vladimir aizen: climate and environmental change impact cryosphere/water resources central asia

12
1 Modern and past climate and environmental change impact on cryosphere/water resources in Central Asia Vladimir B. Aizen and Elena M. Aizen University of Idaho, USA Email: [email protected] Abstract The central Asian cryosphere is a part of planet's climate and hydrological system, one that is particularly at risk from accelerated climate changes. Despite the very arid climate, the central Asian glaciers comprise approximately 10,000 km 3 fresh water that is a vital source of life for more than 100 million people. The history of climate revealed from the icecore isotope chemistry records large variability in the past 12,600 years in central Asia. Glaciers in Altai and inner Tien Shan did not exist at the end of Pleistocene, and were regenerated during and the Younger Dryas, when air temperature was 6.1 ± 0.3C lower than the modern mean air temperature (Aizen et al, 2013d). An abrupt increase in air temperature of more than 6.7°C at the end of the Younger Dryas occurred for less than one century did not destroyed glaciers in Altai. During the last 30 years of modern time, annual air temperature increased 0.65°C, mainly in summer, and up to 1.6°C over the prairies and deserts. In high mountains of central Tien Shan air temperature increased on 0.21°C but, even a small increase of summer air temperatures intensifies seasonal snow and glacier melt, decreasing snow cover duration for one month. The glaciers lost on average 14% of area and 27% of volume in Altai from 1960s to 2009, 8.5% of area in Tien Shan and 5% in Pamir from 1970 th to 2009. Keywords: Central Asia; cryosphere, climate, snow cover; glaciers; paleoclimate Introduction Shrinking of alpine glaciers and the acceleration of the glacier’s recession appears from the middle of 1970 in the majority of mountain regions of the World (Heiberly, 1990; Kadota et al., 1997; Liu et al., 2002; Zemp et al., 2006; Aizen et al., 2006; Niederer et al., 2008; Paul and Andreassen, 2009; Shahgedanova et al., 2010). An accurate evaluation of cryospheric changes becomes a crucial issue for water resource, water supply and hydropower assessments in central Asia. Central Asia has extremely fragile arid lowlands and waterrich highlands, where melt of glacier and seasonal snow cover supplies over 80% of river runoff (Dikih, 1993; Aizen, et al., 1998; Shi, et al., 2007). During droughts, glacial runoff can reach 45% (Schultc, 1965, Aizen, 1997). There is a lack of generalized knowledge on cryospheric changes over high central Asia. Existent investigations used data from a few stations (Table 1a), accounting for a relatively limited number of glaciers (Table 1b), which results often do not account for the extended terrain in central Asia and are valid only for local purposes. Central Asia (Fig. 1) with area of about 6.2 million km 2 consists primarily of planes, with high mountains, reaching 7,000 m in the south and southeast. The highest point is Kongur in the eastern Pamir, of 7719 m, and the lowest point is the Turphan depression in eastern Tien Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru HighMountains.org/workshop/peru-2013

Upload: harlin-media

Post on 16-Mar-2016

225 views

Category:

Documents


0 download

DESCRIPTION

The central Asian cryosphere is a part of planet's climate and hydrological system, one that is particularly at risk from accelerated climate changes. Despite the very arid climate, the central Asian glaciers comprise approximately 10,000 km3 fresh water that is a vital source of life for more than 100 million people. The history of climate revealed from the ice-core isotope-chemistry records large variability in the past 12,600 years in central Asia. Glaciers in Altai and inner Tien Shan did not exist at the end of Pleistocene, and were regenerated during and the Younger Dryas, when air temperature was 6.1 ± 0.3◦C lower than the modern mean air temperature (Aizen et al, 2013d). An abrupt increase in air temperature of more than 6.7°C at the end of the Younger Dryas occurred for less than one century did not destroyed glaciers in Altai. During the last 30 years of modern time....

TRANSCRIPT

Page 1: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

1  

Modern  and  past  climate  and  environmental  change  impact  on  cryosphere/water  resources  in  Central  Asia  

Vladimir  B.  Aizen  and  Elena  M.  Aizen  University  of  Idaho,  USA  E-­‐mail:  [email protected]  

Abstract  

The  central  Asian  cryosphere  is  a  part  of  planet's  climate  and  hydrological  system,  one  that  is  particularly  at  risk  from  accelerated  climate  changes.  Despite  the  very  arid  climate,  the  central  Asian  glaciers  comprise  approximately  10,000  km3  fresh  water  that  is  a  vital  source  of  life  for  more   than   100   million   people.   The   history   of   climate   revealed   from   the   ice-­‐core   isotope-­‐chemistry   records   large  variability   in   the  past  12,600  years   in   central  Asia.  Glaciers   in  Altai  and  inner  Tien  Shan  did  not  exist  at  the  end  of  Pleistocene,  and  were  regenerated  during  and  the  Younger  Dryas,  when  air   temperature  was  6.1  ±  0.3◦C   lower   than   the  modern  mean  air  temperature  (Aizen  et  al,  2013d).  An  abrupt  increase  in  air  temperature  of  more  than  6.7°C  at  the  end  of  the  Younger  Dryas  occurred  for  less  than  one  century  did  not  destroyed  glaciers  in  Altai.   During   the   last   30   years   of   modern   time,   annual   air   temperature   increased   0.65°C,  mainly  in  summer,  and  up  to  1.6°C  over  the  prairies  and  deserts.  In  high  mountains  of  central  Tien   Shan   air   temperature   increased   on   0.21°C   but,   even   a   small   increase   of   summer   air  temperatures  intensifies  seasonal  snow  and  glacier  melt,  decreasing  snow  cover  duration  for  one  month.  The  glaciers  lost  on  average  14%  of  area  and  27%  of  volume  in  Altai  from  1960s  to  2009,  8.5%  of  area  in  Tien  Shan  and  5%  in  Pamir  from  1970th  to  2009.  

Keywords:  Central  Asia;  cryosphere,  climate,  snow  cover;  glaciers;  paleoclimate  

Introduction  Shrinking  of  alpine  glaciers  and  the  acceleration  of  the  glacier’s  recession  appears  from  the  

middle  of  1970  in  the  majority  of  mountain  regions  of  the  World  (Heiberly,  1990;  Kadota  et  al.,  1997;   Liu   et   al.,   2002;   Zemp   et   al.,   2006;   Aizen   et   al.,   2006;  Niederer   et   al.,   2008;   Paul   and  Andreassen,  2009;  Shahgedanova  et  al.,  2010).  An  accurate  evaluation  of  cryospheric  changes  becomes   a   crucial   issue   for   water   resource,   water   supply   and   hydropower   assessments   in  central  Asia.  Central  Asia  has  extremely  fragile  arid  lowlands  and  water-­‐rich  highlands,  where  melt  of  glacier  and  seasonal  snow  cover  supplies  over  80%  of  river  runoff  (Dikih,  1993;  Aizen,  et   al.,   1998;   Shi,   et   al.,   2007).  During   droughts,   glacial   runoff   can   reach   45%   (Schultc,   1965,  Aizen,   1997).   There   is   a   lack   of   generalized   knowledge   on   cryospheric   changes   over   high  central  Asia.  Existent  investigations  used  data  from  a  few  stations  (Table  1a),  accounting  for  a  relatively   limited  number  of   glaciers   (Table  1b),  which   results   often  do  not   account   for   the  extended  terrain  in  central  Asia  and  are  valid  only  for  local  purposes.  

