vsds manual-abb

446
ACS800 Hardware Manual ACS800-04 Drive Modules (0.55 to 160 kW) ACS800-U4 Drive Modules (0.75 to 200 HP)

Upload: founhead

Post on 02-Apr-2015

880 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: VSDS Manual-ABB

ACS800

Hardware ManualACS800-04 Drive Modules (0.55 to 160 kW)ACS800-U4 Drive Modules (0.75 to 200 HP)

Page 2: VSDS Manual-ABB

ACS800 Single Drive Manuals

HARDWARE MANUALS (appropriate manual is included in the delivery)

ACS800-01/U1 Hardware Manual 0.55 to 160 kW (0.75 to 200 HP) 3AFE64382101 (English)ACS800-01/U1/04 Marine Supplement 0.55 to 160 kW (0.75 to 200 HP) 3AFE64291275 (English)ACS800-11/U11 Hardware Manual 5.5 to 110 kW (7.5 to 125 HP) 3AFE68367883 (English)ACS800-31/U31 Hardware Manual 5.5 to110 kW (7.5 to 125 HP) 3AFE68599954 (English)ACS800-02/U2 Hardware Manual 90 to 500 kW (125 to 600 HP) 3AFE64567373 (English)ACS800-04/U4 Hardware Manual 0.55 to 160 kW (0.75 to 200 HP)3AFE68372984 (English)ACS800-04/04M/U4 Hardware Manual 45 to 560 kW (60 to 600 HP) 3AFE64671006 (English)ACS800-04/04M/U4 Cabinet Installation 45 to 560 kW (60 to 600 HP) 3AFE68360323 (English)ACS800-07/U7 Hardware Manual 45 to 560 kW (50 to 600 HP) 3AFE64702165 (English)ACS800-07/U7 Dimensional Drawings 45 to 560 kW (50 to 600 HP) 3AFE64775421 ACS800-07 Hardware Manual 500 to 2800 kW3AFE64731165 (English)ACS800-17 Hardware Manual 55 to 2500 kW (75 to 2800 HP)3AFE68397260 (English) ACS800-37 Hardware Manual 55 to 2700 kW (75 to 3000 HP)3AFE68557925 (English)

� Safety instructions� Electrical installation planning� Mechanical and electrical installation� Motor control and I/O board (RMIO)� Maintenance� Technical data� Dimensional drawings� Resistor braking

FIRMWARE MANUALS, SUPPLEMENTS AND GUIDES (appropriate documents are included in the delivery)

Standard Control Program Firmware Manual 3AFE64527592 (English)System Control Program Firmware Manual 3AFE64670646 (English)Control Program Template Firmware Manual 3AFE64616340 (English)Master/Follower 3AFE64590430 (English)Pump Control Program Firmware Manual 3AFE68478952 (English)Extruder Control Program Supplement 3AFE64648543 (English)Centrifuge Control Program Supplement 3AFE64667246 (English)Traverse Control Program Supplement 3AFE64618334 (English)Crane Control Program Firmware Manual 3BSE11179 (English)Adaptive Programming Application Guide 3AFE64527274 (English)

OPTION MANUALS (delivered with optional equipment)

Fieldbus Adapters, I/O Extension Modules etc.

Page 3: VSDS Manual-ABB

ACS800-04 Drive Modules0.55 to 160 kW

ACS800-U4 Drive Modules0.75 to 200 HP

Hardware Manual

3AFE68372984 Rev D ENEFFECTIVE: 25.6.2007

© 2007 ABB Oy. All Rights Reserved.

Page 4: VSDS Manual-ABB
Page 5: VSDS Manual-ABB

Safety instructions

5

Safety instructions

What this chapter containsThis chapter contains the safety instructions which you must follow when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, the motor or driven equipment. Read the safety instructions before you work on the unit.

Use of warnings and notesThere are two types of safety instructions throughout this manual: warnings and notes. Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment. They also tell you how to avoid the danger. Notes draw attention to a particular condition or fact, or give information on a subject. The warning symbols are used as follows:

Dangerous voltage warning warns of high voltage which can cause physical injury and/or damage to the equipment.

General warning warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment.

Electrostatic discharge warning warns of electrostatic discharge which can damage the equipment.

Hot surface warning warns of hot surfaces which can cause physical injury.

Page 6: VSDS Manual-ABB

Safety instructions

6

Installation and maintenance workThese warnings are intended for all who work on the drive, motor cable or motor.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Only qualified electricians are allowed to install and maintain the drive.

� Never work on the drive, the motor cable or the motor when main power is applied. After switching off the input power, always wait for 5 min to let the intermediate circuit capacitors discharge before you start working on the drive, the motor or the motor cable.

Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:

1. voltage between drive input phases U1, V1 and W1 and the frame is close to 0 V

2. voltage between terminals UDC+ and UDC- and the frame is close to 0 V.

� Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.

� Do not make any insulation or voltage withstand tests on the drive or drive modules.

� When reconnecting the motor cable, always check that the phase order is correct.

Note:

� The motor cable terminals on the drive are at a dangerously high voltage when the input power is on, regardless of whether the motor is running or not.

� The brake control terminals (UDC+, UDC-, R+ and R- terminals) carry a dangerous DC voltage (over 500 V).

� Depending on the external wiring, dangerous voltages (115 V, 220 V or 230 V) may be present on the terminals of relay outputs RO1 to RO3 or on the optional AGPS board (Prevention of Unexpected Start).

� The Prevention of Unexpected Start function does not remove the voltage from the main and auxiliary circuits.

� At installation sites above 2000 m (6562 ft), the terminals of the RMIO board and optional modules attached to the board do not fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178.

Page 7: VSDS Manual-ABB

Safety instructions

7

Grounding

These instructions are intended for all who are responsible for the grounding of the drive.

WARNING! Ignoring the following instructions can cause physical injury, death, increased electromagnetic interference and equipment malfunction:

� Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and interference.

� Make sure that grounding conductors are adequately sized as required by safety regulations.

� In a multiple-drive installation, connect each drive separately to protective earth (PE).

� In first environment (EU EMC Directive): make a 360° high frequency grounding of the motor cable entry at the cabinet lead-through.

� Do not install a drive with EMC filter option +E202 or +E200 on an ungrounded power system or a high resistance-grounded (over 30 ohms) power system.

Note:

� Power cable shields are suitable for equipment grounding conductors only when adequately sized to meet safety regulations.

� As the normal leakage current of the drive is higher than 3.5 mA AC or 10 mA DC (stated by EN 50178, 5.2.11.1), a fixed protective earth connection is required.

Page 8: VSDS Manual-ABB

Safety instructions

8

Mechanical installation and maintenance

These instructions are intended for all who install and service the drive.

Printed circuit boards

Fibre optic cables

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Handle the unit carefully.

� The drive is heavy. Do not lift it alone. Place the unit only on its back.

� Beware of hot surfaces. Some parts, such as heatsinks of power semiconductors, remain hot for a while after disconnection of the electrical supply.

� Make sure that dust from borings and grindings does not enter the drive when installing. Electrically conductive dust inside the unit may cause damage or malfunctioning.

� Ensure sufficient cooling.

� Do not fasten the drive by riveting or welding.

WARNING! Ignoring the following instructions can cause damage to the printed circuit boards:

� The printed circuit boards contain components sensitive to electrostatic discharge. Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily.

WARNING! Ignoring the following instructions can cause equipment malfunction and damage to the fibre optic cables:

� Handle the fibre optic cables with care. When unplugging optic cables, always grab the connector, not the cable itself. Do not touch the ends of the fibres with bare hands as the fibre is extremely sensitive to dirt. The minimum allowed bend radius is 35 mm (1.4 in.).

Page 9: VSDS Manual-ABB

Safety instructions

9

OperationThese warnings are intended for all who plan the operation of the drive or operate the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the speed provided by connecting the motor directly to the power line.

� Do not activate automatic fault reset functions of the Control Program if dangerous situations can occur. When activated, these functions will reset the drive and resume operation after a fault.

� Do not control the motor with the disconnecting device (means); instead, use the control panel keys and , or commands via the I/O board of the drive. The maximum allowed number of charging cycles of the DC capacitors (i.e. power-ups by applying power) is five in ten minutes.

Note:

� If an external source for start command is selected and it is ON, the drive (with Standard / Motion Control Program) will start immediately after fault reset unless the drive is configured for 3-wire (a pulse) start/stop.

� When the control location is not set to Local (L not shown in the status row of the display), the stop key on the control panel will not stop the drive. To stop the drive using the control panel, press the LOC/REM key and then the stop key .

Page 10: VSDS Manual-ABB

Safety instructions

10

Permanent magnet motorThese are additional warnings concerning permanent magnet motor drives. Ignoring the instructions can cause physical injury or death, or damage to the equipment.

Installation and maintenance work

WARNING! Do not work on the drive when the permanent magnet motor is rotating. Also, when the supply power is switched off and the inverter is stopped, a rotating permanent magnet motor feeds power to the intermediate circuit of the drive and the supply connections become live.

Before installation and maintenance work on the drive:

� Stop the motor.

� Ensure that the motor cannot rotate during work. Prevent the start-up of any drives in the same mechanical group by opening the �prevention of unexpected start� switch and padlocking it. Make sure that no other system, like hydraulic crawling drives, are able to rotate the motor directly or through any mechanical connection like felt, nip, rope, etc.

� Ensure that there is no voltage on the drive power terminals:Alternative 1) Disconnect the motor from the drive with a safety switch or by other means. Measure that there is no voltage present on the drive input or output terminals (U1, V1, W1, U2, V2, W2, UDC+, UDC-).Alternative 2) Measure that there is no voltage present on the drive input or output terminals (U1, V1, W1, U2, V2, W2, UDC+, UDC-). Ground the drive output terminals temporarily by connecting them together as well as to the PE.Alternative 3) If possible, both of the above.

Start-up and operation

WARNING! Do not run the motor over the rated speed. Motor overspeed leads to overvoltage which may damage or explode the capacitors in the intermediate circuit of the drive.

Controlling a permanent magnet motor is only allowed using the ACS800 Permanent Magnet Synchronous Motor Drive Control Program, or other control programs in scalar control mode.

Page 11: VSDS Manual-ABB

Table of contents

11

Table of contents

ACS800 Single Drive Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Safety instructions

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Use of warnings and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Installation and maintenance work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Mechanical installation and maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Fibre optic cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Permanent magnet motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Installation and maintenance work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Start-up and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table of contents

About this manual

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Categorization according to the frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Categorization according to the + code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Installation and commissioning flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ACS800-04/U4

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Type code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Main circuit and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Page 12: VSDS Manual-ABB

Table of contents

12

Planning the cabinet assembly

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27Cabinet construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Disposition of the devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27Grounding of mounting structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Free space around the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Cooling and degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Preventing the recirculation of hot air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30Outside the cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30Inside the cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Cabinet layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31Cabinet heaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Mounting the optional control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Installing the control panel directly on the cabinet door . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Control panel mounting platform kit (RPMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

EMC requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Mechanical installation

Unpacking the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35Delivery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Before installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36Requirements for the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36Installation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37Flange mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Planning the electrical installation

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41Motor selection and compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Protecting the motor insulation and bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42Requirements table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Permanent magnet synchronous motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46Supply connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Disconnecting device (means) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46EEA / Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Main contactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Thermal overload and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47Thermal overload protection of the drive and the input and motor cables . . . . . . . . . . . . . . .47Thermal overload protection of the motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48Protection against short-circuit in the motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48Protection against short-circuit inside the drive or in the supply cable . . . . . . . . . . . . . . . . . .48

Ground fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49Emergency stop devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49Prevention of Unexpected Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Page 13: VSDS Manual-ABB

Table of contents

13

Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Additional US requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Armored cable / shielded power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Power factor compensation capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Equipment connected to the motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Installation of safety switches, contactors, connection boxes, etc. . . . . . . . . . . . . . . . . . . . . 54Bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Before opening a contactor (DTC control mode selected) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Protecting the relay output contacts and attenuating disturbances in case of inductive loads . . . . 55Selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Relay cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Control panel cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Connection of a motor temperature sensor to the drive I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Installation sites above 2000 metres (6562 feet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Electrical installation

