vector space.ppt

Upload: ghulam-shabbir

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Vector Space.ppt

    1/67

    Signal-Space Analysis

  • 8/18/2019 Vector Space.ppt

    2/67

    Digital Communication

    System

  • 8/18/2019 Vector Space.ppt

    3/67

    Representation of Bandpass Signal

    Bandpass real signal  x (t ) can be written as:

    ( ) ( ) ( )cos 2 c x t s t f t π =

    ( ) ( ) ( )22 Re where is complex envelopc j f t  x t x t e x t π  = % %

    Note that   ( ) ( ) ( ) I Q x t x t j x t = + ×% % %

    In-phase Quadrature-phase

  • 8/18/2019 Vector Space.ppt

    4/67

    Representation of Bandpass Signal

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    22 Re

    2 Re cos 2 sin 2

    2 cos 2 2 sin 2

    c j f t 

     I Q c c

     I c Q c

     x t x t e

     x t j x t f t j f t 

     x t f t x t f t 

    π 

    π π 

    π π 

    = = + × +

    = + −

    %

    % %

    % %

    (1)

    (2) Note that   ( ) ( )   ( ) j t 

     x t x t eθ =% %

    ( ) ( ) ( )   ( )

    ( ) ( )( )

    2 22 Re 2 Re

      2 cos 2

    c c j t  j f t j f t 

    c

     x t x t e x t e e

     x t f t t 

    θ π π 

    π θ 

    = = ×  

    = +

    % %

    %

  • 8/18/2019 Vector Space.ppt

    5/67

    Relation between and

    2

    2

    ( ) x t    ( ) x t %

    x

    2 c j f t eπ −

    f c 

    -f c 

    f  f c 

    f f 

    ( ) x t    ( ) x t %

    ( ) ( ) ( )( )

    ( ) ( ) ( )

    *1

    2

    ( ), 0

    ,0, 0

    c c

    c

     X f X f f X f f 

     X f f 

     X f X f X f f  f + +

    = − + − +

    >= = +

  • 8/18/2019 Vector Space.ppt

    6/67

    Energy of s(t )

    ( )

    ( )

    ( )

    ( )

    2

    2

    2

    0

    2

    0

      (Rayleigh's energy theorem)

    2 (Conjugate symmetry o real ( ) )

     

     E s t dt 

    S f df  

    S f df s t  

    S f df  

    −∞

    −∞

    =

    =

    =

    =

    ∫ 

    ∫ 

    ∫ 

    ∫    %

  • 8/18/2019 Vector Space.ppt

    7/67

    Representation of bandpass LTI System

    ( )h t 

    ( )h t %

    ( )s t 

    ( ) s t %

    ( )r t 

    ( )r t %

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( )  !ecause ( ) is !an"#limite"$c

    r t s t h t  

     R f S f H f 

    S f H f f s t  

    = ∗

    =

    = +

    %% %

    %% %

    %

    ( ) ( ) ( )( )

    ( )

    ( ) ( )

    *

    ( ), 0 

    0, 0

     

    c c

    c

     H f H f f H f f 

     H f f  H f 

     f 

     H f H f f 

    +

    +

    = − + − + >

    =

  • 8/18/2019 Vector Space.ppt

    8/67

    Key Ideas

  • 8/18/2019 Vector Space.ppt

    9/67

    Examples (1): BPSK 

  • 8/18/2019 Vector Space.ppt

    10/67

    Examples (): !PSK 

  • 8/18/2019 Vector Space.ppt

    11/67

    Examples ("): !A#

  • 8/18/2019 Vector Space.ppt

    12/67

    $eomet%ic Inte%p%etation

    (I)

  • 8/18/2019 Vector Space.ppt

    13/67

    $eomet%ic Inte%p%etation

    (II) %& representation is very convenient or somemo"ulation types$

    e will examine an even more general way o

    looing at mo"ulations, using signal space concept,which acilitates esigning a mo"ulation scheme with certain "esire"

     properties

    Constructing optimal receivers or a given mo"ulation

    +nalying the perormance o a mo"ulation$

    -iew the set o signals as a vector space.