Central  Asia  (Fig.  1)  with  area  of  about  6.2  million  km2  consists  primarily  of  planes,  with  high  mountains,  reaching  7,000  m  in  the  south  and  southeast.  The  highest  point  is  Kongur  in  the  eastern  Pamir,  of  7719  m,  and  the  lowest  point  is  the  Turphan  depression  in  eastern  Tien  

Glacial Flooding & Disaster Risk ManagementKnowledge Exchange and Field Training

July 11-24, 2013 in Huaraz, PeruHighMountains.org/workshop/peru-2013

Page 2: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

2    

Shan,  of  -­‐154  m  bsl.  In  our  research,  Central  Asia  is  bordered  by  Caspian  Sea,  western  Siberia  and  Altai  mountains,   the  Mongolian   steppes   and   the   Gobi   desert,   and   the   Takla  Mahan   and  Karakum  deserts.  

 Data  and  Methods  Meteorological     data     include   monthly   average   air   temperatures   and   sums   of  

precipitation  from  251  stations  spanning  35.28°-­‐50.25°N  and  50.4°-­‐91.98°E  and  from  -­‐134  m  bsl   to  4169  m  asl   for   two  periods:  1942-­‐1975  and  1976-­‐2009.  Sums  of  annual  (Pan),  winter  (Pw)   and   summer   (Ps)   precipitation,   means   of   annual   (Tan)   and   summer   (Ts)   air  temperatures,   linear   trends   (α)   for   the   two   periods   (1942-­‐1975   and   1976-­‐2009)   and   their  differences  (ΔT,  ΔP)  were  calculated.  The  statistical  significance  was  determined  by  T-­‐test,  F-­‐test  and  non-­‐parametric   test   (Wilks,  2011).  We  consider  acceleration   (a)   through  changes   in  linear  trends  for  two  periods:  a  =  α1976-­‐  2009  –  α1942-­‐1975.    

To   generate   continuous   spatial   fields   for   climatic   characteristics,   we   used   the  Geographically   Weighted   Regression   (GWR)   method   (Hofierka   et   al.,   2002)   interpolating  temporal  gaps  (Fotheringham  et  al.,  2002;  Brunsdon  et  al.,  2001).  The  lapse  were  estimated  for  each  grid  point  based  on  data  from  closest  stations.  Input  from  a  station  is  linearly  weighted  due  to  its  distance  from  the  point.  Cross  validation  was  used  to  evaluate  the  errors  of  spatial  interpolation.    

 Remote  sensing  data:    Snow   covered   area:   A   8-­‐day   dataset   was   developed   based   on   1   km   AVHRR   and   High  

Resolution   Picture   Transmission   (NOAA,   1998,   2007)   via   NOAA   Stewardship   System  (http://www.class.ncdc.noaa.gov/)   from   1976   to   2009   using   SAPS   (Khlopenkov   and  Trischenko,   2007).   MODIS   Terra   daily   and   8-­‐day   snow   cover   product   (MOD10A1v5   and  MOD10A2v5)   was   obtained   from   NSIDC   (http://nsidc.org/data/modis/).   Auxiliary   data  include  Digital  Elevation  Model  (500  m  -­‐  1  km),  snow  survey  data,  and  land  cover  information.  Snow   survey   data   obtained   from  NSIDC  were   used   to   validate   snow   identification   in   daily  composite  AVHRR.  The  Land  Cover  Classification  data  at  1  km  resolution  from  AVHRR  (Hansen  et  al.,  1998,  2000)  was  obtained  from  University  of  Maryland  (Zhou  et  al,  2013).    

Glacier   area/volume   (1970th-­‐2009)   were   completed   in   three   central   Asia   glacier  inventories   (http://www.asiacryoweb.org)   using   declassified   photographs   from   Corona   and    KH-­‐9  Mapping  Program,  Landsat  ETM+  and  ASTER  images,  and  ALOS/PRISM  2.5  m  resolution  (Surazakov  &  Aizen,  2010;  Aizen,  2011).  Volume  of  all  Altai-­‐Sayan  glaciers  was  estimated  using  glacier  area/volume  relationships  developed  with  in-­‐situ  radio  echo-­‐sounding  measurements  of  130  glaciers  (Nikitin,  2009).  Maps  of  the  Fedchenko  Gl.,  central  Pamir,  from  1928  and  1958  photogrammetric  surveys  and  data  of  ice  surface  velocity,  DEMs  and  ground  penetrating  radar  measurements  in  2009,  were  used  to  estimate  glacier  ice-­‐volume  changes  from  1928  to  2009  (Lambrecht,  et  al,  2013).      

12,600  years  paleoclimatic  isotope-­‐chemistry  records  were  obtained  from  two  surface  to  bedrock   ice-­‐cores  drilled   in  2003  on   the  West  Belukha  Plateau  (Siberian  Altai  at  4115  m;  171.3  m  depth)  and   in  2007  on  the  Grigorieva  Ice-­‐cap  (Inner  Tien  Shan  at  4563  m;  87.46  m  depth).  Both  ice-­‐cores  were  processed  and  analyzed  at  University  of  Idaho,  University  of  Maine  (USA),  National  Institute  for  Polar  Research  and  Research  Institute  for  Humanity  and  Nature  (Japan)  dedicated  laboratories  at  2-­‐3  cm  resolution  (Takeuchi  et  al,  2013;  Aizen  et  al,  2013).  