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Checking the insulation of the assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Input cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IT (ungrounded) systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Power cable connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Grounding the motor cable shield at the motor end . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Frame sizes R2 to R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Frame size R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Frame size R6: Cable lug installation [16 to 70 mm2 (6 to 2/0 AWG) cables] . . . . . . . 64

Power cable protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Frame size R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Frame size R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Warning sticker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67360 degrees grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

When the outer surface of the shield is covered with non-conductive material . . . . . . 69Connecting the shield wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Cabling of I/O and fieldbus modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Pulse encoder module cabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Installation of optional modules and PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Fibre optic link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Page 14: VSDS Manual-ABB

Table of contents

14

External +24 V power supply for the RMIO board via terminal X34 . . . . . . . . . . . . . . . . . . . . . . . . .71Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71Connecting +24 V external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Prevention of Unexpected Start, AGPS board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Motor control and I/O board (RMIO)

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77Note on terminal labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77Note on external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77External control connections (non-US) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78External control connections (US) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

RMIO board specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Constant voltage output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Auxiliary power output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81DDCS fibre optic link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8124 VDC power input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Installation checklist

Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Maintenance

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85Maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85Heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Fan replacement (R2, R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86Fan replacement (R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87Fan replacement (R5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88Fan replacement (R6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Additional fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89Replacement (R2, R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89Replacement (R4, R5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90Replacement (R6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Page 15: VSDS Manual-ABB

Table of contents

15

Technical data

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91IEC data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Temperature derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Altitude derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Cooling characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Cooling requirements for flange mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Frame sizes R2 to R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Frame sizes R5 and R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97gG fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Ultrarapid (aR) fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Quick guide for selecting between gG and aR fuses . . . . . . . . . . . . . . . . . . . . . . . . . 100

Cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Cable entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Dimensions, weights and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

NEMA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Cable Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Dimensions, weights and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Input power connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Motor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108AGPS-11C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Compliance with the EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Compliance with the EN 61800-3 (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

First environment (drive of category C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Second environment (drive of category C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Second environment (drive of category C4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Page 16: VSDS Manual-ABB

Table of contents

16

�C-tick� marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113Compliance with IEC 61800-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

First environment (drive of category C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113Second environment (drive of category C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114Second environment (drive of category C4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Marine type approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114UL/CSA markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

UL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115Equipment warranty and liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115Product protection in the US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Dimensional drawings

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117Frame size R2 (with optional control panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118Frame size R3 (with optional control panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119Frame size R4 (with optional control panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120Frame size R5 (with optional control panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121Frame size R6 (with optional control panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122Flange mounting kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Flange mounting kit for frame size R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124Flange mounting kit for frame size R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125Flange mounting kit for frame size R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126Flange mounting kit for frame size R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127Flange mounting kit for frame size R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

AGPS board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Resistor braking

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131Availability of brake choppers and resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131How to select the correct drive/chopper/resistor combination . . . . . . . . . . . . . . . . . . . . . . . . . . . .131Optional brake chopper and resistor(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132Resistor installation and wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134Protection of frame sizes R2 to R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135Protection of frame size R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136Brake circuit commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Page 17: VSDS Manual-ABB

About this manual

17

About this manual

What this chapter containsThis chapter describes the intended audience and contents of this manual. It contains a flowchart of steps in checking the delivery, installing and commissioning the drive. The flowchart refers to chapters/sections in this manual and other manuals.

CompatibilityThe manual is compatible with ACS800-04/U4 (frame sizes R2...R6).

Intended audienceThis manual is intended for people who plan the installation, install, commission, use and service the drive. Read the manual before working on the drive. The reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

This manual is written for readers worldwide. Both SI and imperial units are shown. Special US instructions for installations within the United States that must be installed per the National Electrical Code and local codes are marked with (US).

Categorization according to the frame sizeSome instructions, technical data and dimensional drawings which concern only certain frame sizes are marked with the symbol of the frame size R2, R3... or R6. The frame size is not marked on the drive designation label. To identify the frame size of your drive, see the rating tables in chapter Technical data.

Categorization according to the + codeThe instructions, technical data and dimensional drawings which concern only certain optional selections are marked with + codes, e.g. +E202. The options included in the drive can be identified from the + codes visible on the type designation label of the drive. The + code selections are listed in chapter ACS800-04/U4 in section Type code.

Page 18: VSDS Manual-ABB

About this manual

18

ContentsThe chapters of this manual are briefly described below.

Safety instructions give safety instructions for the installation, commissioning, operation and maintenance of the drive.

About this manual lists the steps in checking the delivery and installing and commissioning the drive and refers to chapters/sections in this manual and other manuals for particular tasks.

ACS800-04/U4 describes the drive.

Planning the cabinet assembly guides in planning the installation of a drive module into a user-defined cabinet.

Mechanical installation instructs how to place and mount the drive.

Planning the electrical installation instructs on the motor and cable selection, the protections and the cable routing.

Electrical installation shows how to wire the drive.

Motor control and I/O board (RMIO) shows the external control connections to the I/O board.

Installation checklist contains a list for checking the mechanical and electrical installation of the drive.

Maintenance contains preventive maintenance instructions.

Technical data contains the technical specifications of the drive, e.g. the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings and warranty policy.

Dimensional drawings contains the dimensional drawings of the drive.

Resistor braking describes how to select, protect and wire brake choppers and resistors. The chapter also contains the technical data.

Page 19: VSDS Manual-ABB

About this manual

19

Installation and commissioning flowchart

Task See

Identify the frame size of your drive: R2, R3, R4, R5 or R6.

Technical data: IEC data or NEMA data

Plan the installation.

Check the ambient conditions, ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data.

Select the cables.

Technical data

Planning the electrical installation

Option manual (if optional equipment is included)

Unpack and check the units.

Check that all necessary optional modules and equipment are present and correct.

Only intact units may be started up.

Mechanical installation: Unpacking the unit

If the converter has been non-operational for more than one year, the converter DC link capacitors need to be reformed. Ask ABB for instructions.

Check the installation site. Mechanical installation: Before installation

Technical data

If the drive is about to be connected to an IT (ungrounded) system, check that the drive is not equipped with EMC filtering.

ACS800-04/U4: Type code

For instructions on how to disconnect the EMC filtering, contact ABB.

Install the drive in a cabinet. Mechanical installation

Route the cables. Planning the electrical installation: Routing the cables

Check the insulation of the motor and the motor cable.

Electrical installation: Checking the insulation of the assembly

Page 20: VSDS Manual-ABB

About this manual

20

Product and service inquiriesAddress any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting Drives � Sales, Support and Service network on the right pane.

Product trainingFor information on ABB product training, navigate to www.abb.com/drives and select Drives � Training courses on the right pane.

Providing feedback on ABB Drives manualsYour comments on our manuals are welcome. Go to www.abb.com/drives, then select successively Drives � Document Library � Manuals feedback form on the right pane.

Connect the power cables.Connect the control and the auxiliary control cables.

Electrical installation, Motor control and I/O board (RMIO), Resistor braking (optional) and the optional module manual delivered with the module.

Check the installation. Installation checklist

Commission the drive. Appropriate Firmware Manual

Commission the optional brake chopper (if present). Resistor braking

Operating of the drive: start, stop, speed control etc. Appropriate Firmware Manual

Task See

Page 21: VSDS Manual-ABB

About this manual

21

Terms and abbreviationsTerm/Abbreviation Explanation

CDP312R Drive control panel

DDCS Distributed Drives Communication System; a protocol used in optical fibre communication inside and between ABB drives.

EMC Electromagnetic Compatibility

Frame (size) Size of the frame into which the drive module is assembled. Several supply modules with different nominal powers may have the same frame size. The term refers to modules that have a similar mechanical construction.To determine the frame size of a drive module, refer to the rating tables in chapter Technical data.

IGBT Insulated Gate Bipolar Transistor; a voltage-controlled semiconductor type widely used in inverters due to their easy controllability and high switching frequency.

I/O Input/Output

AGPS Gate driver Power Supply board. An optional board used to implement the Prevention of Unexpected Start function.

RDCO DDCS communication option module

RDIO Digital I/O Extension Module

RFI Radio-frequency interference

RINT Main circuit board

RMIO Motor control and I/O board. The external I/O control signals are connected to RMIO.

RPMP Control panel mounting platform kit

Page 22: VSDS Manual-ABB

About this manual

22

Page 23: VSDS Manual-ABB

ACS800-04/U4

23

ACS800-04/U4

What this chapter containsThis chapter describes the operating principle and construction of the drive in short.

LayoutThe ACS800-04/U4 (frame sizes R2 to R6) is an IP20 drive module for controlling AC motors. It is to be installed into a cabinet by the customer with wall fastening.

Control panel CDP312R

Heatsink

(optional)Frame size R2

Option slots

PE

Power cableterminal

Location of the components vary depending on the frame size.

Page 24: VSDS Manual-ABB

ACS800-04/U4

24

Type codeThe type code contains information on the specifications and configuration of the drive. The first digits from left express the basic configuration (e.g. ACS800-04-0016-3). The optional selections are given thereafter, separated by + signs (e.g. +E202). The main selections are described below. Not all selections are available for all types. For more information, refer to ACS800 Ordering Information [3AFE64556568 (English)], available on request.

Selection AlternativesProduct series ACS800 product seriesType 04 Drive module. When no options are selected: IP20, no control panel, no

EMC filter, Standard Control Program, brake chopper in frame sizes R2, R3, and R4 (only 690 V), boards without coating, one set of manuals.

U4 Drive module (USA). When no options are selected: UL open type, no control panel, no EMC filter, Standard Control Program, brake chopper in frame sizes R2, R3, and R4 (only 690 V), boards without coating, one set of manuals.

Size See Technical data: IEC data or NEMA data.Voltage range(nominal rating in bold)

2 208/220/230/240 VAC3 380/400/415 VAC5 380/400/415/440/460/480/500 VAC7 525/575/600/690 VAC

+ optionsControl panel J400 Control panel CDP312R assembled on the drive module

J414 Control panel holder for frame sizes R2, R3 and R4 (not to be used with option J400)

Construction C132 Marine drive (coated boards included)C135 Flange mounting. Flange mounting plate assembled. IP55 for heat sink

side and IP20 for drive front side.Filter E200 EMC/RFI filter for second environment TN (grounded) system, drive

category C3E202 EMC/RFI filter for first environment TN (grounded) system, drive category

C2. (Not available for 690 V units.)E210 EMC/RFI filter for second environment TN/IT (grounded/ungrounded)

system, drive category C3 (frame size R6 only)Resistor braking D150 Brake chopper. Included as standard in frame sizes R2, R3 and R4 (only

690 V).Safety Q950 Prevention of Unexpected Start: AGPS board and 3 m connection wire.Fieldbus K... Refer to ACS800 Ordering Information [3AFE64556568 (English)].I/O L...Control program N...Manual language R...Specialities P901 Coated boards

P904 Extended warranty

Page 25: VSDS Manual-ABB

ACS800-04/U4

25

Main circuit and control

Diagram

This diagram shows the control interfaces and the main circuit of the drive. Location of terminals vary depending on the drive frame size.

~= ~

=

Motor control and I/O board (RMIO)

External control via analogue/digital inputs and outputs

Input power Output power

Optional module 1: RMBA, RAIO, RDIO, RDNA, RLON, RIBA, RPBA, RCAN, RCNA, RMBP, RETA, RRIA or RTAC

Optional module 2: RTAC, RAIO, RRIA or RDIO

DDCS communication option module 3: RDCO-01, RDCO-02 or RDCO-03The fibre optic channels provided by the RDCO module can be used for fieldbus connection (Nxxx fieldbus adapter modules), PC connection (DriveWare® PC tools) or Advant Fieldbus 100 connection (e.g. AC 800M, AC80)

R- UDC+ UDC-R+

Brake chopper in frame sizes R2, R3 and 690 V frame R4 (optional in other frame sizes).