  • 8/18/2019 Vector Space.ppt

    14/67

    Basic Alge&%a: $%oup

    + group is "eine" as a set o elements G an" a !inary operation, "enote" !y / or which theollowing properties are satisie"

    or any element a, b, in the set, a/b is in the set$ he associative law is satisie" that is or a,b,c in

    the set (a/b)/c= a/(b/c)

    here is an i"entity element, e, in the set such thata/e= e/a=a or all a in the set$

    or each element a in the set, there is an inverseelement a#1 in the set satisying a/ a#1 = a#1 /a=e.

  • 8/18/2019 Vector Space.ppt

    15/67

    $%oup: example

    + set o non#singular n3n matrices o

    real num!ers, with matrix multiplication

     4ote the operation "oes not have to !ecommutative to !e a 5roup$

    6xample o non#group7 a set o non#

    negative integers, with 8

  • 8/18/2019 Vector Space.ppt

    16/67

    'niue identity 'niuein*e%se +%o eac, elementa/ x=a. hen , a#1·a·x=a#1·a=e, so x=e.

     x·a=a

    a/ x=e. hen, a#1·a·x=a#1·e=a#1 , so x=a#1.

  • 8/18/2019 Vector Space.ppt

    17/67

     A&elian g%oup

    % the operation is commutative, the group is

    an +!elian group$ he set o m3n real matrices, with 8 $

    he set o integers, with 8 $

  • 8/18/2019 Vector Space.ppt

    18/67

     Application

    9ater in channel co"ing (or error correction or

    error "etection)$

  • 8/18/2019 Vector Space.ppt

    19/67

     Alge&%a: eld

    + iel" is a set o two or more elements F :;α ,β ,$$<close" un"er two operations, 8 (a""ition) an" *(multiplication) with the ollowing properties

     F  is an +!elian group un"er a""ition he set F−;0

  • 8/18/2019 Vector Space.ppt

    20/67

    Immediately +ollo.ing

    p%ope%tiesα ∗β =0 implies α= 0 or  β =0or any non#ero α ,  α ∗0= ?

    α ∗0 + α = α ∗0 + α ∗1= α ∗(0 +1)= α ∗1=α; thereore α ∗0 =00∗0 =?

    or a non#ero α, its a""itive inverse is non#ero$ 0∗0=(α+(− α) )∗0 = α∗0+(− α)∗0 =0+0=0

  • 8/18/2019 Vector Space.ppt

    21/67

    Examples:

    the set o real num!ers

    he set o complex num!ers

    9ater, inite iel"s (5alois iel"s) will !estu"ie" or channel co"ing

    6$g$, ;0,1< with 8 (exclusive =R), * (+4)

  • 8/18/2019 Vector Space.ppt

    22/67

     /ecto% space

    + vector space V  over a given iel" is a set oelements (calle" vectors) close" un"er an" operation 8calle" vector a""ition$ here is also an operation *calle" scalar multiplication, which operates on an

    element o (calle" scalar) an" an element o V  to pro"uce an element o V $ he ollowing properties aresatisie"7 - is an +!elian group un"er 8$ 9et 0 "enote the a""itive

    i"entity$ or every ,! in V  an" every α ,β in F, we have

    (α∗β )∗= α∗ (β∗ ) (α +β )∗= α∗ +β∗  α∗ ( "!):α∗ + α ∗ ! 1#=

  • 8/18/2019 Vector Space.ppt

    23/67

    Examples o+ *ecto% space

    R n over R 

    Cn over C

    92 over 

  • 8/18/2019 Vector Space.ppt

    24/67

    Su&space0

    9et - !e a vector space$ 9et !e a vector space an" $

    % is also a vector space with the same operations as ,

    then > is calle" a su!space o $

    > is a su!space i

    ,

    V S V 

    S V 

    ! S a b! S  

    ∈ ⇒ + ∈

  • 8/18/2019 Vector Space.ppt

    25/67

    inea% independence o+

     *ecto%s

    1 2

    e)

