vortex solutions in the extended skyrme faddeev model in collaboration with luiz agostinho ferreira,...

23
VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha JΓ€ykkΓ€ (Nordita) Kouichi Toda (TPU) NOBUYUKI SAWADO Tokyo University of Science, Japan [email protected] arXiv:0908.3672 , arXiv:1112.1085, arXiv:1209.6452, arXiv:1210.7523 At Miami 2012: A topical conference on elementary particles, astrophysics, and cosmology, 13-20 December, Fort Lauderdale, Florida 19 December, 2012

Upload: emma-hoover

Post on 18-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL

In collaboration with γ€€γ€€ Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) γ€€γ€€γ€€ Juha JΓ€ykkΓ€ (Nordita) Kouichi Toda (TPU)

NOBUYUKI SAWADOTokyo University of Science, Japan

[email protected]

γ€€γ€€γ€€ arXiv:0908.3672 , arXiv:1112.1085, arXiv:1209.6452, arXiv:1210.7523

At Miami 2012: A topical conference on elementary particles, astrophysics, and cosmology,

13-20 December, Fort Lauderdale, Florida

19 December, 2012

Page 2: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Objects of Yang-Mills theory

β„’=𝛼 (πœ•πœ‡β‘οΏ½βƒ—οΏ½)2+𝛽 (πœ•πœ‡

β‘οΏ½βƒ—οΏ½Γ—πœ•πœˆβ‘οΏ½βƒ—οΏ½)2+𝛾(πœ•πœ‡

❑�⃗�)4

(i) Gauge + Higgs composite models

Abelian vortex (in U(1))

γ€€γ€€γ€€ Abrikosov vortex, graphene, cosmic string, Brane world,

etc.

β€˜tHooft Polyakov monopole

γ€€γ€€γ€€γ€€γ€€γ€€ GUT, Nucleon catalysis (Callan-Rubakov effect),

etc.

The Skyrme-Faddeev Hopfions, vortices Glueball?, Abrikosov vortex?, Branes?

(ii) Pure Yang-Mills theory

Instantons

In the Cho-Faddeev-Niemi-Shabanov decomposition

Monopole loop

Condensates in a dual superconductivity γ€€γ€€γ€€γ€€ Confinement

N.Fukui,et.al.,PRD86(2012)065020,``Magnetic monopole loops generated from two-instanton solutions: Jackiw-Nohl-Rebbi versus 't Hooft instanton”

Page 3: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Exotic structures of the vortex……

M.N.Chernodub and A..S. Nedelin, PRD81,125022(2010)``Pipelike current-carrying vortices in two-component condensates’’

P.J.Pereira,L.F.Chibotaru, V.V.Moshchalkov, PRB84,144504 (2011)``Vortex matter in mesoscopic two-gap superconductor square’’

Semi-local strings The Ginzburg-Landau equation

Page 4: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Summary

We got the integrable and also the numerical solutions of the vortices in the extended Skyrme Faddeev Model.

A special form of potential is introduced in order to stabilize and to obtian the integrable vortex solutions.

We begin with the basic formulation.

Page 5: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Cho-Faddeev-Niemi-Shabanov (CFNS) decomposition

electric magnetic remaining terms

22 1 1

3Γ—4 ― 6 = 6Degrees of freedom

6

L.D. Faddeev, A.J. Niemi, Phy.Rev.Lett.82 (1999) 1624,``Partially dual variables in SU(2) Yang-Mills theory”

t = ln k/ L ``renormalization group time’’

H. Gies, Phys. Rev. D63, 125023 (2001),``Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi-Shabanov decomposition

The Gies lagrangian

``Magnetic symmetry’’

Page 6: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Lagrangian (in Minkowski space)

Sterographic project

Static hamiltonian

Positive definite for

The integrability: the analytical vortex solutions

The equation of the vortex

Page 7: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

The zero curvature condition πœ•πœ‡π‘’πœ•πœ‡π‘’=0

𝛽𝑒2=1 πœ•πœ‡πœ•πœ‡π‘’=0The equation becomes

or

or )(

𝑒=𝑣 (𝑧 )𝑀 (𝑦 )=𝑧𝑛𝑒𝑖𝑦𝑧=π‘₯1+ π‘–πœ–1π‘₯2 , 𝑦=π‘₯3βˆ’πœ–2π‘₯

0

ΒΏ (πœŒπ‘Ž )𝑛

𝑒𝑖 [πœ–1π‘›πœ‘+π‘˜ (π‘₯3+πœ–2 π‘₯0)]