Slot1

Slot2

X33

Drive

X41

Prevention of Unexpected Start (AGPS board)

Page 26: VSDS Manual-ABB

ACS800-04/U4

26

Operation

This table describes the operation of the main circuit in short.

Printed circuit boards

The drive contains the following printed circuit boards as standard:

� main circuit board (RINT)

� motor control and I/O board (RMIO)

� EMC filter board (RRFC) when EMC equipment is selected or varistor board (RVAR) otherwise.

Motor control

The motor control is based on the Direct Torque Control (DTC) method. Two phase currents and DC link voltage are measured and used for the control. The third phase current is measured for earth fault protection.

Component Description

Six-pulse rectifier Converts the three-phase AC voltage to DC voltage.

Capacitor bank Energy storage which stabilizes the intermediate circuit DC voltage.

IGBT inverter Converts the DC voltage to AC voltage and vice versa. The motor operation is controlled by switching the IGBTs.

Page 27: VSDS Manual-ABB

Planning the cabinet assembly

27

Planning the cabinet assembly

What this chapter containsThis chapter guides in planning the installation of a drive module into a user-defined cabinet. The issues discussed are essential for safe and trouble-free use of the drive system.

Note: The installation examples in this manual are provided only to help the installer in designing the installation. The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations.

Cabinet constructionThe cabinet frame must be sturdy enough to carry the weight of the drive components, control circuitry and other equipment installed in it.

The cabinet must protect the drive module against contact and meet the requirements for dust and humidity (see chapter Technical data).

Disposition of the devices

For easy installation and maintenance, a spacious layout is recommended. Sufficient cooling air flow, obligatory clearances, cables and cable support structures all require space.

For layout examples, see section Cabinet layout example.

Grounding of mounting structures

Make sure all cross-members or shelves on which components are mounted are properly grounded and the connecting surfaces left unpainted.

Note: Ensure that the modules are properly grounded through their fastening points to the installation base.

Page 28: VSDS Manual-ABB

Planning the cabinet assembly

28

Free space around the unitThe modules can be installed side by side. Recommended free space above and below the drive to enable cooling air flow, service and maintenance is shown below in millimetres and [inches].

The temperature of the cooling air entering the unit must not exceed the maximum allowed ambient temperature. See section Ambient conditions in chapter Technical data.

200 [7.9]

300 [12]

IP20 (UL open type)

Page 29: VSDS Manual-ABB

Planning the cabinet assembly

29

Cooling and degrees of protectionThe cabinet must have enough free space for the components to ensure sufficient cooling. Observe the minimum clearances given for each component.

The air inlets and outlets must be equipped with gratings that

� guide the air flow

� protect against contact

� prevent water splashes from entering the cabinet.

The drawing below shows two typical cabinet cooling solutions. The air inlet is at the bottom of the cabinet, while the outlet is at the top, either on the upper part of the door or on the roof.

Arrange the cooling air flow through the modules so that the requirements given in chapter Technical data are met:

� cooling air flowNote: The values in Technical data apply to continuous nominal load. If the load is cyclic or less than nominal, less cooling air is required.

� allowed ambient temperature

� the air inlet and outlet sizes required for the module cooling and recommended filter material (if used).

In addition to the above, the heat dissipated by cables and other additional equipment must also be ventilated.

The internal cooling fans of the modules are usually sufficient to keep the component temperatures low enough in IP22 (UL type 1) cabinets.

Air inlet

Air outlet

Page 30: VSDS Manual-ABB

Planning the cabinet assembly

30

In IP54 (UL type 12) cabinets, thick filter mats are used to prevent water splashes from entering the cabinet. This entails the installation of additional cooling equipment, such as a hot air exhaust fan.

The installation site must be sufficiently ventilated.

Preventing the recirculation of hot air

Outside the cabinet

Prevent hot air circulation outside the cabinet by leading the outcoming hot air away from the area where the inlet air to the cabinet is taken. Possible solutions are listed below:

� gratings that guide air flow at the air inlet and outlet

� air inlet and outlet at different sides of the cabinet

� cool air inlet in the lower part of the front door and an extra exhaust fan on the roof of the cabinet.

HOT AREA Main air flow out

Main air flow in

COOL AREA

Cabinet (side view)

HOT AREAAir flow out

Air flow in

Air baffleplate

COOL AREA

Cabinet (side view)

Flange mountingNormal vertical mounting

Air baffleplates

Mainair

flowin

Mainair

flowout

Page 31: VSDS Manual-ABB

Planning the cabinet assembly

31

Inside the cabinet

Prevent hot air circulation inside the cabinet with leak-proof air baffle plates. No gaskets are usually required.

When several modules are installed vertically in one cabinet, the hot air from one module must not be allowed to enter another module. In a cabinet with multiple modules, a practical way of achieving this is to install a mounting plate to separate the cool area (at the front part of the cabinet) from the hot area (back part). The mounting plate can be fastened to two vertical pillars on both left and right. Since the air outlet at the top of the modules points directly upwards, the air must be guided to the hot area. See cabinet layout examples below.

Cabinet layout example

AC switch fuse

AC fuses

du/dt filter

Motor cable entries

Airflow guides

AC fuse bases

Modules

Front view of three R2 modules in cabinet

Side view of three R3 modules in cabinet

Cool area

Hot area

Mounting plates

Vertical mounting

Page 32: VSDS Manual-ABB

Planning the cabinet assembly

32

Cabinet heatersUse a cabinet heater if there is a risk of condensation in the cabinet. Although the primary function of the heater is to keep the air dry, it may also be required for heating at low temperatures. When placing the heater, follow the instructions provided by its manufacturer.

Mounting the optional control panelThe optional control panel CDP312R is factory assembled on the drive module.The panel can also be fastened directly to the cabinet door or to a mounting platform.

Installing the control panel directly on the cabinet door

Fasten the control panel from the back side with two screws of one of the following types:

� standard screw with nominal diameter of 4 mm (0.16 in.)

� tapping screw with nominal diameter of 4.2 mm (0.17 in.) DIN 7981 C, DIN 7982 C, DIN 7983 C or DIN 7976 C

� PT screw for thermoplastics with nominal diameter of 4 mm (0.16 in.).

Control panel

Cabinet door

Tightening torque:1 Nm (0.74 lbf ft)

4...8 mm(0.16...0.31 in.)

10 mm (0.39 in.)

View from outside the cabinet door

Con

trol p

anel

foot

prin

t

Page 33: VSDS Manual-ABB

Planning the cabinet assembly

33

Control panel mounting platform kit (RPMP)

For installation of the mounting platform, see Control Panel Mounting Platform Kit (RPMP) Installation Guide [3AFE64677560 (English)].

EMC requirementsGenerally, the fewer and smaller the holes in the cabinet, the better the interference attenuation. The maximum recommended diameter of a hole in galvanic metal contact in the covering cabinet structure is 100 mm. Special attention must be paid to the cooling air inlet and outlet gratings.

The best galvanic connection between the steel panels is achieved by welding them together as no holes are necessary. If welding is not possible, the seams between the panels are recommended to be left unpainted and equipped with special conductive EMC strips to provide adequate galvanic connection. Usually, reliable strips are made of flexible silicon mass covered with a metal mesh. The non-tightened touch-contact of the metal surfaces is not sufficient, so a conductive gasket between the surfaces is required. The maximum recommended distance between assembly screws is 100 mm.

Sufficient high-frequency grounding network must be constructed in the cabinet to avoid voltage differences and forming of high-impedance radiator structures. A good high-frequency grounding is made with short flat copper braids for low inductance. One-point high-frequency grounding cannot be used due to the long distances inside the cabinet.

First environment EMC compliance *) of the drive requires 360° high frequency grounding of the motor cable shields at their entries. The grounding can be implemented by a knitted wire mesh screening as shown below.

*) First environment EMC compliance is defined in section CE marking in chapter Technical data.

Cable ties

Knitted wire mesh

Bare cable shield

Cabinet bottom plate

Lead-through plate

Cable

Page 34: VSDS Manual-ABB

Planning the cabinet assembly

34

360° high frequency grounding of the control cable shields is recommended at their entries. The shields can be grounded by means of conductive shielding cushions pressed against the cable shield from both directions:

Shielding cushion(conductive)

CableCable grommet

Bare cable shield

Cabinet bottom plate

Page 35: VSDS Manual-ABB

Mechanical installation

35

Mechanical installation

Unpacking the unitThe drive is delivered in a box that also contains:

� plastic bag containing: screws (M3), clamps and cable lugs (2 mm2, M3) for grounding the control cable screens

� residual voltage warning stickers

� hardware, firmware and other module manuals

� delivery documents.

Unpack the unit of frame sizes R2 to R5 as follows.

Tear

Page 36: VSDS Manual-ABB

Mechanical installation

36

Delivery check

Check that there are no signs of damage. Before attempting installation and operation, check the information on the type designation label of the drive to verify that the unit is of the correct type. The label includes IEC rating, C-UL US, CSA, C-tick and CE markings, a type code and a serial number, which allow individual recognition of each unit. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit�s manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two units with the same serial number.

The type designation label is attached to the heat sink and the serial number label to the upper part of the back plate of the unit.

Before installationCheck the installation site according to the requirements below. See Dimensional drawings for frame details.

Requirements for the installation site

See Technical data for the allowed operation conditions of the drive.

Floor

The floor/material below the cabinet should be non-flammable.

Type designation label

Serial number label

Page 37: VSDS Manual-ABB

Mechanical installation

37

Installation procedure1. Mark the locations for the four holes. The mounting points are shown in

Dimensional drawings. With frame sizes R2...R5, use the mounting template cut from the package.

2. Fix the screws or bolts to the marked locations.

3. Position the drive onto the screws on the cabinet wall. Note: Lift the drive by its chassis (R6: by its lifting holes).

4. Tighten the screws in the cabinet wall securely.

1

Page 38: VSDS Manual-ABB

Mechanical installation

38

Flange mountingThe flange mounting plate is factory assembled on the drive. With flange mounting, the degree of protection is IP55 for the heat sink side and IP20 for the drive front side. The drive front side must always be housed in a cabinet.

Connect a drive with flange mounting plate as follows:

1. Make the appropriate mounting and screw holes for the drive into the mounting plate. The sizes and locations of the holes vary according to the frame size. See chapter Dimensional drawings. Screw holes can be replaced with rivet nuts. Recommended type is closed M6 rivet nut, L = 23 mm, code 23351060030 / Rivkle provided by Böllhoff (www.boellhoff.de).

2. Lift the drive by its lifting lugs and place it into the mounting hole.

3. Fix the washers and screws (M6) delivered with the drive (MRP code 68390419). The tightening torque is 2 Nm.

Note: The flange mounting kit does not ground the drive. The drive needs to be grounded according to instructions given in chapter Electrical installation.

Note: Maximum allowed vibration for the drive has not been tested with flange mounting. If the drive is exposed to vibration, it is recommended to fix the drive also from the normal mounting holes located on the heat sink. See section Installation procedure.

R6 with flange mounting plate

Page 39: VSDS Manual-ABB

Mechanical installation

39

1 2

Washer

Screw

3

Lifting lug

R6 flange mounting

Mounting plate

Page 40: VSDS Manual-ABB

Mechanical installation

40

Page 41: VSDS Manual-ABB

Planning the electrical installation

41

Planning the electrical installation

What this chapter containsThis chapter contains the instructions that you must follow when selecting the motor, cables, protections, cable routing and way of operation for the drive system.

Note: The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

Motor selection and compatibility1. Select the motor according to the rating tables in chapter Technical data. Use the

DriveSize PC tool if the default load cycles are not applicable.

2. Check that the motor ratings lie within the allowed ranges of the drive control program:

� motor nominal voltage is 1/2 ... 2 · UN of the drive

� motor nominal current is 1/6 ... 2 · I2hd of the drive in DTC control and 0 ... 2 · I2hd in scalar control. The control mode is selected by a drive parameter.

3. Check that the motor voltage rating meets the application requirements:

� If no resistor braking is in use, the motor voltage rating is UN.