 Stable   isotope   ratios   (δ18O,   δD)   were   determined   via   headspace   equilibration   using  a  Finnigan   Delta   Plus   isotope  mass   spectrometer   coupled   with   Finnigan's   GasBench   II.   The  analytical   precision   of   δ18O   and   δD   isotope   ratios   was   ±0.05‰   and   ±0.5‰.   Major   ion  

Page 3: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

3    

analysis   was   via   suppressed   ion   chromatography   using   a   Dionex   DX500   system.   Ion  concentration   was   determined   at   0.01–0.07m   resolution   with   minimum   of   1   ppb.  Radiocarbon   analysis   of   the   POC   fraction   was   conducted   at   Laboratory   of   Radio   and  Environmental  Chemistry  at  Paul  Scherrer  Institute  (Switzerland)  (Jenk  et  al.  2009;  Sigl  et  al.,  2009).   Radiogenic   (δ3H)   isotope   ratios   were   measured   via   liquid   scintillation   counting   at  National   Institute  of  Polar  Research  and   in   the   Idaho  State  University,  USA.  The  dating  was  based  on:  δ3H  and  14C  marks;  seasonal  signal   in  stratigraphy  and  stable   isotope  distribution;  multi-­‐identification   of   layers   including   forest   fires,   Tunguska   explosion,   dust   storm   and  significant   volcanic   eruptions.   The   numeric   modeling   of   ice   thickness   aging   presented   in  Raymond  (1983)  and  implemented  by  Kaspari  et  al.,  (2008),  Thompson  et  al.,  (1989,  2000),  Yao  and   Yang   (2004),   Davis   et   al.,   (2005)   was   applied.   Information   on   discrepancy   of   dating  presented  in  (Aizen  et  al.,  2013d).    

     

Results  and  Discussion  Changes   in   climatic   characteristics   (between   1976-­‐2009   and   1942-­‐1975).   Air  temperatures.  Increases  in  annual  means  were  observed  at  93%  and  7%  of  stations  show  no  changes.   The   area-­‐weighted   difference   in   annual  mean   temperature   throughout   the   central  Asia  was   0.65°C,  with   the  most   increase   in   the   summer.   The  most   significant   differences   in  annual/summer   means   were   observed   in   the   Aral   Caspian   deserts   and   Kazakhstan   steeps  (ΔTa=1°C,  ΔTs  =1.6°C).  The  lowest  difference  was  in  the  central  Tien  Shan,  0.21°C.  Differences  in  annual  means  decreased  with  altitude  from  0.72°C  below  1,000  m  to  0.31°C  above  3,000  m,  while   the   summer   differences   were   significant   throughout   all   regions   and   altitudes.   Area  weighted  means  of  acceleration  was  positive  (0.034°C  yr-­‐1)  throughout  regions  and  altitudes  with  the  most  acceleration  in  summer  (0.024°C  yr-­‐1).  The  western  and  eastern  Pamir  regions  in   summer   are   exceptions.  Precipitation   increased   significantly   at   35%,   decreased   at   35%,  and   did   not   change   at   the   remaining   30%   of   stations.   In   summer   46%   of   stations   showed  decreases  and  20%  showed   increases.   In  winter,  47%  stations  showed   increases,  while  only  16%   showed   decreases.   Spatially   interpolated   ΔPan   ranged   from   +27   mm   in   plain/desert  to   -­‐101  mm   in   the   inner   and   central   Tien   Shan.   The   total   area  weighted  ΔPan  was   positive  because   the   areas   with   increased   precipitation   exceeded   the   areas   with   decreased  precipitation  by  8%.  Increases  in  annual  precipitation  were  observed  in  western  and  eastern  Pamir,   western   Aral-­‐Caspian,   northern   Tien   Shan   foothills,   southern   Altai-­‐Sayan  mountains  and  eastern  Tarim  deserts  (42%  of  central  Asia  area).  An  increase  in  winter  precipitation  was  observed   below   2,000  m,   while   winter     precipitation   decreased   in   eastern   Pamir   and   Tien  Shan  above  2,000m.  Annual  differences  on  average  decreased  in  alpine  areas  above  3,000  m.  However,  the  western  Pamir  ΔPan  had  increases  at  all  altitudes,  while  the  western,  inner  and  eastern   Tien   Shan   had   significant   decreases   over   all   altitudes.   The   greatest   decrease   in  precipitation  occurred  during  the  summer  especially  at  altitudes  above  3,000  m  in  Tien  Shan.  

 Changes  in  cryosphere:    Seasonal   snow   cover   (1976-­‐   2009).   The   Man-­‐Kendall's   test   revealed   negative   trend   in  

snow  covered  area  (SCA)  with  the  rate  of  -­‐0.31%  yr-­‐1  in  western  Pamir  above  3,000  m,  -­‐0.41%  yr-­‐1   in  eastern  Pamir  above  4,000  m,   -­‐0.35%  yr-­‐1   in  western  Tien  Shan  above  3,000  m  and   -­‐0.31%   yr-­‐1   in   inner   Tien   Shan   above   3,000m,   while   Altai-­‐Sayan   shows   increase   of   SCA   by  +0.25%  yr-­‐1  due  to  increase  of  winter  precipitation.  Maximum  decrease  of  SCA  is  observed  at  the  beginning  of  June.  There  is  the  negative  trend  of  snow  cover  duration  (SCD)  over  3,000  m  

Page 4: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

4    

of  -­‐0.80  day  yr-­‐1  in  Pamir  and  -­‐1.20  day  yr-­‐1  in  Tien  Shan.  The  SCD  reduced  by  30  by  2009  in  central  Asia.    

The  glaciers  of  Altai-­‐Sayan.  Counting  the  glaciers   larger   than  0.1  km2,   there  were  1,428  glaciers  with  area  of  1,285  km2  by  2009.  The  glaciers  lost  on  average  14%  of  area  from  1960s  to  2009   (Surazakov   et   al.,   2007;  Nikitin,   2009;   Shahgedanova   et   al.,   2010;  Aizen,   2011a).   The  recession  varied   from  4%  for  valley  glaciers   to  16%  for  small   cirque  and  piedmont  glaciers.  The  number  of  glaciers  have  reduced  by  7.5%  that  mainly  attributed  by  small  glaciers.  Average  glacier  retreat  was  from  -­‐2  to  -­‐10m  yr-­‐1  with  maximum  of  -­‐45m  yr-­‐1.  Overall  glacier  recession  was  accompanied  by  expansion  of  5  glaciers   in  1988  and  8  glaciers   in  1993.  The  glaciers   ice  volume  was  33.5  km3  in  2009  and  42.6  km3  in  1960  (Nikitin,  2009).  Altai’s  glaciers  lost  9.1  km3  (27%).    

The  glaciers  of  Tien  Shan  had  area  12,949.29  km2  (7,590  glaciers,  1,840  km3)  in  2009  and  14,152.23  km2   in  the  1970th,  resulting   in  8.5%  loss.  The   largest  absolute  and  relative  glacier  area  loss  occurred  in  the  northern  Tien  Shan  (361  km2,  14.3%),  where  sums  of  precipitation  decreased  above  3,000  m  (-­‐18.6  mm),  and  the  summer  air  temperatures  increased  on  0.44°C.  Similar  large  absolute  recession  occurred  in  the  inner  and  central  Tien  Shan  at  higher  than  in  the  northern  Tien   Shan   elevations:   annual   precipitation  decreased   -­‐35  mm  and   summer   air  temperatures   increased  0.71°C.  The   least  absolute  glacier   recession  occurred   in   the  western  Tien   Shan  where   the  mountains   do   not   reach   4000  m,   summer   air   temperatures   increased  only   0.23°C   and   precipitation   decreased   -­‐13.4  mm.   The   eastern   Tien   Shan   lost   196   km2   of  glacier   area   (12%)   (Li,   2006;   Aizen,   2013c).   The   tongue   of   the   largest   Tien   Shan   glacier,  Inylchek,  (59  km  long,  547  km2)  retreated  700  m  and  area  loss  is  -­‐0.98  km2  (-­‐0.3%)  from  1943  to  2011.    