    + set o vectors , , are linearly in"epen"ent i n V  ∈

  • 8/18/2019 Vector Space.ppt

    26/67

    Basis

    0

    Consi"er vector space - over (a iel")$

    e say that a set (inite or ininite) is a !asis, i 

      * every inite su!set o vectors o linearly in"epen"ent, an"

    * or every ,

      it

     $ V 

     $ $

     x V 

    ⊂⊂

    ∈1 1

    1 1

    is possi!le to choose , $$$, an" , $$$,

    such that $$$ $

    he sums in the a!ove "einition are all inite !ecause without

    a""itional structure the axioms o a vector 

    n n

    n n

    a a F $

     x a a

    ∈ ∈= + +

     space "o not permit us

    to meaningully spea a!out an ininite sum o vectors$

  • 8/18/2019 Vector Space.ppt

    27/67

    2inite dimensional *ecto%

    space 1 21 2

    + set o vectors , , is sai" to span i

    every vector is a linear com!ination o , , $

    6xample7

    n

    n

    n

    V V  

    % V

     R

  • 8/18/2019 Vector Space.ppt

    28/67

    2inite dimensional *ecto%

    space+ vector space - is f&n&te d&mens&'na(  i thereis a inite set o vectors %1, %2 , ), %n that span -$

  • 8/18/2019 Vector Space.ppt

    29/67

    2inite dimensional *ecto%space

    1 2

    1 2

    1 2

    9et - !e a inite "imensional vector space$ hen

    % , , are linearly in"epen"ent !ut "o not span , then

    has a !asis with vectors ( ) that inclu"e , , $

    % , , span an" !ut ar 

    m

    m

    m

    V V

    n n m

    V  

    >

    1 2

    e linearly "epen"ent, then

    a su!set o , , is a !asis or with vectors ( ) $

    6very !asis o contains the same num!er o vectors$

    imension o a iniate "imensional vector space$

    m V n n m

    <

  • 8/18/2019 Vector Space.ppt

    30/67

    Example: 3 n and its Basis /ecto%s

    •••

  • 8/18/2019 Vector Space.ppt

    31/67

    Inne% p%oduct space: +o%lengt, and angle

  • 8/18/2019 Vector Space.ppt

    32/67

    Example: 3 n

    •••

    •••

    •••

    •••

  • 8/18/2019 Vector Space.ppt

    33/67

    4%t,ono%mal set andp%o5ection t,eo%em

    e)

    + non#empty su!set o an inner pro"uct space is sai" to !e

    orthonormal i 

    1) , , 1 an"

    2) % , an" , then , 0$

     x S x x

     x * S x * x *∀ ∈ < >=

    ∈ ≠ < >=

  • 8/18/2019 Vector Space.ppt

    34/67

    P%o5ection onto a nitedimensional su&space

    Gallager Th !"1

      #orollar$: nor bound

      #orollar$: Bessel%s ine&ualit$

  • 8/18/2019 Vector Space.ppt

    35/67

    $%am 6Sc,midto%t,ono%mali7ation

    { }

    { }

    1

    1

    1 1

    Consi"er linearly in"epen"ent , $$$, , an" inner pro"uct space$

    e can construct an orthonormal set , $$$, so that

      ; , $$$, < , $$$,

    n

    n

    n n

     s s V 

     s+an s s s+an

    φ φ 

    φ φ 

    =

  • 8/18/2019 Vector Space.ppt

    36/67

    $%am-Sc,midt 4%t,og0P%ocedu%e

  • 8/18/2019 Vector Space.ppt

    37/67

    Step 1 : Sta%ting .it,

    s1(t)

  • 8/18/2019 Vector Space.ppt

    38/67

    Step :

  • 8/18/2019 Vector Space.ppt

    39/67

    Step 8 :

  • 8/18/2019 Vector Space.ppt

    40/67

    Key 2acts

  • 8/18/2019 Vector Space.ppt

    41/67

    Examples (1)

  • 8/18/2019 Vector Space.ppt

    42/67

    cont 9 (step 1)

  • 8/18/2019 Vector Space.ppt

    43/67

    cont 9 (step )

  • 8/18/2019 Vector Space.ppt

    44/67

    cont 9 (step ")

  • 8/18/2019 Vector Space.ppt

    45/67

    cont 9 (step )

  • 8/18/2019 Vector Space.ppt

    46/67

    Example application o+p%o5ection t,eo%em9inear estimation

  • 8/18/2019 Vector Space.ppt

    47/67

    (;?)