UN = rated input voltage of the drive

� If frequent or long term brake cycles will be used, the motor voltage rating is UACeq.

UACeq = UDC/1.35

where

UACeq is the equivalent AC power source voltage of the drive in V AC.

UDC is the maximum DC link voltage of the drive in V DC.

For resistor braking: UDC = 1.2 × 1.35 × UN.

See note 6 below the Requirements table.

4. Consult the motor manufacturer before using a motor in a drive system where the motor nominal voltage differs from the AC power source voltage.

Page 42: VSDS Manual-ABB

Planning the electrical installation

42

5. Ensure that the motor insulation system withstands the maximum peak voltage in the motor terminals. See the Requirements table below for the required motor insulation system and drive filtering.

Example: When the supply voltage is 440 V and the drive is operating in motor mode only, the maximum peak voltage in the motor terminals can be approximated as follows: 440 V · 1.35 · 2 = 1190 V. Check that the motor insulation system withstands this voltage.

Protecting the motor insulation and bearings

The output of the drive comprises � regardless of output frequency � pulses of approximately 1.35 times the equivalent mains network voltage with a very short rise time. This is the case with all drives employing modern IGBT inverter technology.

The voltage of the pulses can be almost double at the motor terminals, depending on the attenuation and reflection properties of the motor cable and the terminals. This in turn can cause additional stress on the motor and motor cable insulation.

Modern variable speed drives with their fast rising voltage pulses and high switching frequencies can generate current pulses that flow through the motor bearings, which can gradually erode the bearing races and rolling elements.

The stress on motor insulation can be avoided by using optional ABB du/dt filters. du/dt filters also reduce bearing currents.

To avoid damage to motor bearings, the cables must be selected and installed according to the instructions given in the hardware manual. In addition, insulated N-end (non-driven end) bearings and output filters from ABB must be used according to the following table. Two types of filters are used individually or in combinations:

� optional du/dt filter (protects motor insulation system and reduces bearing currents).

� common mode filter (mainly reduces bearing currents).

Page 43: VSDS Manual-ABB

Planning the electrical installation

43

Requirements tableThe following table shows how to select the motor insulation system and when an optional ABB du/dt filter, insulated N-end (non-driven end) motor bearings and ABB common mode filters are required. The motor manufacturer should be consulted regarding the construction of the motor insulation and additional requirements for explosion-safe (Ex) motors. Failure of the motor to fulfil the following requirements or improper installation may shorten motor life or damage the motor bearings and voids the warranty.

Man

ufac

ture

r

Motor type Nominal mains voltage (AC line

voltage)

Requirement forMotor

insulation system

ABB du/dt filter, insulated N-end bearing and ABB common mode filter

PN < 100 kW and

frame size < IEC 315

100 kW < PN < 350 kW or

frame size > IEC 315

PN > 350 kWor

frame size > IEC 400

PN < 134 HPand frame size <

NEMA 500

134 HP < PN < 469 HP

or frame size > NEMA 500

PN > 469 HPor frame size >

NEMA 580

ABB

Random-wound M2_ and M3_

UN < 500 V Standard - + N + N + CMF

500 V < UN < 600 V Standard + du/dt + du/dt + N + du/dt + N + CMF

or

Reinforced - + N + N + CMF

600 V < UN < 690 V Reinforced + du/dt + du/dt + N + du/dt + N + CMF

Form-wound HX_ and AM_

380 V < UN < 690 V Standard n.a. + N + CMF PN < 500 kW: + N + CMF

PN > 500 kW: + N + CMF + du/dt

Old* form-wound HX_ and modular

380 V < UN < 690 V Check with the motor manufacturer.

+ du/dt with voltages over 500 V + N + CMF

Random-wound HX_ and AM_ **

0 V < UN < 500 V Enamelled wire with fibre glass taping

+ N + CMF

500 V < UN < 690 V + du/dt + N + CMF

Page 44: VSDS Manual-ABB

Planning the electrical installation

44

* manufactured before 1.1.1998

** For motors manufactured before 1.1.1998, check for additional instructions with the motor manufacturer.

*** If the intermediate DC circuit voltage of the drive will be increased from the nominal level by resistor braking or by the IGBT Supply Control Program (parameter selectable function), check with the motor manufacturer if additional output filters are needed in the applied drive operation range.

NON-ABB

Random-wound and form-wound

UN < 420 V Standard: ÛLL = 1300 V

- + N or CMF + N + CMF

420 V < UN < 500 V Standard: ÛLL = 1300 V

+ du/dt + du/dt + N + du/dt + N + CMF

or

+ du/dt + CMF

or

Reinforced: ÛLL = 1600 V, 0.2 microsecond rise time

- + N or CMF + N + CMF

500 V < UN < 600 V Reinforced: ÛLL = 1600 V

+ du/dt + du/dt + N + du/dt + N + CMF

or

+ du/dt + CMF

or

Reinforced: ÛLL = 1800 V

- + N or CMF + N + CMF

600 V < UN < 690 V Reinforced: ÛLL = 1800 V

+ du/dt + du/dt + N + du/dt + N + CMF

Reinforced: ÛLL = 2000 V, 0.3 microsecond rise time ***

- N + CMF N + CMF

Man

ufac

ture

r

Motor type Nominal mains voltage (AC line

voltage)

Requirement forMotor

insulation system

ABB du/dt filter, insulated N-end bearing and ABB common mode filter

PN < 100 kW and

frame size < IEC 315

100 kW < PN < 350 kW or

frame size > IEC 315

PN > 350 kWor

frame size > IEC 400

PN < 134 HPand frame size <

NEMA 500

134 HP < PN < 469 HP

or frame size > NEMA 500

PN > 469 HPor frame size >

NEMA 580

Page 45: VSDS Manual-ABB

Planning the electrical installation

45

Note 1: The abbreviations used in the table are defined below.

Note 2: Explosion-safe (Ex) motors

The motor manufacturer should be consulted regarding the construction of the motor insulation and additional requirements for explosion-safe (Ex) motors.

Note 3: High-output motors and IP23 motors

For motors with higher rated output than what is stated for the particular frame size in EN 50347 (2001) and for IP23 motors, the requirements of ABB random-wound motor series M3AA, M3AP, M3BP are given below. For other motor types, see the Requirements table above. Apply the requirements of range 100 kW < PN < 350 kW to motors with PN < 100 kW. Apply the requirements of range PN > 350 kW to motors within the range 100 kW < PN < 350 kW. In other cases, consult the motor manufacturer.

Note 4: HXR and AMA motors All AMA machines (manufactured in Helsinki) for drive systems have form-wound windings. All HXR machines manufactured in Helsinki starting 1.1.1998 have form-wound windings.

Note 5: ABB motors of types other than M2_, M3_, HX_ and AM_ Use the selection criteria given for non-ABB motors.

Note 6: Resistor braking of the drive When the drive is in braking mode for a large part of its operation time, the intermediate circuit DC voltage of the drive increases, the effect being similar to increasing the supply voltage by up to 20 percent. The voltage increase should be taken into consideration when determining the motor insulation requirement.

Example: Motor insulation requirement for a 400 V application must be selected as if the drive were supplied with 480 V.

Abbreviation DefinitionUN nominal voltage of the supply network

ÛLL peak line-to-line voltage at motor terminals which the motor insulation must withstand

PN motor nominal power

du/dt du/dt filter at the output of the drive +E205

CMF common mode filter +E208

N N-end bearing: insulated motor non-driven end bearing

n.a. Motors of this power range are not available as standard units. Consult the motor manufacturer.

Man

ufac

ture

r Motor type Nominal mains voltage (AC line

voltage)

Requirement forMotor

insulation system

ABB du/dt filter, insulated N-end bearing and ABB common mode filter

PN < 55 kW 55 kW < PN < 200 kW

PN > 200 kW

PN < 74 HP 74 HP < PN < 268 HP

PN > 268 HP

ABB

Random-wound M3AA, M3AP, M3BP

UN < 500 V Standard - + N + N + CMF

500 V < UN < 600 V Standard + du/dt + du/dt + N + du/dt + N + CMF

or

Reinforced - + N + N + CMF

600 V < UN < 690 V Reinforced + du/dt + du/dt + N + du/dt + N + CMF

Page 46: VSDS Manual-ABB

Planning the electrical installation

46

Note 7: Calculating the rise time and the peak line-to-line voltage

The peak line-to-line voltage at the motor terminals generated by the drive as well as the voltage rise time depend on the cable length. The requirements for the motor insulation system given in the table are �worst case� requirements covering installations with 30 metre and longer cables. The rise time can be calculated as follows: t = 0.8 · ÛLL/(du/dt). Read ÛLL and du/dt from the diagrams below. Multiply the values of the graph by the supply voltage (UN).With resistor braking, the ÛLL and du/dt values are approximately 20 % higher.

Note 8: Sine filters protect the motor insulation system. Therefore, du/dt filter can be replaced with a sine filter. The peak phase-to-phase voltage with the sine filter is approximately 1.5 × UN.

Note 9: Common mode filter is available as a separate kit (one box including three rings for one cable).

Permanent magnet synchronous motorOnly one permanent magnet motor can be connected to the inverter output.

It is recommended to install a safety switch between the permanent magnet synchronous motor and the drive output. The switch is needed to isolate the motor during any maintenance work on the drive.

Supply connection

Disconnecting device (means)

Install a hand-operated input disconnecting device (disconnecting means) between the AC power source and the drive. The disconnecting device must be of a type that can be locked to the open position for installation and maintenance work.

ÛLL/UN

Without du/dt filter

Cable length (m)

du/dtUN

-------------(1/μs)

1.0

2.0

5.0

4.0

3.0

1.5

2.5

3.5

4.5

100 200 300100 200 3000.0

0.5

1.0

1.5

2.0

2.5

3.0

Cable length (m)

With du/dt filter

du/dtUN

-------------(1/μs)

ÛLL/UN

5.5

Page 47: VSDS Manual-ABB

Planning the electrical installation

47

EEA / Europe

If the drive is used in an application which must meet the European Union Machinery Directive according to standard EN 60204-1 Safety of Machinery, the disconnecting device must be one of the following types:

� a switch-disconnector of utilization category AC-23B (EN 60947-3)

� a disconnector that has an auxiliary contact that in all cases causes switching devices to break the load circuit before the opening of the main contacts of the disconnector (EN 60947-3)

� a circuit breaker suitable for isolation in accordance with EN 60947-2.

US

The disconnecting means must conform to the applicable safety regulations.

Main contactor

If used, dimension the contactor according to the nominal voltage and current of the drive. The utilization category (IEC 947-4) is AC-1.

Fuses

See section Thermal overload and short-circuit protection.

Thermal overload and short-circuit protection

Thermal overload protection of the drive and the input and motor cables

The drive protects itself and the input and motor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive. No additional thermal protection devices are needed.

WARNING! If the drive is connected to multiple motors, a separate thermal overload switch or a circuit breaker must be used for protecting each cable and motor. These devices may require a separate fuse to cut off the short-circuit current.

Page 48: VSDS Manual-ABB

Planning the electrical installation

48

Thermal overload protection of the motor

According to regulations, the motor must be protected against thermal overload and the current must be switched off when overload is detected. The drive includes a motor thermal protection function that protects the motor and switches off the current when necessary. Depending on a drive parameter value, the function either monitors a calculated temperature value (based on a motor thermal model) or an actual temperature indication given by motor temperature sensors. The user can tune the thermal model further by feeding in additional motor and load data.

The most common temperature sensors are:

� motor sizes IEC180.225: thermal switch (e.g. Klixon)

� motor sizes IEC200.250 and larger: PTC or Pt100.

See the firmware manual for more information on the motor thermal protection, and the connection and use of the temperature sensors.

Protection against short-circuit in the motor cable

The drive protects the motor cable and motor in a short-circuit situation when the motor cable is dimensioned according to the nominal current of the drive. No additional protection devices are needed.

Protection against short-circuit inside the drive or in the supply cable

Arrange the protection according to the following guide lines.