The  glaciers  of  Pamir    cover  12,449  km2  in  1970th  and  11,834  km2  in  2009  (Aizen  et  al   ,  2011c).  The  Pamir  glaciers  changed  mainly  due  to  shrinkage  of  small  glaciers  with  area  <0.5-­‐  2.0  km2,  which  numbers  decreased  from  456  in  1970s  to  359  in  2009.  The  number  of  medium  (2.1  –  10.0  km2)  and  large  glaciers  (over  100  km2)  remains  stable  and  their  area  shrunk  less  than  2%.  The  large  central  Pamir  glaciers  are  the  most  stable  due  to  high  elevated  location  of  accumulation   areas   and   precipitation   surplus   in   the   last   two   decades.   The   rate   glacier  recession  is:  -­‐11.5%  and  -­‐7.6%  in  Hindukush  and  Vakhshan  Ranges,  southern  Pamir;  -­‐4.9%  in  Gissaro-­‐Alai;  -­‐0.7%  and  -­‐1.5%  in  central  Pamir,  and  -­‐3.8%  in  eastern  Pamir  and  total  glaciers  area  shrunk  615  km2  (5%)  from  1970  to  2009.  According  to  Schetinnikov  (1998),  Pamir  glacier  area  has  shrunk  10.5%  from  1950s  to  1980.  The  Fedchenko  Glacier,  one  of  the  world  largest  alpine  glaciers  (72  km  long,  579  km2),  has  insignificantly  retreated  755  m  with  area  loss  of  -­‐2.91  km2  (-­‐0.5%)  from  1958  to  2009  (Lambrecht,  et  al.,  2013;  Aizen,  eat  al.,  2013a).  However,  the   level  of   the  glacier  surface  dropped  -­‐30  m  at   the  altitude  of   terminus  (2,896  m)  with   ice  volume  loss  of  about  4.3  km³  from  1958  to    2009.  The  historical  photogrammetry  surveys  on  the  Fedchenko  Gl.  have  revealed  that  glaciers  in  Pamir  had  the  highest  rate  of  recession  from  1928  to  1958.  In  the  1960s  and  between  2000  and  2007,  the  area  loss  was  insignificant  (0.014  and  0.010  km²/yr  respectively)  (Lambrecht,  et  al,  2013).    

     Paleoclimate  The  Altai-­‐Sayan  and  Tien  Shan  glaciers  below  5,000  m  did  not  exist  in  the  Bølling-­‐Allerød  

period  (Takeuchi,  et  al.,  2012;  Aizen,  et  al.,  2013d).  Altai-­‐Sayan  glaciers  regenerated  during  the  Younger  Dryas  (YD),  when  air  temperatures  were  on  average  6.1°C  lower  than  in  the  Recent  Warming  Period  (RWP),  i.e.  from  1993  to  2003.  The  inner  Tien  Shan  Glaciers  regenerated  later  (Takeuchi   et   al.,   2013).   An   abrupt   decrease   in   air   temperatures   at   the   beginning,   and   an  increase   at   the   end,   of   the   YD   intensified   winds   and   dust   loading   to   atmosphere   from  

Page 5: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

5    

expanded   Asian   deserts.   Concentrations   of   major   ions   increased   significantly   during   the  transitional   time   of   abrupt   air   temperature   change   while   during   the   minimum   air  temperatures  of  the  YD,  mineral  dust  loading  weakened.  These  results  are  in  accordance  with  analyses   from  Greenland  (Mayewski  et  al.,  1997),  Antarctica  (Jouzel  et  al.,  1996),  and  tropical  alpine   (Thompson   et   al.,   1995)   ice   cores.   After   the   YD,  major   ions   concentration   decreased,  with  the  lowest  concentrations  during  RWP.    

During  the  Holocene,  the  time  colder  than  RWP  observed  for  about  six  and  a  half  millennia,  i.e.,  YD,  Pre  Boreal  Oscillation,  Severe  Centennial  Drought  (SCD).  During  SCD  air  temperature  was  on  average  4.9°C  lower  than  during  the  following  MWP,  and  4.41°  lower  compared  to  the  recent   time.   The   Altai   glaciers   survived   the   Abrupt  Warming   Events,   the   Holocene   Climate  Optimum   (HCO),   and   the  Medieval  Warm  Period   (MWP).    Air   temperatures  during   the  HCO  and   MWP   were   warmer   corresponding   to   a   1.6°C   and   2.4°C   centennial   means   increase  compared  RWP.  During  the  MWP,  decadal  means  exceeded  3.3°C  the  recent  decadal  mean  air  temperatures.   The  most   intensive   enrichment   of   δ18O   is   related   to   circa   760  AD   during   the  MWP   when   temperatures   reached   a   maximum,   further   cooling   followed   gradually   with  periods  of  higher  or  lower  temperatures  until  the  middle  of  20th  century.    

Changed   trajectories   in   prevailing   western   and   northwestern   storms   from   the   Atlantic  during  MWP  described  by  Bradley  (2000),  Bradley  et  al.  (2003),  resulted  in  increase  share  of  re-­‐evaporated  moisture   from  the  Aralo-­‐Caspian  basin,  which  extended  and  dominated  as   far  as  Tien  Shan  and  Siberia  with  a  maximum  share  during  the  pre-­‐industrialization  time  (Aizen  et  al.,  2013d).  

 Conclusion  Significant  increases  in  annual  and  summer  average  air  temperatures  for  the  last  30  years  

were  observed  at  93%  of  central  Asian  stations.  The  most  significant  increase  was  observed  in  the  Aral  Caspian  deserts  and  Kazakhstan  steeps.  Acceleration  in  grow  of  annual  and  summer  air  temperatures  were  positive  throughout  regions  and  altitudes,  except  for  the  western  and  eastern  Pamir  in  summer.  Increases  in  precipitation  for  the  last  30  years  were  observed  in  the  western   Pamir,   the   western   Aral-­‐Caspian,   the   northern   Tien   Shan   foothills,   Altai-­‐Sayan  mountains   and   eastern   Tarim   deserts.   The   increase   in   winter   precipitation   was   observed  mainly   below  2,000  m,   and   in   central   Pamir   and   eastern   Pamir   above   5,000  m.   The   largest  decrease  in  precipitation  observed  during  the  summer,  particularly  in  Tien  Shan  over  3,000  m  asl.  