    (is an inne% p%oduct space0)

    ( )

    [ ]( )2

    Consi"er an orthonormal set

    1 2  exp 0, 1, 2,$$$ $

    +ny unction ( ) in 0, is , $ ourier series$

    or this reason, this orthonormal set is calle" complete

     

      

    t t j  

    - - 

    % t - % %

    π φ 

    φ φ ∞=−∞

     = = ± ± ÷  

    = ∑

    2

    $

    hm7 6very orthonormal set in is containe" in some

    complete orthonormal set$

     4ote that the complete orthonormal set a!ove is not uni?ue$

     

  • 8/18/2019 Vector Space.ppt

    48/67

    Signicance I!-modulation and %ecei*ed

    signal in ( ) ( ) ( )   [ ]( )

    ( )   { }

    { }

    2

    2

    @ A

    , , 0,

      span 2 cos 2 , 2 sin 2

    +ny signal in can !e represente" as ( )$

    here exist a complete orthonormal set

    2 cos 2 , 2 sin 2 , ( ), ( ),$$$

    c c

    & &&

    c c

    r t s t / t -  

     s t - f t - f t 

      r t 

     f t f t t t 

    ξ ξ 

    π π 

    φ 

    π π φ φ  

    = + ∈

    ∈ −

  • 8/18/2019 Vector Space.ppt

    49/67

    4n @il&e%t space o*e% C02o% special +ol8s (e0g0= mat,ematicians)

    only 92 is a separa!le Bil!ert space$ e have very useulresults on

      1) isomorphism 2)counta!le complete orthonormal set

    hm

    % B is separa!le an" ininite "imensional, then it isisomorphic to ( 0 (the set o  s?uare summa!le se?uenceo complex num!ers)

    % B is n#"imensional, then it is isomorphic to Cn$

    he same story with Bil!ert space over R$ %n some sense there is only one real an" onecomplex ininite "imensional separa!le Bil!ert space$

    9$ e!nath an" $ Diusinsi, H&(bert S+aces !&th 1++(&cat&'ns, @r" 6"$, 6lsevier, 200E$

  • 8/18/2019 Vector Space.ppt

    50/67

    @il&e%t space

    e)

    + complete inner pro"uct space$

    e) + space is complete i every Cauchy

    se?uence converges to a point in the space$

    6xample7 92

  • 8/18/2019 Vector Space.ppt

    51/67

    4%t,ono%mal set S in@il&e%t space @ is complete

    i+ 

    22

    6?uivalent "einitions

    1) here is no other orthonormal set strictly containing $ (maximal)

    2) , ,

    @) , , implies 0

    A) , ,

    Bere, we "o not nee" to assume B is separa!le$

    & &

    &

     x H x x e e

     x e e S x

     x H x x e

    ∀ ∈ =

    ∀ ∈ =∀ ∈ =

    >ummations in 2) an" A) mae sense !ecause we can prove the ollowing7

  • 8/18/2019 Vector Space.ppt

    52/67

    4nly +o% mat,ematicians(e dont need

    sepa%a&ility0){ }

    { }2 2

    9et !e an orthonormal set in a Bil!ert space $

    or each vector x , set , 0 is

    either empty or counta!le$

    roo7 9et , $

    hen, (inite)