1) Size the fuses according to instructions given in chapter Technical data. The fuses will protect the input cable in short-circuit situations, restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive.

Circuit diagram Short-circuit protection

Protect the drive and input cable with fuses or a circuit breaker. See footnotes 1) and 2).

~ ~ M3~

Distribution board Input cable

~ ~ M3~

Drive or drive module

1)

2)

I >

Page 49: VSDS Manual-ABB

Planning the electrical installation

49

2) Circuit breakers which have been tested by ABB with the ACS800 can be used. Fuses must be used with other circuit breakers. Contact your local ABB representative for approved breaker types and supply network characteristics.

The protective characteristics of circuit breakers depend on the type, construction and settings of the breakers. There are also limitations pertaining to the short-circuit capacity of the supply network.

WARNING! Due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases may escape from the breaker enclosure in case of a short-circuit. To ensure safe use, special attention must be paid to the installation and placement of the breakers. Follow the manufacturer�s instructions.

Note: Circuit breakers must not be used without fuses in the USA.

Ground fault protectionThe drive is equipped with an internal ground fault protective function to protect the unit against ground faults in the motor and the motor cable. This is not a personal safety or a fire protection feature. The ground fault protective function can be disabled with a parameter, refer to the appropriate ACS800 Firmware Manual.

The EMC filter of the drive includes capacitors connected between the main circuit and the frame. These capacitors and long motor cables increase the ground leakage current and may cause fault current circuit breakers to function.

Emergency stop devicesFor safety reasons, install the emergency stop devices at each operator control station and at other operating stations where emergency stop may be needed.

Note: Pressing the stop key ( ) on the control panel of the drive does not generate an emergency stop of the motor or separate the drive from dangerous potential.

Page 50: VSDS Manual-ABB

Planning the electrical installation

50

Prevention of Unexpected StartThe drive can be equipped with an optional Prevention of Unexpected Start function according to standards IEC/EN 60204-1: 1997; ISO/DIS 14118: 2000 and EN 1037: 1996.

The Prevention of Unexpected Start function disables the control voltage of the power semiconductors, thus preventing the inverter from generating the AC voltage required to rotate the motor. By using this function, short-time operations (like cleaning) and/or maintenance work on non-electrical parts of the machinery can be performed without switching off the AC power supply to the drive.

The operator activates the Prevention of Unexpected Start function by opening a switch on a control desk. An indicating lamp on the control desk will light, signalling that the prevention is active. The switch can be locked out.

A Gate Driver Power Supply board (AGPS) and a 3 m connection wire are delivered with the Prevention of Unexpected Start option kit. The Prevention of Unexpected Start function complies with EN954-1 categories 1 and 3 when the following installations are made:

The user must install on a control desk near the machinery:

� switching/disconnecting device for the circuitry. �Means shall be provided to prevent inadvertent, and/or mistaken closure of the disconnecting device.� EN 60204-1: 1997.

� indicating lamp; on = starting the drive is prevented, off = drive is operative.

� safety relay (type BD5935 has been approved by ABB)

(Switching/disconnecting device, indicating lamp and safety relay are not included in the delivery.)

For connections to the drive, see section Prevention of Unexpected Start, AGPS board in chapter Electrical installation.

WARNING! The Prevention of Unexpected Start function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply.

Note: The Prevention of Unexpected Start function is not intended for stopping the drive. If a running drive is stopped by using the Prevention of Unexpected Start function, the drive will cut off the motor supply voltage and the motor will coast to stop.

Page 51: VSDS Manual-ABB

Planning the electrical installation

51

Selecting the power cables

General rules

Dimension the mains (input power) and motor cables according to local regulations:

� The cable must be able to carry the drive load current. See chapter Technical data for the rated currents.

� The cable must be rated for at least 70°C maximum permissible temperature of conductor in continuous use. For US, see section Additional US requirements.

� The inductance and impedance of the PE conductor/cable (grounding wire) must be rated according to permissible touch voltage appearing under fault conditions (so that the fault point voltage will not rise excessively when a ground fault occurs).

� 600 V AC cable is accepted for up to 500 V AC. 750 V AC cable is accepted for up to 600 V AC. For 690 V AC rated equipment, the rated voltage between the conductors of the cable should be minimum 1 kV.

For drive frame size R5 and larger, or motors larger than 30 kW (40 HP), symmetrical shielded motor cable must be used (figure below). A four-conductor system can be used up to frame size R4 with up to 30 kW (40 HP) motors, but shielded symmetrical motor cable is always recommended. The shield(s) of motor cable(s) must have 360° bonding at both ends.

Note: When continuous metal conduit is employed, shielded cable is not required. The conduit must have bonding at both ends as with cable shield.

A four-conductor system is allowed for input cabling, but shielded symmetrical cable is recommended. To operate as a protective conductor, the shield conductivity must be as follows when the protective conductor is made of the same metal as the phase conductors:

Compared to a four-conductor system, the use of symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as the stress on motor insulation, bearing currents and wear.

The motor cable and its PE pigtail (twisted shield) should be kept as short as possible in order to reduce high frequency electromagnetic emission, as well as stray currents outside the cable and capacitive current (relevant in power range below 20 kW).

Cross-sectional area of the phase conductors

S (mm2)

Minimum cross-sectional area of the corresponding protective conductor

Sp (mm2) S < 16 S

16 < S < 35 1635 < S S/2

Page 52: VSDS Manual-ABB

Planning the electrical installation

52

Alternative power cable types

Power cable types that can be used with the drive are represented below.

Motor cable shield

To effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminium shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape or copper wire. The better and tighter the shield, the lower the emission level and the bearing currents.

Symmetrical shielded cable: three phase conductors and a concentric or otherwise symmetrically constructed PE conductor, and a shield

Recommended

PE conductor and shield

Shield Shield

A separate PE conductor is required if the conductivity of the cable shield is < 50% of the conductivity of the phase conductor.

A four-conductor system: three phase conductors and a protective conductor.

Shield

PE

PE

PE

Not allowed for motor cables with phase conductor cross section larger than 10 mm2 [motors > 30 kW (40 HP)].

Not allowed for motor cables

Insulation jacket Copper wire screen Helix of copper tape or copper wire

Cable core

Inner insulation

Page 53: VSDS Manual-ABB

Planning the electrical installation

53

Additional US requirements

Type MC continuous corrugated aluminium armor cable with symmetrical grounds or shielded power cable must be used for the motor cables if metallic conduit is not used. For the North American market, 600 V AC cable is accepted for up to 500 V AC. 1000 V AC cable is required above 500 V AC (below 600 V AC). For drives rated over 100 amperes, the power cables must be rated for 75°C (167°F).

Conduit

Separate parts of a conduit must be coupled together, bridge the joints with a ground conductor bonded to the conduit on each side of the joint. Bond the conduits also to the drive enclosure and motor frame. Use separate conduits for input power, motor, brake resistor, and control wiring. When conduit is employed, type MC continuous corrugated aluminium armor cable or shielded cable is not required. A dedicated ground cable is always required.

Note: Do not run motor wiring from more than one drive in the same conduit.

Armored cable / shielded power cable

Six conductor (3 phases and 3 ground) type MC continuous corrugated aluminium armor cable with symmetrical grounds is available from the following suppliers (trade names in parentheses):

� Anixter Wire & Cable (Philsheath)

� BICC General Corp (Philsheath)

� Rockbestos Co. (Gardex)

� Oaknite (CLX).

Shielded power cables are available from Belden, LAPPKABEL (ÖLFLEX) and Pirelli.

Page 54: VSDS Manual-ABB

Planning the electrical installation

54

Power factor compensation capacitorsPower factor compensation is not needed with AC drives. However, if a drive is to be connected in a system with compensation capacitors installed, note the following restrictions.

WARNING! Do not connect power factor compensation capacitors or harmonic filters to the motor cables (between the drive and the motor). They are not meant to be used with AC drives and can cause permanent damage to the drive or themselves.

If there are power factor compensation capacitors in parallel with the three phase input of the drive:

1. Do not connect a high-power capacitor to the power line while the drive is connected. The connection will cause voltage transients that may trip or even damage the drive.

2. If capacitor load is increased/decreased step by step when the AC drive is connected to the power line: Ensure that the connection steps are low enough not to cause voltage transients that would trip the drive.

3. Check that the power factor compensation unit is suitable for use in systems with AC drives i.e. harmonic generating loads. In such systems, the compensation unit should typically be equipped with a blocking reactor or harmonic filter.

Equipment connected to the motor cable

Installation of safety switches, contactors, connection boxes, etc.

To minimize the emission level when safety switches, contactors, connection boxes or similar equipment are installed in the motor cable between the drive and the motor:

� EU: Install the equipment in a metal enclosure with 360 degrees grounding for the screens of both the incoming and outgoing cable, or connect the screens of the cables otherwise together.

� US: Install the equipment in a metal enclosure in a way that the conduit or motor cable shielding runs consistently without breaks from the drive to the motor.

Bypass connection

WARNING! Never connect the supply power to the drive output terminals U2, V2 and W2. If frequent bypassing is required, employ mechanically connected switches or contactors. Mains (line) voltage applied to the output can result in permanent damage to the unit.

Page 55: VSDS Manual-ABB

Planning the electrical installation

55

Before opening a contactor (DTC control mode selected)

Stop the drive and wait for the motor to stop before opening a contactor between the output of the drive and the motor when the DTC control mode is selected. See the appropriate ACS800 Control Program Firmware Manual for the required parameter settings. Otherwise, the contactor will be damaged. In scalar control, the contactor can be opened with the drive running.

Protecting the relay output contacts and attenuating disturbances in case of inductive loads

Inductive loads (relays, contactors, motors) cause voltage transients when switched off.

The relay contacts on the RMIO board are protected with varistors (250 V) against overvoltage peaks. In spite of this, it is highly recommended to equip inductive loads with noise attenuating circuits [varistors, RC filters (AC) or diodes (DC)] in order to minimize the EMC emission at switch-off. If not suppressed, the disturbances may connect capacitively or inductively to other conductors in the control cable and form a risk of malfunction in other parts of the system.

Install the protective component as close to the inductive load as possible. Do not install protective components at the RMIO board terminal block.

24 VD C

230 V AC

X251 RO12 RO13 RO1

X261 RO22 RO23 RO2

X271 RO32 RO33 RO3

Relay outputsRMIO

230 V AC

Diode

Varistor

RC filter

Page 56: VSDS Manual-ABB

Planning the electrical installation

56

Selecting the control cablesAll control cables must be shielded.

Use a double-shielded twisted pair cable (Figure a, e.g. JAMAK by NK Cables, Finland) for analogue signals. This type of cable is recommended for the pulse encoder signals also. Employ one individually shielded pair for each signal. Do not use common return for different analogue signals.

A double-shielded cable is the best alternative for low-voltage digital signals but single-shielded twisted multipair cable (Figure b) is also usable.

Run analogue and digital signals in separate, shielded cables.

Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in the same cables as digital input signals. It is recommended that the relay-controlled signals be run as twisted pairs.

Never mix 24 V DC and 115/230 V AC signals in the same cable.

Relay cable

The cable type with braided metallic screen (e.g. ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB.

Control panel cable

In remote use, the cable connecting the control panel to the drive must not exceed 3 metres (10 ft). The cable type tested and approved by ABB is used in control panel option kits.

aA double-shielded twisted pair cable

bA single-shielded twisted multipair cable

Page 57: VSDS Manual-ABB

Planning the electrical installation

57

Connection of a motor temperature sensor to the drive I/O

WARNING! IEC 60664 requires double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment which are either non-conductive or conductive but not connected to the protective earth.

To fulfil this requirement, the connection of a thermistor (and other similar components) to the digital inputs of the drive can be implemented in three alternate ways:

1. There is double or reinforced insulation between the thermistor and live parts of the motor.

2. Circuits connected to all digital and analogue inputs of the drive are protected against contact and insulated with basic insulation (the same voltage level as the drive main circuit) from other low voltage circuits.

3. An external thermistor relay is used. The insulation of the relay must be rated for the same voltage level as the main circuit of the drive. For connection, see ACS800 Firmware Manual.