The  rate  of  seasonal  snow  covered  area  decrease  for  the  last  30  years  varied  from  -­‐0.31%  to  0.41%  yr-­‐1  in  western  and  eastern  Pamir,  and  in  western  and  inner  Tien  Shan  above  3,000  -­‐4,000  m.  The  Altai-­‐Sayan  shows  positive  rate:  +0.25%  yr-­‐1.  

The   rate   of   glacier   area   change   is   different   in   the   large   glacierized   massifs   and   small  glaciers.   The   biggest   glacier   recession   observed   below   4,000-­‐4,500   m.   The   80%   of   glacier  covered   area   are   presented   by   several   large   glacierized   massifs   over   300   km2   each   with  accumulation  areas  above  5,000  m,  where  the  rate  of  area  recession  does  not  exceed  3%  for  the   last   40-­‐60   years.   However,   changes   in   glacier   covered   area   do   not   represent   the   real  changes  of  glaciers.  To  estimate  the  water  resources  in  central  Asia,  assessment  of  changes  in  ice  volume  is  necessary.    

Glaciers  up  to  5,000  m  in  central  Asia  did  not  exist  during  the  Bølling-­‐Allerød  interstadial  period.   The   climate   that   time   was   warmer   than   during   the   last   30   years.   The   glaciers  regenerated   during   and   after   the   Younger   Dryas,   when   air   temperatures   were   on   average  6.1oC  lower  than  now.  At  the  end  of  Younger  Dryas  air  temperature  increased  abruptly  more  than  6.7oC  within  100  years.  Reconstructed  air  temperatures  shows  several  periods  during  the  

Page 6: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

6    

Holocene  Climate  Optimum  (7,000  to  3,600  cal  yrs  BC)  and  Medieval  Warm  Period  (AD  700–1,150)  with  air  temperatures  up  to  3.3oC  higher  than  in  the  last  30  years  decadal  mean.                  References  Aizen,  V.B.,  H.  Zhou,  E.M.  Aizen,  C.  Mayer,  A.B.  Surazakov.  Central  Pamir  Glaciers  regime  and  

dynamics:  1928-­‐2011  photogrammetry,  GPS  survey,  Corona  KH-­‐9,  Landasat,  SRTM,  ALOS  PRISM  data  (2013a,  in  process).  

Aizen,   E.M.,   V.B.   Aizen,   H.   Zhou.   Atmosphere   Circulation   Patterns   and   Climate   Changes   in  Central  Asia.  Journal  of  Climate  (2013b,  submitted).  

Aizen,  V.  B.,  E.M.  Aizen,  A.  B.  Surazakov,  S.A.  Nikitin,  J.  Kubota,  H.  Zhou.  Glaciers  changes  in  Tien  Shan  in  20th  century  J.  Glaciology  (2013c,  submitted)  

Aizen,  E.M.,  Aizen,  V.  B.,  Takeuchi,  N.,  Joswiak,  D.  R.,  Fujita,  K.,  Nikitin,  S.  A.,  Grigholm,  B.,  Zapf,  A.,  Mayewski,  P.A.,  Scwikowski,  M.,  Nakawo,  M.,  Abrupt  and  moderate  climate  changes  at  high-­‐mid   latitudes   of   Asia   during   the   Holocene.   Submitted   to   the   Journal   of   Glaciology  (2013d,  in  review))  

Aizen,  V.B.  2011a.  Altai  Glaciers.    Encyclopedia  of  Snow,  Ice  and  Glaciers.  Ed:  V.P.Sigh,  Springer  Publisher,  p.1253.  

Aizen,   V.B.   2011b.   Tien   Shan   Glaciers.   Encyclopedia   of   Snow,   Ice   and   Glaciers.   Ed:   V.P.Sigh,  Springer  Publisher,  p.1253.  

Aizen,   V.B.   2011c.   Pamir   Glaciers.   Encyclopedia   of   Snow,   Ice   and   Glaciers.   Ed:   V.P.Sigh,  Springer  Publisher,  p.1253.  

Aizen,   V.B.,   P.A.   Mayewski,   E.M   Aizen,   D.R.   Joswiak,   S.   Kaspari,   S.   Sneed,   A.B.   Surazakov,   B.  Grigholm,   A.   Finaev.   2009.   Stable-­‐Isotope   and   Chemical   Time   Series   from   Fedchenko  Glacier  Firn  Core  (Pamir).J.  of  Glaciology,  V.55/190  pp.275-­‐291.  

Aizen,   V.B.,   E.M.   Aizen,   A.B.   Surazakov,   V.A.   Kuzmichenok,   2006.   Assessment   of   Glacial   Area  and  Volume  Change  in  Tien  Shan  (Central  Asia)  During  the  Last  150  years  Using  Geodetic,  Aerial  Photo,  ASTER  and  SRTM  Data.  Ann.  Glac.,  V.43,  pp.  202-­‐213.  

Aizen  V.  B.,  E.  M.  Aizen,   J.  Melack  and  J.  Dozier,  1997.  Climate  and  Hydrologic  Changes  in  the  Tien  Shan,  Central  Asia.  J.  Climate,  10,  6,  1393-­‐1404.    

Aizen,  V.B.,  E.M.  Aizen,  1998.  Estimation  of  glacial  runoff  to  the  Tarim  River,  Central  Tien  Shan.  Proceedings  of   International  Symposium  "WaterHead'98",  Merano,   ITALY,   IAHS  Publ.,  No  248,  pp.191-­‐199.  

Bradley,   R.S.,   K.R.   Briffa,   J.   Cole,  M.K.   Hughes   and   T.J.   Osborn.   2003.   The   climate   of   the   last  millennium.   In:   Alverson,   K.,   R.S.   Bradley   and   T.F.   Pedersen   (eds.)   Paleoclimate,   Global  Change  and  the  Future.  Springer,  Verlag,  Berlin,  105-­‐141.  

Bradley,  R.  2000.  1000  Years  of  Climate  Change,  Science  288:1353-­‐1354.  Brunsdon,   C.,   J.  McClatchey,   and  D.J.   Unwin,   2001.   Spatial   variations   in   the   average   rainfall-­‐

altitude   relationship   in   Great   Britain:   an   approach   using   geographically   weighted  regression.  International  Journal  of  Climatology  21  (4),  pp.455-­‐466.  

Claussen,   M.,   C.   Kubatzki,   V.   Brovkin,   A.   Ganopolski,   P.   Hoelzmann,   and   H.-­‐J.   Pachur.   1999.    Simulation   of   an   abrupt   change   in   Saharan   vegetation   in   the   mid-­‐Holocene.   Geoph.   Res.  Lett.,  26(14),  2037-­‐2040.  

