden kunnen overleven. Dit genus bestaat uitsporenvormende, Grampositieve, aerobe of facultatief anaerobe bacteriën enbevat een groep pathogenen bekend onder de naam Bacillus cereus sensu lato. Binnen deze groep staan Bacillus cereus en Bacillus weihenstephanensis bekendals notoire voedselpathogenen die vooral in zuivel en kant-en-klaar maaltijdenvoor problemen kunnen zorgen. Beide zijn potentieel in staat om het cereulidetoxine alsmede enkele enterotoxines te produceren. Ingestie van deze toxinesof sporen van deze bacteriën resulteert in braken respectievelijk diarree. Sporenzijn een metabool slapende, extreem resistente overlevingsvorm die extremeomgevingscondities gemakkelijk overleven. De milde behandelingen die men inde voedselindustrie gebruikt zijn daarom niet in staat om sporen te doden of inactiveren.

ISO richtlijnen (ISO 7932, ISO 21871) voor detectie van Bacillus cereus zijn gebaseerd op het uitplaten en incuberen van isolaten gedurende 24 uur of langer. Ontwikkeling van een platform voor directe detectie van sporen zou danbetere, snellere en uiteindelijk goedkopere methoden moeten opleveren. Omdeze ontwikkeling mogelijk te maken is het belangrijk een goede biomarker

systeem moeten zijn, abundant genoeg zijn om een betrouwbare interactie metde sensor aan te gaan, en toegankelijk moeten zijn voor het receptormolecuulvan de sensor waar het mee moet binden. Sporen verkrijgen hun uniekeresistentie-eigenschappen door hun karakteristieke complexe beschermingslagen. De buitenste van deze lagen, de sporencoat en het exosporium, bestaan voor het grootste deel uit eiwitten. Als zodanig hebben we het proteoom van sporenvan voedselpathogenen van het genus Bacillus

In Hoofdstuk 2 is het genoom van de type strain van Bacillus weihenstephanensisgesequenced met als doel het toegankelijk maken van deze soort voor verderestudies. Annotatie van de verkregen genoomsequentie maakte het mogelijk omhet volledige proteoom te voorspellen en vervolgens te onderzoeken met behulp

30°C is met elkaar vergeleken waarbij enkele honderden (ongekarakteriseerde)

zijn enkele processen aangetoond afhankelijk te zijn van groeitemperatuur zoals

wordt een posttranslationele regulatoire functie voor acetylering voorgesteld. Productie van toxines was vrijwel onafhankelijk van groeitemperatuur.

Page 21: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

100

In Hoofdstuk 3 wordt gekeken naar het proteoom van sporen van B. weihenstephanensis hetgeen een indruk geeft van hoe reproduceerbaar hetsporenproteoom is bij verschillende sporulatieomstandigheden en hoe robuust

bleken er 47 afhankelijk te zijn van sporulatietemperatuur. Enkele variatiesin het proteoom (N-acetylmuramoyl-L-alanine amidase, N-acetylmuramoyl-L-alanine amidase family protein, GerD, SpoVAD) zijn gecorreleerd aan

dipicolinezuur in de sporekern. In deze eerste directe studie van hetsporenproteoom van B. weihenstephanensis zijn 23 eiwitten voor het eerst

In Hoodfstuk 4 wordt de abundantie van 21 sporeneiwitten van B. cereus bepaald

van sporeneiwitten alsook de eerste keer dat een QconCAT wordt toegepast ineen heterogeen systeem. Op deze manier is 5.66% ±0.51 van het totaalgewicht

anderzijds. De bepaalde stoichiometrie verschaft ook inzicht in hoe bekende of potentieel interacterende eiwitten zich tot elkaar verhouden. Als laatste is van demeest abundante eiwitten een voorspelling gedaan wat betreft hun immunogeneregio’s hetgeen van belang is voor hun toepasbaarheid als biomarker.

In Hoofdstuk 5 zijn de ontwikkelde methodes voor analyse van de onoplosbarefractie van sporen toegepast op een CotE knock-out mutant. Gezien CotEvan essentieel belang is voor het vormen van een intact exosporium is dezelaag zwaar aangedaan in de mutant. Eiwitten die normaal in het exosporiumgelokaliseerd zijn worden of helemaal niet of in mindere mate teruggevondenin isolaten van de onoplosbare fractie van sporen van de knock-out mutant. Alszodanig is het mogelijk om informatie te verkrijgen over de locatie van eiwittenop een proteoom breed niveau alsmede over potentiele interacties tusseneiwitten.

Als gevolg van dit onderzoek is het mogelijk geworden om robuuste, abundante

kunnen worden in een biosensor platform ter detectie van sporen vanvoedselpathogene Bacillen.

Page 22: UvA-DARE (Digital Academic Repository) Quantitative ...82 (16) Popham, D. L.; Foster, S. J. Structure and Synthesis of Cell Wall, Spore C ortex, Teichoic Acids, S-Layers, and Capsules

101

AcknowledgementsYears of work, hundreds of papers read, uncountable bytes of data generatedand only one last page to write… what hopefully won’t be the most read sectionof this book. I would like to thank all the people who have been a part of this

lengths of time spent strategizing, analysing samples, discussing results, and notto mention maintenance of our precious FTMS. You have been instrumental tothe success of my PhD research. Of course, I would like to thank my promotorsChris and Stanley for their support and trust. It’s been an absolute pleasure

the combination of proteomics and spore research is headed for great things.

spent reading this thesis and participating in the proceedings.

A special thanks to my paranymphs Reuben and Pascal who’ve helped me enjoymy life these past four years, not only at the university but out in the real worldas well. I’m curious to see how (and if?) the three of us will keep implementingthe knowledge obtained during our PhD’s and look forward to our continuedfriendship.

Throughout my PhD I’ve had the privilege to work, share labs, or at least havelunch together with many wonderful colleagues. Special mention to the ones

Luitzen. It’s been an absolute pleasure and I hope my penchant for always having

hasn’t bothered you too much. That also goes for the technical assistance side, of which I’ve required my fair share. Henk and Winfried, without you our dear MassSpec group would be lost.

time with one than the other. Still, a warm thanks to “the people upstairs” of the MBMFS group for your time and attention spent trying to stay awake whilstlistening to my presentations during work discussions. One particular person Imust call out though; Frans, your insights have repeatedly advanced my research

possible without your solutions to my aggregation problems.

of support and the fun I’ve had alongside my working life. You’ve almost made thisPhD feel easy. Last but most certainly not least, my dearest Klazien, thank you for

these four years of my life… For Science!