Installation sites above 2000 metres (6562 feet)

WARNING! Protect against direct contact when installing, operating and servicing the RMIO board wiring and optional modules attached to the board. The Protective Extra Low Voltage (PELV) requirements stated in EN 50178 are not fulfilled at altitudes above 2000 m (6562 ft).

Routing the cablesRoute the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. It is recommended that the motor cable, input power cable and control cables be installed on separate trays. Avoid long parallel runs of motor cables with other cables in order to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables make sure they are arranged at an angle as near to 90 degrees as possible. Do not run extra cables through the drive.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminium tray systems can be used to improve local equalizing of potential.

Page 58: VSDS Manual-ABB

Planning the electrical installation

58

A diagram of the cable routing is below.

Control cable ducts

90° min 500 mm (20 in.)

Motor cable Input power cable

Control cables

min 200 mm (8 in.)

min 300 mm (12 in.)

Motor cable

Power cable

Drive

24 V24 V230 V

Lead 24 V and 230 V (120 V) control cables in separate ducts inside the cabinet.

Not allowed unless the 24 V cable is insulated for 230 V (120 V) or insulated with an insulation sleeving for 230 V (120 V).

(120 V)230 V

(120 V)

Page 59: VSDS Manual-ABB

Electrical installation

59

Electrical installation

What this chapter containsThis chapter describes the electrical installation procedure of the drive.

WARNING! The work described in this chapter may only be carried out by a qualified electrician. Follow the Safety instructions on the first pages of this manual. Ignoring the safety instructions can cause injury or death.

Make sure that the drive is disconnected from the mains (input power) during installation. If the drive is already connected to the mains, wait for 5 min after disconnecting mains power.

Checking the insulation of the assembly

Drive

Do not make any voltage tolerance or insulation resistance tests (e.g. hi-pot or megger) on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis (2500 V rms 50 Hz for 1 second) at the factory. Also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically.

Input cable

Check the insulation of the input cable according to local regulations before connecting it to the drive.

Motor and motor cable

Check the insulation of the motor and motor cable as follows:

1. Check that the motor cable is disconnected from the drive output terminals U2, V2 and W2.

2. Measure the insulation resistances of the motor cable and the motor between each phase and the Protective Earth by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than 1 Mohm.PE

Mohm

Page 60: VSDS Manual-ABB

Electrical installation

60

IT (ungrounded) systemsEnsure that the drive is not equipped with optional EMC filter, i.e. type code does not include selections +E200 or +E202.

However if EMC filters exist, disconnect the EMC filter capacitors of selections +E202 and +E200 before connecting the drive to an ungrounded system. For detailed instructions on how to do this, please contact your local ABB distributor.

WARNING! If a drive with EMC filter selection +E202 or +E200 is installed on an IT system [an ungrounded power system or a high resistance-grounded (over 30 ohms) power system], the system will be connected to earth potential through the EMC filter capacitors of the drive. This may cause danger or damage the unit.

Page 61: VSDS Manual-ABB

Electrical installation

61

Power cable connection

Connecting the power cables

� Connect the twisted shield of the cable to the drive grounding terminal. Note: cable lugs are needed in frame sizes R2 and R3.

� Supply cable grounding: If shielded cable is used, and the conductivity of the shield is < 50% of the conductivity of the phase conductor, use a separate PE cable (1) or a cable with a grounding conductor (2). With shielded cable 360° grounding of the supply cables is recommended.

Motor cable grounding: Use a separate grounding cable (3) if the conductivity of the cable shield is < 50% of the conductivity of the phase conductor and there is no symmetrically constructed grounding conductor in the cable (see Planning the electrical installation: Selecting the power cables).360 degrees grounding is required at the cabinet entry in first environment installations. First environment EMC compliance is defined in chapter Technical data.Note: If there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the drive and motor ends.Note: Do not use an asymmetrically constructed motor cable. Connecting its fourth conductor at the motor end increases bearing currents and causes extra wear.

INPUT OUTPUT

U1V1 W1

3 ~Motor

U1 V1 W11)

U2 V2 W2UDC+

R+UDC-

R-

L1 L2 L3

(PE) (PE)PE

2)

3)

Drive with brake chopper included

PE

For alternatives, see Planning the electrical installation: Disconnecting device (means).

External brake resistor (360 degrees grounding required)

Power cable connection

Page 62: VSDS Manual-ABB

Electrical installation

62

� Connect the phase conductors of the mains cable to the U1, V1 and W1 terminals and the phase conductors of the motor cable to the U2, V2 and W2 terminals.

Strip the conductor ends as follows to fit them inside the power cable connection terminals.

Note: Lead the unstripped cable as close to the terminals as possible. All unstripped parts must be protected against contact.

� Secure the cables outside the unit mechanically.

� Ground the other end of the input cable shield or PE conductor at the distribution board.

Grounding the motor cable shield at the motor end

For minimum radio frequency interference ground the cable shield 360 degrees at the lead-through of the motor terminal box

or ground the cable by twisting the shield as follows: flattened width > 1/5 · length.

Frame size Stripping lengthmm in.

R2, R3 10 0.39

R4, R5 16 0.63

R6 28 1.10

360 degrees grounding

Conductive gaskets

a b

b > 1/5 · a

Page 63: VSDS Manual-ABB

Electrical installation

63

Frame sizes R2 to R4

Frame size R5

Input power cable Motor cable

U1 V1 W1 UDC+ R- R+ UDC- U2 V2 W2

PEPE

U2 V2 W2 PEUDC-R+UDC+

R-V1U1 W1PE

Input power cable Motor cable

Page 64: VSDS Manual-ABB

Electrical installation

64

Frame size R6: Cable lug installation [16 to 70 mm2 (6 to 2/0 AWG) cables]

PE

U1U1U1 V1 W1 U2 V2 W2R-UDC+

R+ UDC-

Input power cable Motor cable

Isolate the ends of the cable lugs with insulating tape or shrink tube

Remove the screw terminals. Fasten the cable lugs to the remaining bolts with M10 nuts.

Page 65: VSDS Manual-ABB

Electrical installation

65

Frame size R6: Cable terminal installation [95 to 185 mm2 (3/0 to 350 AWG) cables]

Power cable protection

Frame size R5

Cover the power cable terminals as follows:

1. Cut holes for the installed cables into the clear plastic shroud.

2. Press the shroud onto the terminals.

a

b

PE

U1U1U1 V1 W1 U2 V2 W2R-UDC+

R+ UDC-

Input power cable Motor cable

a. Connect the cable to the terminal.

b. Connect the terminal to the drive.

WARNING! If the wire size is less than 95 mm2 (3/0 AWG), a cable lug must be used. A cable of wire size less than 95 mm2 (3/0 AWG) connected to this terminal will loosen and may damage the drive.

1 2

2

Page 66: VSDS Manual-ABB

Electrical installation

66

Removal of the shroud with a screw driver:

Frame size R6

Cover the power cable terminals as follows:

1. Cut holes for the installed cables into the clear plastic shroud in cable lug installations.

2. Press the shroud onto the terminals.

Removal of the shroud by lifting up with a screw driver from the corner:

Warning sticker

There are warning stickers in different languages inside the packing box of the drive. Attach a warning sticker in the language of your choice onto the plastic skeleton above the power cable terminals.

2

1

View of cable terminal installation

Page 67: VSDS Manual-ABB

Electrical installation

67

Connecting the control cablesConnect the control cables as described below. Connect the conductors to the appropriate detachable terminals of the RMIO board [see chapter Motor control and I/O board (RMIO)]. Tighten the screws to secure the connection.

Terminals

Location of terminals vary depending on the drive frame size.

Detachable connection terminals (pull up)

Optional module 1

Optional module 2

Frame sizes R2 to R4The control cable connection terminals are exposed when the control panel mounting platform is turned aside by pulling this knob. Be careful, do not use excess force when pulling.(control panel is an option)

X39 for control panel cable

Place the warning sticker here

DDCS communication option module 3: RDCO

Relay outputs1 23 4

X41

Terminal for optional Prevention of Unexpected Start

I/O cables: Ground the control cable shields in the holes with screws. See section 360 degrees grounding.

Page 68: VSDS Manual-ABB

Electrical installation

68

Frame sizes R5 and R6

Detachable connection terminals (pull up)

Optional module 1 Optional module 2

Control panel

Place the warning sticker here

Control cable grounding: see section 360 degrees grounding

DDCS communication option module 3: RDCO

View of frame size R6

X41 for Prevention of Unexpected Start (AGPS board)

(optional)

Terminal for optional Prevention of Unexpected Start

X41

Page 69: VSDS Manual-ABB

Electrical installation

69

360 degrees grounding

When the outer surface of the shield is covered with non-conductive material

� Strip the cable carefully (do not cut the grounding wire and the shield)

� Turn the shield inside out to expose the conductive surface.

� Wrap the grounding wire around the conductive surface.

� Slide a conductive clamp onto the conductive part.

� Fasten the clamp to the grounding plate with a screw as close as possible to the terminals where the wires are about to be connected.

Connecting the shield wires

Single shielded cables: Twist the grounding wires of the outer shield and connect them through the shortest possible route to the nearest grounding hole with a cable lug and a screw. Double shielded cables: Connect each pair cable shield (twisted grounding wires) with other pair cable shields of the same cable to the nearest grounding hole with a cable lug and a screw.

Do not connect shields of different cables to the same cable lug and grounding screw.

Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor (e.g. 3.3 nF / 630 V). The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points.

Keep the signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.

1 23 4

Insulation

Double-shielded cable Single-shielded cable

Page 70: VSDS Manual-ABB

Electrical installation

70

Cabling of I/O and fieldbus modules

Pulse encoder module cabling

Shield

Module

23 4

1

As short as possible

Note: The RDIO module does not include a terminal for cable shield grounding. Ground the pair cable shields here.

Shi

eld

RTAC

234

1

Wrap copper tape around the stripped part of the cable under the clamp. Be careful. Do not cut the grounding wire. Clamp as close to the terminals as possible.

As short as possible

Note1: If the encoder is of unisolated type, ground the encoder cable at the drive end only. If the encoder is galvanically isolated from the motor shaft and the stator frame, ground the encoder cable shield at the drive and the encoder end.Note 2: Twist the pair cable wires.

Page 71: VSDS Manual-ABB

Electrical installation

71

Installation of optional modules and PCThe optional module (such as fieldbus adapter, I/O extension module and the pulse encoder interface) is inserted in the optional module slot of the RMIO board (see section Connecting the control cables) and fixed with two screws. See the appropriate optional module manual for cable connections.

Fibre optic link

A DDCS fibre optic link is provided via the RDCO optional module for PC tools, master/follower link, NDIO, NTAC, NAIO and fieldbus adapter modules of type Nxxx. See RDCO User�s Manual for connections. Observe colouring codes when installing fibre optic cables. Blue connectors go to blue terminals, and grey connectors to grey terminals.

When installing multiple modules on the same channel connect them in a ring.

External +24 V power supply for the RMIO board via terminal X34This section describes how to connect an external +24 V power supply for the RMIO board via terminal X34. For the current consumption of the RMIO board, see chapter Motor control and I/O board (RMIO).

Note: External power is easier to supply to the RMIO board via terminal X23, see chapter Motor control and I/O board (RMIO).

Parameter settings

In Standard Control Program, set parameter 16.09 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.

Connecting +24 V external power supply

1. Break off the tab covering the +24 VDC power input connector with pliers.

2. Lift the connector upwards.

3. Disconnect the wires from the connector (keep the connector for later use).

4. Isolate the ends of the wires individually with insulating tape.

5. Cover the isolated ends of the wires with insulating tape.

6. Push the wires inside the skeleton.

7. Connect the wires of the +24 V external power supply to the disconnected connector:if a two-way connector, + wire to terminal 1 and - wire to terminal 2if a three-way connector, + wire to terminal 2 and - wire to terminal 3.