Davis,  M.E..,  L.G.  Thompson,  T.Yao  and  N.  Wang.  2005.  Forcing  of   the  Asian  monsoon  on   the  Tibetan   Plateau:   eveidence   from   high-­‐resolution   ice   core   and   tropical   coral   records.   J.  Gephys.  Res.,  110  (D4),  D04101,  (10.1029/2004)D004933.)  

Dikih,  A.  N.,  1993:  Glacial  runoff  of  Tien  Shan  rivers  and  its  role  in  formation  of  total  runoff  J.  Data  Glaciol.    Studies,  78,  pp.  5–43  (Russ).  

Page 7: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

7    

Froehlich,   K.,   J.J.   Gibson   and   P.   Aggarwal.   2002.   Deuterium   excess   in   precipitation   and   its  climatological   significance.   In   Study   of   environmental   changes   using   isotope   techniques.  Vienna,  International  Atomic  Energy  Agency,  C&S  Papers  Series  13/P,  54–65.    

Fotheringham,   S.,  M.   Charlton,   and  C.   Brunsdon,   2002.   Geographically  Weighted  Regression:  The  Analysis  of  Spatially  Varying  Relationships  Wiley,  282  p.  

Gillespie,  A.R.,  R.M.  Burke,  and  A.  Bayasgalan.  2001.    Neoglaciation  in  Central  Asia.    Geological  Society  of  America,  Abstracts  with  Program,  33  (6),  442.  

Haeberli,   W.,   1990.   Glacier   and   permafrost   signals   of   20th-­‐century   warming.   Annals   of  Glaciology,  14,  pp.  99-­‐101.  

Hofierka  J.,  Parajka  J.,  Mitasova  H.,  Mitas  L.,  2002.  Modeling  impact  of  terrain  on  precipitation  using  3-­‐D  spatial  interpolation.  Transactions  in  GIS,  135-­‐150.  

Kääb,  A.,  E.    Berthier,  C.  Nuth,  J.  Gardelle,  Y.Arnaud.  2012.  Contrasting  patters  of  early  twenty-­‐first-­‐century  glacier  mass  change  in  the  Himalayas.  Nature.  23  August  2012.  Vol  488,  issue  7412,  pages  495-­‐498,  doi:10.1038/nature11324.  

Kadota   T.,   K.   Fujita,   K.   Seko,   R.B.   Kayastha,   Y.   Ageta.   1997.   Monitoring   and   prediction   of  shrinkage  of  a  small  glacier  in  the  Nepal  Himalaya.  Ann.  Glaciol.,  24,  90-­‐94.  

Khlopenkov,   K.V.,   Trishchenko,   A.P.,   2007.   SPARC:   New   Cloud,   Snow,   and   Cloud   Shadow  Detection   Scheme   for  Historical   1-­‐km  AVHHR  Data   over  Canada.   Journal   of  Atmospheric  and  Oceanic  Technology  24,  322-­‐343.  

Krenke,   A.,   1998.   Former   Soviet   Union   hydrological   snow   surveys,   1966-­‐1996,   Edited   by  NSIDC  [WWW  Document].  URL  http://nsidc.org/data/g01170.html  

Kropacek,  J.,  Neckel,  N.  2012.  Towards  a   robust  method   for  estimation  of  volume  changes  of  Mountain  glaciers  from  ICESat  data.  EGU  General  Assembly  2012,  held  22-­‐27  April,  2012  in  Vienna,  Austria.,  p.2849.  

Latifovic,  R.,  Trishchenko,  A.P.,  Chen,  J.,  Park,  W.B.,  Khlopenkov,  K.V.,  Fernandes,  R.,  Pouliot,  D.,  Ungureanu,  C.,  Luo,  Y.,  Wang,  S.,  others,  2005.  Generating  historical  AVHRR  1  km  baseline  satellite  data  records  over  Canada  suitable  for  climate  change  studies.  Canadian  Journal  of  Remote  Sensing  31,  324–346.  

Lambrecht,   A.,   C.  Mayer,   V.   Aizen,   D.   Floricioiu,   A.   Surazakov.   The   Fedchenko   glacier   in   the  Pamir  during  eight  decades.  Journal  of  Glaciology  (2013,  in  review).  

Mayewski,  P.A.,  L.D.  Meeker,  M.S.  Twickler,  S.I.  Whitlow,  Q.  Yang,  W.B.  Lyons,  M.  Prentice.  1997.  Major   features  and   forcing  of  high-­‐latitude  northern  hemisphere  atmospheric   circulation  using  a  110,000-­‐year-­‐long  glaciochemical  series.  J.  Geoph.  Res.  102:  26345-­‐26366.    

Jenk  TM,  S.  Szidat,  M.  Schwikowski,  H.W.Gäggeler,  S.  Brütsch,  L.  Wacker,  H.A.Synal,  M.Saurer,  2006.   Radiocarbon   analysis   in   an   Alpine   ice   core:   record   of   anthropogenic   and   biogenic  contributions   to   carbonaceous   aerosols   in   the   past   (1650-­‐1940).   Atmos   Chem   Phys  6:5381-­‐90.  

Jouzel,   J.,   C.   Waelbroeck,   B.   Malaize,   M.   Bender,   J.R.   Petit,   M.   Stievenard,   N.I.   Barkov,   J.M.  Barnola,  T.  King,  V.  M.  Kotlyakov,  V.  Lipenkov,  C.  Lorius,  D.Raynaud,  C.  Ritz,  and  T  .  Sowers.  1996.   Climatic   interpretation   of   the   recently   extended   Vostok   ice   records.   Climate  Dynamics  12,  513–21.  

Kaspari.  S.,R.  L..Hooke,  P.A.Mayewski,  S.Kang,  S.Hou  and  D.  Qin.2007.  Snow  accumulation  rate  on   Qomolangma   (Mount   Everest),   Himalaya:   synchroneity   with   sites   across   the   Tibetan  Plateau  on  50-­‐100  year  timescales.  J.  Glaciol.,  54,  (185).  343-­‐353.  

Li  B,  Zhu  A-­‐X,  Zhang  Y,  Pei  T,  Qin  C.,  Zhou  C.,  2006.  Glacier  change  over  the  past  four  decades  in  the  middle  Chinese  Tien  Shan.    J.  Glaciol.  52/178.  

Page 8: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

8    

Liu   Chaohai,   Xie   Zichu,   Liu   Shiyin,   2002.   Study   on   the   glaciers   variation   and   its   runoff  responses   in  the  arid  region  of  Northwest  China.  Science   in  China  (Series  D),  42  (suppl.),  pp.  55-­‐62.  

Niederer,  P.,  V.  Bilenko,  N.  Ershova,  H.  Hurni,  S.  Yerokhin,  and  D.  Maselli,  2008.  Tracing  glacier  wastage   in   the   Northern   Tien   Shan   (Kyrgyzstan/Central   Asia)   over   the   last   40  years.  Climatic  Change  86  (1):227-­‐234.    