    +lso, any element in (however small

    n

    n

    2 H 

     H S e 2 x e

    S e 2 x e x n

    S n

    e S 

    ∈ = ∈ ≠

    = ∈ >

    <

    1

    , is)

    is in or some (suiciently large)$

    hereore, $ Counta!le$

    n

    nn

     x e

    S n

    S S ∞

    == U

  • 8/18/2019 Vector Space.ppt

    53/67

    >,eo%em

    6very orothonormal set in a Bil!ert space iscontaine" in some complete orthonormal set$

    6very non#ero Bil!ert space contains a completeorthonormal set$ (rivially ollows rom the a!ove$)

    ( Fnon#eroG Bil!ert space means that the space has a non#ero element$

      e "o not have to assume separa!le Bil!ert space$)

    Reerence7 $ >omasun"aram, 1 f&rst c'%rse &n f%nct&'na( ana(*s&s, 2xf'rd, 3.4.5 1(+ha Sc&ence, 006.

  • 8/18/2019 Vector Space.ppt

    54/67

    4nly +o% mat,ematicians0(Sepa%a&ility is nice0)

    6uivalent "einitions

    e) is separa!le i there exists a counta!le su!set

    which is "ense in , that is, $

    e) is separa!le i there exists a counta!le su!set such that

      ,

     H 7

     H 7 H 

     H 7

     x H 

    =

    ∀ ∈  there exists a se?uence in convergeing to $

    hm7 % has a counta!le complete orthonormal set, then is separa!le$

      proo7 set o linear com!inations (loosely speaing)

     

     7 x

     H H 

     with ratioanl real an" imaginary parts$ his set is "ense (show se?uence)

    hm7 % is separa!le, then every orthogonal set is counta!le$

      proo7 normalie it$ istance !etween two orthonorma

     H 

    l elements is 2$ $$$$$

    i l

  • 8/18/2019 Vector Space.ppt

    55/67

    Signal Spaces:  o+ complex +unctions

  • 8/18/2019 Vector Space.ppt

    56/67

    'se o+ o%t,ono%mal set

    1 2

    1 2

    1 2 1 2

    D#ary mo"ulation ; ( ), ( ),$$$, ( )<

    in" orthonormal unctions ( ), ( ), $$, ( ) so that

    ; ( ), ( ),$$$, ( )< ; ( ), ( ),$$, ( )<

     8 

     4 

     8 4 

     s t s t s t 

     f t f t f t 

     s t s t s t s+an f t f t f t ⊂

  • 8/18/2019 Vector Space.ppt

    57/67

    Examples (1)

    2

    2

  • 8/18/2019 Vector Space.ppt

    58/67

    Signal Constellation

  • 8/18/2019 Vector Space.ppt

    59/67

    cont 9

  • 8/18/2019 Vector Space.ppt

    60/67

    cont 9

  • 8/18/2019 Vector Space.ppt

    61/67

    cont 9

    QPSK 

  • 8/18/2019 Vector Space.ppt

    62/67

    Examples ()

    E l ' +

  • 8/18/2019 Vector Space.ppt

    63/67

    Example: 'se o+o%t,ono%mal set and &asiswo s?uare unctions

  • 8/18/2019 Vector Space.ppt

    64/67

    Signal Constellation

    $ t i I t t ti

  • 8/18/2019 Vector Space.ppt

    65/67

    $eomet%ic Inte%p%etation(III)

  • 8/18/2019 Vector Space.ppt

    66/67

    Key 4&se%*ations

    / t >#33C/3

  • 8/18/2019 Vector Space.ppt

    67/67

     /ecto% >#33C/3#odel

    ⊗ ⊗

    ⊗ ⊗

    ⊗ ⊗

    ⊕φ ( )1 t φ ( )1 t

    φ ( )2 t φ ( )2 t

    r : s 8 n1 1 1s1

    -ector RC-R 

    -ector HDR 

    aveorm channel & CorrelationReceiver 

    s(t)

    n(t)

    r(t)s2

    s 4

    r : s 8 n2 2 2

    r : s 8 n 4 4 4

    φ ( )Ν t φ ( )Ν t

    ⊕s(t)

    n( t)

    r ( t ) : s( t) 8 n ( t)

    0

    z

    0

    z

    0

    z