8. Plug the connector in.

Page 72: VSDS Manual-ABB

Electrical installation

72

1

Frame sizes R2 to R4 Frame sizes R5 and R6

1

3

4 4

2

X34

Page 73: VSDS Manual-ABB

Electrical installation

73

5 6 7

81 2

+ -

RMIO board

X34

1 2 3

+ -

RMIO board

X34

Connection of a two-way connector

1 2 3 1 2 3

Connection of a three-way connector

Page 74: VSDS Manual-ABB

Electrical installation

74

Prevention of Unexpected Start, AGPS board

WARNING! Dangerous voltages can be present on the AGPS board even when the 115...230 V supply is switched off. Follow the Safety instructions on the first pages of this manual and the instruction in this section when working on the AGPS board.

Make sure that the drive is disconnected from the mains (input power) and the 115...230 V source for the AGPS board is switched off during installation and maintenance. If the drive is already connected to the mains, wait for 5 min after disconnecting mains power.

Connect the optional AGPS board as follows:

� Remove the enclosure cover by undoing the fixing screws (1).

� Ground the unit via the bottom plate of the enclosure or via terminal X1:1 of the AGPS board.

� Connect the cable delivered with the kit between terminal block X2 of the AGPS board (2) and drive terminal block X41.

� Connect a cable between connector X1 of the AGPS board (3) and the 115...230 V source.

� Fasten the enclosure cover back with screws.

1

2

3

X2

X1

115...230 V

Page 75: VSDS Manual-ABB

Electrical installation

75

Note: Location of the X41 terminal block varies according to the drive frame size, see page 67.

Note: Maximum cable length between AGPS terminal block X2 and drive terminal block is restricted to 10 m.

For technical data see section AGPS-11C in chapter Technical data.

Page 76: VSDS Manual-ABB

Electrical installation

76

The following figure presents the circuit diagram of the Prevention of Unexpected Start.

3AFE

0037

4994

/U4

Page 77: VSDS Manual-ABB

Motor control and I/O board (RMIO)

77

Motor control and I/O board (RMIO)

What this chapter containsThis chapter shows

� external control connections to the RMIO board for the ACS800 Standard Control Program (Factory Macro)

� specifications of the inputs and outputs of the board.

This chapter applies to ACS800 units which employ RMIO-01 board from revision J onwards and RMIO-02 board from revision H onwards.

Note on terminal labellingOptional modules (Rxxx) may have identical terminal designations with the RMIO board.

Note on external power supplyExternal +24 V power supply for the RMIO board is recommended if

� the application requires a fast start after connecting the input power supply

� fieldbus communication is required when the input power supply is disconnected.

The RMIO board can be supplied from an external power source via terminal X23 or X34 or via both X23 and X34. The internal power supply to terminal X34 can be left connected when using terminal X23.

WARNING! If the RMIO board is supplied from an external power source via terminal X34, the loose end of the cable removed from the RMIO board terminal must be secured mechanically to a location where it cannot come into contact with electrical parts. If the screw terminal plug of the cable is removed, the wire ends must be individually insulated.

Parameter settings

In Standard Control Program, set parameter 16.09 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.

Page 78: VSDS Manual-ABB

Motor control and I/O board (RMIO)

78

External control connections (non-US)

External control cable connections to the RMIO board for the ACS800 Standard Control Program (Factory Macro) are shown below. For external control connections of other control macros and programs, see the appropriate Firmware Manual.

X201 VREF- Reference voltage -10 VDC, 1 kohm < RL <

10 kohm2 AGNDX211 VREF+ Reference voltage 10 VDC, 1 kohm < RL <

10 kohm2 AGND3 AI1+ Speed reference 0(2) ... 10 V, Rin >

200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4)...20 mA 0...motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4)...20 mA 0...motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start2 DI2 Forward/Reverse 1)

3 DI3 Not in use4 DI4 Acceleration & deceleration select 2)

5 DI5 Constant speed select 3)

6 DI6 Constant speed select 3)

7 +24VD +24 VDC max. 100 mA8 +24VD9 DGND1 Digital ground10 DGND2 Digital ground11 DIIL Start interlock (0 = stop) 4)

X231 +24V Auxiliary voltage output and input, non-

isolated, 24 VDC 250 mA 5)2 GNDX251 RO1 Relay output 1: ready2 RO13 RO1X261 RO2 Relay output 2: running2 RO23 RO2X271 RO3 Relay output 3: fault (-1)2 RO33 RO3

=

=

Fault

A

rpm

1) Only effective if par. 10.03 is set to REQUEST by the user.

2) 0 = open, 1 = closed

3) See par. group 12 CONSTANT SPEEDS.

4) See parameter 21.09 START INTRL FUNC.

5) Total maximum current shared between this output and optional modules installed on the board.

DI4 Ramp times according to0 parameters 22.02 and 22.031 parameters 22.04 and 22.05

DI5 DI6 Operation0 0 Set speed through AI11 0 Constant speed 10 1 Constant speed 21 1 Constant speed 3

Terminal block size: cables 0.3 to 3.3 mm2 (22 to 12 AWG) Tightening torque: 0.2 to 0.4 Nm (0.2 to 0.3 lbf ft)

Page 79: VSDS Manual-ABB

Motor control and I/O board (RMIO)

79

External control connections (US)

External control cable connections to the RMIO board for the ACS800 Standard Control Program (Factory Macro US version) are shown below. For external control connections of other control macros and programs, see the appropriate Firmware Manual.

X201 VREF- Reference voltage -10 VDC, 1 kohm < RL <

10 kohm2 AGNDX211 VREF+ Reference voltage 10 VDC, 1 kohm < RL <

10 kohm2 AGND3 AI1+ Speed reference 0(2) ... 10 V, Rin >

200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4)...20 mA 0...motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4)...20 mA 0...motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Start ( )2 DI2 Stop ( )3 DI3 Forward/Reverse 1)

4 DI4 Acceleration & deceleration select 2)

5 DI5 Constant speed select 3)

6 DI6 Constant speed select 3)

7 +24VD +24 VDC max. 100 mA8 +24VD9 DGND1 Digital ground10 DGND2 Digital ground11 DIIL Start interlock (0 = stop) 4)

X231 +24V Auxiliary voltage output and input, non-

isolated, 24 VDC 250 mA 5)2 GNDX251 RO1 Relay output 1: ready2 RO13 RO1X261 RO2 Relay output 2: running2 RO23 RO2X271 RO3 Relay output 3: fault (-1)2 RO33 RO3

=

=

Fault

A

rpm

Terminal block size: cables 0.3 to 3.3 mm2 (22 to 12 AWG) Tightening torque: 0.2 to 0.4 Nm (0.2 to 0.3 lbf ft)

1) Only effective if par. 10.03 is set to REQUEST by the user.

2) 0 = open, 1 = closed

3) See par. group 12 CONSTANT SPEEDS.

4) See parameter 21.09 START INTRL FUNC.

5) Total maximum current shared between this output and optional modules installed on the board.

DI4 Ramp times according to0 parameters 22.02 and 22.031 parameters 22.04 and 22.05

DI5 DI6 Operation0 0 Set speed through AI11 0 Constant speed 10 1 Constant speed 21 1 Constant speed 3

Page 80: VSDS Manual-ABB

Motor control and I/O board (RMIO)

80

RMIO board specificationsAnalogue inputs

With Standard Control Program two programmable differential current inputs (0 mA / 4 mA ... 20 mA, Rin = 100 ohm) and one programmable differential voltage input (-10 V / 0 V / 2 V ... +10 V, Rin > 200 kohm).The analogue inputs are galvanically isolated as a group.

Insulation test voltage 500 VAC, 1 minMax. common mode voltage between the channels

±15 VDC

Common mode rejection ratio > 60 dB at 50 HzResolution 0.025% (12 bit) for the -10 V ... +10 V input. 0.5% (11 bit) for the 0 ... +10 V and

0 ... 20 mA inputs.Inaccuracy ±0.5% (Full Scale Range) at 25°C (77°F). Temperature coefficient: ±100 ppm/°C

(±56 ppm/°F), max.

Constant voltage outputVoltage +10 VDC, 0, -10 VDC ±0.5% (Full Scale Range) at 25°C (77°F). Temperature

coefficient: ±100 ppm/°C (±56 ppm/°F) max.Maximum load 10 mAApplicable potentiometer 1 kohm to 10 kohm

Auxiliary power outputVoltage 24 VDC ±10%, short-circuit proofMaximum current 250 mA (without any optional modules inserted onto slots 1 and 2)

Analogue outputsTwo programmable current outputs: 0 (4) to 20 mA, RL < 700 ohm

Resolution 0.1% (10 bit)Inaccuracy ±1% (Full Scale Range) at 25°C (77°F). Temperature coefficient: ±200 ppm/°C

(±111 ppm/°F) max.

Digital inputsWith Standard Control Program six programmable digital inputs (common ground: 24 VDC, -15% to +20%) and a start interlock input. Group isolated, can be divided in two isolated groups (see Isolation and grounding diagram below).Thermistor input: 5 mA, < 1.5 kohm �1� (normal temperature), > 4 kohm �0� (high temperature), open circuit �0� (high temperature).Internal supply for digital inputs (+24 VDC): short-circuit proof. An external 24 VDC supply can be used instead of the internal supply.

Insulation test voltage 500 VAC, 1 minLogical thresholds < 8 VDC �0�, > 12 VDC �1�Input current DI1 to DI 5: 10 mA, DI6: 5 mAFiltering time constant 1 ms

Page 81: VSDS Manual-ABB

Motor control and I/O board (RMIO)

81

Relay outputsThree programmable relay outputs

Switching capacity 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMinimum continuous current 5 mA rms at 24 VDCMaximum continuous current 2 A rmsContact material Silver Cadmium Oxide (AgCdO)Insulation test voltage 4 kVAC, 1 minute

DDCS fibre optic linkWith optional communication adapter module RDCO. Protocol: DDCS (ABB Distributed Drives Communication System)

24 VDC power inputVoltage 24 VDC ±10%Typical current consumption (without optional modules)

250 mA

Maximum current consumption 1200 mA (with optional modules inserted)

The terminals on the RMIO board as well as on the optional modules attachable to the board fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178 provided that the external circuits connected to the terminals also fulfil the requirements and the installation site is below 2000 m (6562 ft). Above 2000 m (6562 ft), see page 57.

Page 82: VSDS Manual-ABB

Motor control and I/O board (RMIO)

82

Isolation and grounding diagram

X201 VREF-2 AGND

X211 VREF+2 AGND3 AI1+4 AI1-5 AI2+6 AI2-7 AI3+8 AI3-

9 AO1+10 AO1-11 AO2+12 AO2-X221 DI12 DI23 DI34 DI4

9 DGND1

5 DI56 DI67 +24VD8 +24VD

11 DIIL

10 DGND2X231 +24 V2 GNDX251 RO12 RO13 RO1X261 RO22 RO23 RO2X271 RO32 RO33 RO3

Common mode voltage between channels ±15 V

J1

(Test voltage: 500 V AC)

or

Jumper J1 settings:

All digital inputs share a common ground. This is the default setting.

Grounds of input groups DI1�DI4 and DI5/DI6/DIIL are separate (insulation voltage 50 V).

Ground

(Test voltage: 4 kV AC)

Page 83: VSDS Manual-ABB

Installation checklist

83

Installation checklist

ChecklistCheck the mechanical and electrical installation of the drive before start-up. Go through the checklist below together with another person. Read the Safety instructions on the first pages of this manual before you work on the unit.

Check

MECHANICAL INSTALLATION

The ambient operating conditions are allowed. (See Mechanical installation, Technical data: IEC data or NEMA data, Ambient conditions.)

The unit is fixed properly into the cabinet. (See Planning the cabinet assembly and Mechanical installation.)

The cooling air will flow freely.

The motor and the driven equipment are ready for start. (See Planning the electrical installation: Motor selection and compatibility, Technical data: Motor connection.)

ELECTRICAL INSTALLATION (See Planning the electrical installation, Electrical installation.)

Drive does not include the EMC filter option (+E202, +E200) or the +E202 and +E200 EMC filter capacitors are disconnected if the drive is connected to an IT (ungrounded) system.