Nikitin,  S.A.  2009.  Zakonomernosti  respredeleniya  lednikovyh  ldov  v  Russkom  Altae,  ocenka  ih  zapasov  i  dinamiki  (Pattern  of  distribution  of  ice  in  the  Russian  Altai  glaciers,  evaluation  of  its  resources  and  dynamics).  Materialy  Glaciol.Issledovanii  (Data  of  Glaciological  Studies),  V.  107,  87-­‐96  (Russ).  

Paul,  F.  and  L.M.  Andreassen,  2009.  A  new  glacier  inventory  for  the  Svartisen  region,  Norway,  from  Landsat  ETM+  data:  challenges  and  change  assessment.  J.  Glaciol.,  55(192),  607–618.  

Raymond,  CF.1983.  Deformation  in  the  vicinity  of  ice  divides    J.  Glaciol.,  29  (103),  357-­‐373.  Savelieva,  N.   I.,   I.   P.   Semiletov,   L.   N.   Vasilevskaya,   and   S.   P.   Pugach.   2000.   A   climate   shift   in  

seasonal  values  of  meteorological  and  hydrological  parameters  for  northeastern  Asia,  Prog.  Oceanogr.,  47(2–4),  279–297.  

Schetinnikov,  A.S.  1998.  Morfologiya  i  regime  lednikov  Pamiro-­‐Alaya  (Morphology  and  regime  of  the  Pamir-­‐Alai  glaciers).  CANIGMI  Publisher,  Tashkent,  p.219.  

Schultc,  V.L.,  1965.  Book:  Riki  Srednei  Azii  (The  Rivers  of  Central  Asia).  Hydrometeo  Publisher,  Leningrad,  691p.  (Russ).  

Sigl  M,  Jenk  TM,  Kellerhals  T,  Szidat  S,  Gäggeler  HW,  Wacker  L,  Synal  HA,  Boutron  C,  Barbante  C,   Gabrieli   J,   Schwikowski   M.   2009.   Towards   radiocarbon   dating   of   ice   cores.   J   Glaciol  55(194):985-­‐96.  

Shahgedanova,   M.   G.   Nosenko,   T.   Khromova,   A.   Muraveyev.   2010.   Glacier   shrinkage   and  climatic   change   in   the   Russian   Altai   from   the   mid-­‐   20th   century:   An   assessment   using  remote   sensing   and   PRECIS   regional   climate   model.   J.   Geophysical   Research,   V.   115,  D16107,  doi:10.1029/2009JD012976  

Shi,  Yafeng,  Yongping  Shen,  Ersi  Kang,  Dongliang  Li,  Yongjian  Ding,  Guowei  Zhang  and  Ruji  Hu  2007.   Recent   and   Future   Climate   Change   in   Northwest   China.   Climatic   Change,   Vol.   80,  Numbers  3-­‐4,  pp.  379-­‐393.  

Surazakov,  A.B.,  V.  B.  Aizen,  2010.  Positional  accuracy  evaluation  of  declassified  Hexagon  KH-­‐9  mapping   camera   imagery.   Photogrammetric   Engineering  &  Remote   Sensing,   Vol.76,   N   5,  pp.603-­‐608.  

Surazakov,   A.B.,   V.   B.   Aizen,   S.A.Nikitin.  2007.   Glacier   Area   and  River   Runoff   Changes   in   the  Head   of   Ob   River   Basins   During   the   Last   50   Years.   Environmental   Research   Letters,  http://dx.doi.org/10.1088/1748-­‐9326/2/4/045017.  

Surazakov,  A.B.,  Aizen  V.B.  2006.  Surazakov,  A.B.,  V.B.  Aizen.  2006.  Estimating  Volume  Change  of  Mountain  Glaciers  Using  SRTM  and  Map-­‐Based  Topographic  Data:  IEEE,  Transaction  of  Geoscience  and  Remote  Sensing,  V.  44,  №.  10,  October  2006.  

Takeuchi,  N.,  K.   Fujita,  V.  B.  Aizen,  C.  Narama,  Y.  Yokoyama,   S.  Okamoto,  K.  Naoki,   J.  Kubota.  2012.  The  disappearance  of  glaciers  in  Central  Asia  at  the  end  of  Pleistocene  revealed  by  an  ice  core  drilled  in  the  Tien  Shan  Mountains.  Earth  and  Planetary  Science  (2013  in  review)  

Taylor,   K.C.,   P.   A.   Mayewski,   R.B.   Alley,   E.J.   Brook,   A.J.   Gow,   P.M.   Grootes,   D.A.   Meese,   E.S.  Saltzman,  J.P.  Severinghaus,  M.S.  Twickler,  J.W.C.  White,  S.  Whitlow,  G.A.  Zielinski.  1997.  The  Holocene-­‐Younger   Dryas   Transition   Recorded   at   Summit,   Greenland.   Science,   278:   825-­‐827.  

Page 9: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

9    

Thompson   L.G,   E.   Mosley-­‐Thompson,   M.E.   Davis,   P.N.   Lin,   K.A.   Henderson,   J.   Cole-­‐Dai,   J.F.  Bolzan,   K.B.   Liu.   1995.   Late   Glacial   Stage   and   Holocene   tropical   ice   core   records   from  Huascara´n,  Peru.  Science  269:  47–50.  

Thompson,  L.G.,  E.  Mosley-­‐Thompson,  M.E.  Davis,  J.F.  ,  Bolzan,  T.Yao,  N.  Gundestrup,  X.  Wu,  L.  Klein,   and   Z.   Xie.   1989.   100,000   year   climate   record   from   Qinghai-­‐Tibetan   Plateau   ice  cores.  Science,  246(4929),  474-­‐477.    

Thompson,  L.G.,  T.  Yao,  E.  Mosley-­‐Thompson,  M.E.  Davis,  K.A.  Henderson,  and  P.N.  Lin.  2000.    A  high-­‐resolution  millennial   record  of   the  south  Asian  monsoon   from  Himalayan   ice  cores.  Science  ,  289  (5486):  1916-­‐1919.  

Yao,  T.  and  M.Yang.  2004.  Climatic  changes  over   the   last  400  years  recorded   in   ice  collected  from  the  Guliya  Ice  Cap,  Tibetan  Plateau.  In  Cecil,  L.D.,  J.R.  Green  and  L.G.  Thompson,  eds.  Earth  paleoenvironments:  records  preserved  in  mid  and  low-­‐  latitude  glaciers.  Dordecht,  Kluwer,  163-­‐180.  

Zemp,  M.,  W.Haeberli,  M.Hoelzle,  F.  Paul,  2006.  Alpine  glaciers   to  disappear  within  decades?  Geophysical  Research  Letters,  Vol.  33,  l13504,  doi:10.1029/2006gl026319.  