Traveling wave vortex

The vortex solution in the integrable sectorL.A.Ferreira, JHEP05(2009)001,``Exact vortex solutions in an extended Skyrme-Faddeev model” O.Alvarez,LAF,et.al,PPB529(1998)689,``A new approach to integrable theories in any dimension”

One gets the infinite number of conserved quantity

Additional constraint

Page 8: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

(0)

The equation

The solution has of the form:

We have no solutions for

𝑒 (𝒓 , 𝑑 )=√ 1βˆ’π‘” (𝑦 )𝑔 (𝑦 )𝑒𝑖(π‘›πœ‘+πœ†π‘§+π‘˜πœ )

π‘₯πœ‡=π‘Ÿ 0(𝜏 ,𝜌 cosπœ‘ ,𝜌 sinπœ‘ , 𝑧)

Vortex solutions in

Ansatz

Page 9: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

= 0

and for

for

Derrick’s scaling argument G.H.Derrick, J.Math.Phys.5,1252 (1964),``Comments on nonlinear wave equations as models for elementary particles’’

Scaling:

Consider a model of scalar field:

We need to introduce form of a potential to stabilize the solution.

Page 10: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

The baby-skyrmion potential

Plug into the equation it is written as

and

Assume the zero curvature condition

0=( 𝛽𝑒2βˆ’1 ) 4𝑛3

π‘Ž4 {1+( πœŒπ‘Ž )2𝑛}

βˆ’ 3

[ (π‘›βˆ’1 )( πœŒπ‘Ž )2π‘›βˆ’4

βˆ’(𝑛+1)( πœŒπ‘Ž )4π‘›βˆ’4 ]

+2π‘Ÿ02πœ‡2

𝑀 2 {1+(πœŒπ‘Ž )2𝑁}

βˆ’3

[(2+ 2𝑁 )( πœŒπ‘Ž )4π‘βˆ’ 4

βˆ’(2βˆ’ 2𝑁 )( πœŒπ‘Ž )

2𝑁 βˆ’4 ]

with the potential: we assume

𝑒 (𝜌 ,πœ‘ ,𝑧 ,𝑑 )=(πœŒπ‘Ž )𝑛

𝑒𝑖 [πœ–π‘›πœ‘+π‘˜ (𝑧+𝜏)]

𝑉 𝛼𝛽=πœ‡2

2(1+𝑛3❑)𝛼(1βˆ’π‘›3❑)𝛾𝛼 β‰₯0𝛾>0

Page 11: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Analytical solutions for n = 1, 2

π‘Ž=|𝑛|4βˆšπ‘€2(𝛽𝑒2βˆ’1)π‘Ÿ 0

2πœ‡2 and

𝑛=1 ,π‘˜2=0.0 ,π‘Ÿ 0

2πœ‡2

𝑀 2 =1.0 𝑛=2 ,π‘˜2=0.0 ,π‘Ÿ02πœ‡2

𝑀 2 =1.0

Page 12: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

The energy per unit length of the traveling wave vortex with

The static energy per unit of length of the vortex with

The energy of the static/traveling wave vortex

πΈπ‘ π‘‘π‘Žπ‘‘π‘–π‘=2πœ‹+4 πœ‹31

π‘Ž2(𝛽𝑒2βˆ’1)

Page 13: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

The infinite number of conserved current

π½πœ‡β‰”π›ΏπΊπ›Ώπ‘’βˆ—π’¦πœ‡βˆ’

𝛿𝐺𝛿𝑒

π’¦πœ‡βˆ— h𝑀 π‘’π‘Ÿπ‘’πΊβ‰”πΊ (|𝑒|2 )

¿𝛿𝐺𝛿𝑒

ΒΏ

Thus the current is always conserved:

And the equation of motion is written as

πœ•πœ‡π’¦πœ‡βˆ’2π‘’βˆ— (1+|𝑒|2 )π’¦πœ‡πœ•

πœ‡π‘’=βˆ’ πœ‡2

4ΒΏΒΏ

The zero curvature condition π’¦πœ‡πœ•πœ‡π‘’=π’¦βˆ—

πœ‡πœ•πœ‡π‘’βˆ—=0 ,π’¦βˆ—

πœ‡πœ•πœ‡π‘’=π’¦πœ‡πœ•

πœ‡π‘’βˆ—

Page 14: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

𝐽𝜌=0The transverse spatial structure of the polar component and the longitudinal component are a pipelike structure.

The charge per unit length:

𝑄=βˆ«π‘‘π‘₯1𝑑π‘₯2 𝐽 0=βˆ’8πœ‹ 𝑀 2π‘˜π‘Ž2π‘Ÿ0 [𝑛6 1π‘Ž2 ( 𝛽𝑒2βˆ’1 )+ 1𝑛Γ (1+

1𝑛)Ξ“ (1βˆ’

1𝑛)]

For

we get Noether current with

π½πœ‡=βˆ’4 𝑖𝑀2 π‘’πœ•πœ‡π‘’

βˆ—βˆ’π‘’βˆ— πœ•πœ‡π‘’

(1+|𝑒|2 )2βˆ’ 𝑖 8𝑒2

(𝛽𝑒2βˆ’1)2(πœ•πœˆπ‘’πœ•

πœˆπ‘’βˆ—)(πœ•πœ‡π‘’βˆ—π‘’βˆ’π‘’βˆ—πœ•πœ‡π‘’)

ΒΏΒΏΒΏ

The components:

Page 15: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Broken axisymmetry of the solution

The energy density plot of for old-, and new-baby potentials

Old baby skyrmion potential

New baby skyrmion potential

γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€ (old) γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€γ€€ newNonsymmetric: old

For the potential , the holomorphic solutions appear as a ground state!

Symmetric:

The baby-skyrmion exhibits a non-axisymmetric solution depending on a choice of potential I.Hen et. al, Nonlinearity 21 (2008) 399

Page 16: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

A sequence of the energy density plots of for the several for

the old-potential

𝛽 𝑒2=1.01 𝛽 𝑒2=1.1 𝛽 𝑒2=2.0 𝛽 𝑒2=20.0

A repulsive force between the core of the vortices might appear

It might be similar with the force between the Abrikosov vortex.Erick J.Weinberg, PRD19,3008 (1979),``Multivortex solutions of the Ginzburg-Landau equations”

The vortex matter/lattice structure is observed.

Page 17: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

SummaryWe got the integrable and the numerical solutions of the vortices in the extended Skyrme Faddeev Model.

A special form of potential is introduced in order to stabilize and toobtain the integrable vortex solutions.

OutlookWhat it the origin of the potential?How can I observe our solutions in Physics? For SC, we may introduce an external magnetic field

and see the structure change for the field. Geometrical patterns appear?

Our integrable solution thus carries an infinite number of conserved quantity.

The model (two gap model) hides a SU(2) structure even if it describes the U(1) like observation such as SC.

Page 18: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Thank you !Tanzan Jinja shrine,Japan, 16 Nov.,2012

Lago Mar Resort, USA, 17 Dec.,2012

Page 19: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha
Page 20: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

The Skyrme-Faddeev modelL.Faddeev, A.Niemi, Nature (London) 387, 58 (1997),``Knots and particles’’

R.A.Battye, P.M.Sutcliffe, Phys.Rev.Lett.81,4798(1998)

Lagrangian

Static hamiltonian

Positive definite for

Page 21: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

Boundary conditions

Coordinates:

Hopfions(closed vortex)

Hopf charge

L.A.Ferreira, NS, et.al., JHEP11(2009)124, ``Static Hopfions in the extended Skyrme-Faddeev model”

Axially symmetric ansatz

Non-axisymmetric case:D.Foster, arXiv:1210.0926

Page 22: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

(m, n) = (1, 1) (1, 2) (2, 1)

(m, n) = (1, 3)

(m, n) = (1, 4) (2, 2) (4, 1)

Hopf charge density

(3, 1)

Page 23: VORTEX SOLUTIONS IN THE EXTENDED SKYRME FADDEEV MODEL In collaboration with Luiz Agostinho Ferreira, Pawel Klimas (IFSC/USP) Masahiro Hayasaka (TUS) Juha

corresponds to the zero curvature condition

Dimensionless energy, Integrability

The solution is close to the Integrable sector, but not exact.

𝛽𝑒2