Zhou,  H.,  Aizen,  V.  B.,  Aizen,  E.  M.,  Deriving  long  term  snow  cover  extent  dataset  from  AVHRR  and  MODIS  data:  central  Asia  case  study,  Remote  Sensing  of  Environment  (2013,  accepted)  

   Table  1.  Recent  publications  on  Central  Asia  climate,  glaciers  and  hydrological  changes.    (a)    

Region,  area   n   Peri

od  Resolut.  

Technique  

Temperature  

Precipitation                                    Others  

(1)   Tien  Shan  200to   >  4000  m    

110  

1940-­‐1991  

month  

Thiessen  polygon  spatial  averaging  

+0.01C  /yr  

+1.2  mm/yr  <  2000m  

Max   snow  thickness,  duration:-­‐10cm,-­‐9  day/50yrs  

(2)  CA  35-­‐50N  75-­‐120E  

32  

1951-­‐1990  

summer  month    

REOFA    SE   Mongolia   &   N  China   negative  trend  

North   TS  summer   precip  shows   decadal  scale  oscillation  

(3)  Tajikistan  800-­‐4160  m  

4  

1930-­‐1991  

year    

valleys:+2.2°C/60yrs;    HE:  +0.4°C/60  yrs    

 <1000   m:   +0.25  mm/yr      >2000   m:  +5.37mm/yr  

 

(4)  CA  -­‐25   to  848  m  37  to  50N  50  to  85E  

26  

1891-­‐1991  

year  

Multi-­‐regression;   spatial  extrapolation  

Steady  positive  trend  

Less   steady  positive  trend    

(5)   68-­‐3614  m  39.73-­‐

21  1879  200

year   Regression,  DFA    

+   0.027  C  yr-­‐1    

Warming   did  not   occurring  steadily.   Three  

Page 10: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

10    

45.77N  62.12-­‐78.4  E  

1   thrusts   were    identified   :  beginning  30th  ;  50th  70th  

(6)   north  China   9  

1979–1999  

month       Negative  trend  

Droughts   for   3  summers  (1997-­‐99)    

 (b)  Region   Perio

d  Initial  area,  km2  

Data,  map/image  geo-­‐referencing  error,  method  of  glacier  delineation  for  the  First  (F),  Second  (S)  and  Third  (T)  inventories  

Area  change,  km2  (%)  

(7)  Akshiirak  

1943-­‐1977   424.7  

F,  S:  1:10,000  topographic  maps  compiled  from  aerial  photography;  horizontal  errors  <  2.5  m;  manual  digitizing  with  stereo  interpretation  of  the  aerial  photographs.  

-­‐17.95  (-­‐4.2)  

(8)  Akshiirak  

1977-­‐2001   406.8  

F:  1:50,000  map  (Kuzmichenok,  1990);  manual  digitizing  of  the  scanned  map.  S:    ASTER  image;  georeferencing  errors  were  not  reported;  manual  digitizing.  

-­‐93.6  (-­‐23)  

(9)  Akshiirak  

1977-­‐2003   406.8  

F:  original  glacier  boundaries  from  Kuzmichenok  (1990)  S:  ASTER  image;  image  orthorectification  error  9  m;  manual  digitizing  with  stereo  interpretation  of  the  3N  and  3B  bands.  

-­‐35.15  (-­‐8.6)  

(10)  Zailiyskiy  Alatau  

1955-­‐1990   287.3  

F:  Glacier  boundaries  were  transferred  from  aerial  photographs  to  1:25,000  map;  errors  of  area  estimation  5-­‐7%.  S:  Aerial  photographs,  same  methods  as  above;  errors  of  area  estimation  2-­‐3%.  

81.8  (-­‐29)  

(11)  Zailiyskiy  Alatau  (6  valleys)  

1979-­‐1999  

198.37  

F:  1:100,000  topographic  maps;  nominal  accuracy  20  m;  manual  digitizing  S:  Landsat  ETM;  errors  of  area  estimation  2-­‐3%;  multispectral  classification  and  manual  editing.  

-­‐34.2  (-­‐17.3)  

(12)  Sokoluk  R.  basin,  Kirgizkiy  range  

1963-­‐1986   31.7  

F:  1:25,000  topographic  maps;  nominal  accuracy  5  m;  manual  digitizing.  S:  KFA1000  space  photograph;  orthorectification  error  15  m;  manual  digitizing.  

-­‐4.2  (-­‐13.3)  

1986-­‐2000   27.5   T:  Landsat  ETM+;  orthorectification  error  10  

m;  4/5  band  ratio  for  glacier  classification.   -­‐4.7  (-­‐17.1)  

(13)  Glacier  No.  1,  Urumqi  

1962-­‐2003   1.94  

F,S:  topographic  maps  1962,  1964,  1986,  1992,  1994,  2000  and  2001;  errors  were  not  reported;  manual  digitizing.   -­‐0.24  (-­‐12.4)  

(14)  Terskey-­‐

1971-­‐2002   245   F:  Corona  (1.8  m  resolution);  

orthorectification  error  30.0  m;  manual   -­‐18  (-­‐8)  

Page 11: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

11    

Alatoo   digitizing.  S:  Landsat  ETM+;  orthorectification  error  25.7  m;  multispectral  classification.  

(15)  Aksu  R.  basin  

1963-­‐1999   1760   F:  Topographic  maps  of  1:100,000  scale;  

manual  digitizing.  S:  Landsat  TM  and  ETM;  manual  digitizing.  Linear  error  of  glacier  boundary  change  90  m.  Only  the  glaciers  with  length  change  >90m  were  included  in  the  study.  

-­‐58.6  (-­‐3.3)  

(15)  Kaidu  R.  basin  

1963-­‐2000   333   -­‐38.5  (-­‐11.6)  

(16)  Southern  Chinese  Tien  Shan  

1960s-­‐  

1999  

2093.8  

F:  Aerial  photographs  and  S:  Landsat  TM  images.  Linear  error  of  glacier  boundary  change  90  m.  Only  the  glaciers  with  length  change  >90m  were  included  in  the  study.  

-­‐96.3  (-­‐4.6)  

 (1) Aizen   et   al.,   1997;   (2)   Yatagai   and  Yasunari,   1994;   (3)   Finaev,   2005;     (4)   Konovalov,  

2003;  (5)  Giese  et  al.,  2007;  (6)  Xu,  2001;  (7)  Kuzmichenok,  1990;  (8)  Khromova  et  al.,  2003;   (9)   Aizen,   et   al.,   2007;   (10)   Vilesov   and   Uvarov,   2001;   (11)   Bolch,   2007;   (12)  Niederer  et  al.,  2008;  (13)  Ye  et  al.,  2005;  (14)  Narama  et  al.,  2006;  (15)  Liu  et  al.,  2002;  (16)  Ding  et  al.,  2006.    

                           Figures    Fig.  1.  The  Central  Asia  study  area    

Page 12: Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia

12