The capacitors are reformed if stored over one year (refer to ACS600/800 Capacitor Reforming Guide [3AFE64059629 (English)].

The drive is grounded properly.

The mains (input power) voltage matches the drive nominal input voltage.

The mains (input power) connections at U1, V1 and W1 and their tightening torques are OK.

Appropriate mains (input power) fuses and disconnector are installed.

The motor connections at U2, V2 and W2 and their tightening torques are OK.

The motor cable is routed away from other cables.

There are no power factor compensation capacitors in the motor cable.

The external control connections inside the drive are OK.

There are no tools, foreign objects or dust from drilling inside the drive.

Mains (input power) voltage cannot be applied to the output of the drive (with bypass connection).

Motor connection box and other covers are in place.

Page 84: VSDS Manual-ABB

Installation checklist

84

Modules with prevention of unexpected start option only (AGPS board): The prevention of unexpected start circuit is completed.

Check

Page 85: VSDS Manual-ABB

Maintenance

85

Maintenance

What this chapter containsThis chapter contains preventive maintenance instructions.

Safety

WARNING! Read the Safety instructions on the first pages of this manual before performing any maintenance on the equipment. Ignoring the safety instructions can cause injury or death.

Maintenance intervalsIf installed in an appropriate environment, the drive requires very little maintenance. This table lists the routine maintenance intervals recommended by ABB.

HeatsinkThe heatsink fins pick up dust from the cooling air. The drive runs into overtemperature warnings and faults if the heatsink is not clean. In a �normal� environment (not dusty, not clean) the heatsink should be checked annually, in a dusty environment more often.

Clean the heatsink as follows (when necessary):

1. Remove the cooling fan (see section Fan).

2. Blow clean compressed air (not humid) from bottom to top and simultaneously use a vacuum cleaner at the air outlet to trap the dust. Note: If there is a risk of the dust entering adjoining equipment, perform the cleaning in another room.

3. Replace the cooling fan.

Maintenance Interval Instruction

Capacitor reforming Every year when stored See Reforming.

Heatsink temperature check and cleaning

Depends on the dustiness of the environment (every 6 to 12 months)

See Heatsink.

Change of additional cooling fan.

Every three years See Additional fan.

Cooling fan change Every six years See Fan.

Frame size R4 and up: capacitor change

Every ten years See Capacitors.

Page 86: VSDS Manual-ABB

Maintenance

86

FanThe cooling fan lifespan of the drive is about 50 000 operating hours. The actual lifespan depends on the drive usage and ambient temperature. See the appropriate ACS800 Firmware Manual for an actual signal which indicates the hours of usage of the fan. For resetting the running time signal after a fan replacement, please contact ABB.

Fan failure can be predicted by the increasing noise from fan bearings and the gradual rise in the heatsink temperature in spite of heatsink cleaning. If the drive is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. Replacement fans are available from ABB. Do not use other than ABB specified spare parts.

Fan replacement (R2, R3)

To remove the fan, release the retaining clips. Disconnect the cable. Install the new fan in reverse order.

Bottom view

Page 87: VSDS Manual-ABB

Maintenance

87

Fan replacement (R4)

1. Loosen the screws that fasten the fan mounting plate to the frame.

2. Push the fan mounting plate to the left and pull it out.

3. Disconnect the fan power cable.

4. Undo the screws that fasten the fan to the fan mounting plate.

5. Install the new fan in reverse order.

3

112 Bottom view

4 4

44

View from above fan plate pulled out

Page 88: VSDS Manual-ABB

Maintenance

88

Fan replacement (R5)

1. Undo the fastening screws of the swing-out frame.

2. Open the swing-out frame.

3. Disconnect the cable.

4. Undo the fastening screws of the fan.

5. Install the new fan in reverse order.

Bottom view

1

1

3

244

Page 89: VSDS Manual-ABB

Maintenance

89

Fan replacement (R6)

To remove the fan, undo the fixing screws. Disconnect the cable. Install the new fan in reverse order.

Additional fanIn ACS800-04/U4 (R2...R6) units there is an additional fan in all types except in -0001-2, -0002-2, -0003-2, -0003-3, -0004-3, -0005-3, -0004-5, -0005-5 and -0006-5.

Replacement (R2, R3)

To remove the fan, release the retaining clip (1). Disconnect the cable (2, detachable terminal). Install the new fan in reverse order.

1

2

Bottom view

1

12

View from above

Air flow upwards

Rotation direction

Page 90: VSDS Manual-ABB

Maintenance

90

Replacement (R4, R5)

The fan is located on the lower right-hand side of the unit (R4) or on the right-hand side of the control panel (R5). Lift the fan out and disconnect the cable. Install the fan in reverse order.

Replacement (R6)

To remove the fan, release the retaining clips by pulling the back edge (1) of the fan upwards. Disconnect the cable (2, detachable terminal). Install the new fan in reverse order.

CapacitorsThe drive intermediate circuit employs several electrolytic capacitors. Their lifespan is from 45 000 to 90 000 hours depending on drive loading and ambient temperature. Capacitor life can be prolonged by lowering the ambient temperature.

It is not possible to predict a capacitor failure. Capacitor failure is usually followed by a mains fuse failure or a fault trip. Contact ABB if capacitor failure is suspected. Replacements for frame size R4 and up are available from ABB. Do not use other than ABB specified spare parts.

Reforming

Reform (re-age) spare part capacitors once a year according to ACS600/800 Capacitor Reforming Guide [3AFE64059629 (English)].

LEDsThis table describes LEDs of the drive.

Where LED When the LED is lit

RMIO board Red Drive in fault state

Green The power supply on the board is OK.

2 View from above

Air flow upwards

Rotation direction

1

Page 91: VSDS Manual-ABB

Technical data

91

Technical data

What this chapter containsThis chapter contains the technical specifications of the drive, e.g. the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings and warranty policy.

IEC data

Ratings

The IEC ratings for the ACS800-04 with 50 Hz and 60 Hz supplies are given below. The symbols are described below the table.

ACS800-04 size Nominal ratings

No-overload use

Light-overload use

Heavy-duty use Frame size

Air flow

Heat dissipation

Icont.max

AImax

A

Pcont.maxkW

I2NA

PNkW

I2hdA

Phd kW m3/h W

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V-0001-2 5.1 6.5 1.1 4.7 0.75 3.4 0.55 R2 35 100-0002-2 6.5 8.2 1.5 6.0 1.1 4.3 0.75 R2 35 100-0003-2 8.5 10.8 1.5 7.7 1.5 5.7 1.1 R2 35 100-0004-2 10.9 13.8 2.2 10.2 2.2 7.5 1.5 R2 35 120-0005-2 13.9 17.6 3 12.7 3 9.3 2.2 R2 35 140-0006-2 19 24 4 18 4 14 3 R3 69 160-0009-2 25 32 5.5 24 5,5 19 4 R3 69 200-0011-2 34 46 7.5 31 7.5 23 5.5 R3 69 250-0016-2 44 62 11 42 11 32 7.5 R4 103 340-0020-2 55 72 15 50 11 37 7.5 R4 103 440-0025-2 72 86 18.5 69 18.5 49 11 R5 250 530-0030-2 86 112 22 80 22 60 15 R5 250 610-0040-2 103 138 30 94 22 69 18.5 R5 250 810-0050-2 141 164 37 132 37 97 30 R6 405 1190-0060-2 166 202 45 155 45 115 30 R6 405 1190-0070-2 202 282 55 184 55 141 37 R6 405 1440

Page 92: VSDS Manual-ABB

Technical data

92

Three-phase supply voltage 380 V, 400 V or 415 V -0003-3 5.1 6.5 1.5 4.7 1.5 3.4 1.1 R2 35 100-0004-3 6.5 8.2 2.2 5.9 2.2 4.3 1.5 R2 35 120-0005-3 8.5 10.8 3 7.7 3 5.7 2.2 R2 35 140-0006-3 10.9 13.8 4 10.2 4 7.5 3 R2 35 160-0009-3 13.9 17.6 5.5 12.7 5.5 9.3 4 R2 35 200-0011-3 19 24 7.5 18 7.5 14 5.5 R3 69 250-0016-3 25 32 11 24 11 19 7.5 R3 69 340-0020-3 34 46 15 31 15 23 11 R3 69 440-0023-3 40 46 22 39 18.5 28 15 R3 69 520-0025-3 44 62 22 41 18.5 32 15 R4 103 530-0030-3 55 72 30 50 22 37 18.5 R4 103 610-0035-3 59 72 30 57 30 41 22 R4 103 660-0040-3 72 86 37 69 30 49 22 R5 168 810-0050-3 86 112 45 80 37 60 30 R5 168 990-0060-3 103 138 55 100 55 69 37 R5 168 1190-0075-3 145 170 75 141 75 100 45 R5 405 1440-0070-3 141 164 75 132 55 97 45 R6 405 1440-0100-3 166 202 90 155 75 115 55 R6 405 1940-0120-3 202 282 110 184 90 141 75 R6 405 2310-0135-3 225 326 110 220 110 163 90 R6 405 2810-0165-3 260 326 132 254 132 215 110 R6 405 3260Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0004-5 4.9 6.5 2.2 4.5 2.2 3.4 1.5 R2 35 120-0005-5 6.2 8.2 3 5.6 3 4.2 2.2 R2 35 140-0006-5 8.1 10.8 4 7.7 4 5.6 3 R2 35 160-0009-5 10.5 13.8 5.5 10 5.5 7.5 4 R2 35 200-0011-5 13.2 17.6 7.5 12 7.5 9.2 5.5 R2 35 250-0016-5 19 24 11 18 11 13 7.5 R3 69 340-0020-5 25 32 15 23 15 18 11 R3 69 440-0025-5 34 46 18.5 31 18.5 23 15 R3 69 530-0028-5 38 46 22 37 22 27 18.5 R3 69 590-0030-5 42 62 22 39 22 32 18.5 R4 103 610-0040-5 48 72 30 44 30 36 22 R4 103 810-0045-5 56 72 37 54 37 39 22 R4 103 950-0050-5 65 86 37 61 37 50 30 R5 168 990-0060-5 79 112 45 75 45 60 37 R5 168 1190-0070-5 96 138 55 88 55 69 45 R5 168 1440-0105-5 145 170 90 141 90 100 55 R5 405 2150-0100-5 124 164 75 115 75 88 55 R6 405 1940-0120-5 157 202 90 145 90 113 75 R6 405 2310-0140-5 180 282 110 163 110 141 90 R6 405 2810-0165-5 225 326 132 220 132 163 110 R6 405 3260-0205-5 260 326 160 254 160 215 132 R6 405 3800

ACS800-04 size Nominal ratings

No-overload use

Light-overload use

Heavy-duty use Frame size

Air flow

Heat dissipation

Icont.max

AImax

A

Pcont.maxkW

I2NA

PNkW

I2hdA

Phd kW m3/h W

Page 93: VSDS Manual-ABB

Technical data

93

Symbols

SizingThe current ratings are the same regardless of the supply voltage within one voltage range. To achieve the rated motor power given in the table, the rated current of the drive must be higher than or equal to the rated motor current.

Note 1: The maximum allowed motor shaft power is limited to 1.5 · Phd, 1.1 · PN or Pcont.max (whichever value is greatest). If the limit is exceeded, motor torque and current are automatically restricted. The function protects the input bridge of the drive against overload. If the condition exists for 5 minutes, the limit is set to Pcont.max.

Note 2: The ratings apply in ambient temperature of 40°C (104°F). In lower temperatures the ratings are higher (except Imax).

Note 3: Use the DriveSize PC tool for a more accurate dimensioning if the ambient temperature is below 40°C (104°F) or the drive is loaded cyclically.

Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0011-7 13 14 11 11.5 7.5 8.5 5.5 R4 103 300-0016-7 17 19 15 15 11 11 7.5 R4 103 340-0020-7 22 28 18.5 20 15 15 11 R4 103 440-0025-7 25 38 22 23 18.5 19 15 R4 103 530-0030-7 33 44 30 30 22 22 18.5 R4 103 610-0040-7 36 54 30 34 30 27 22 R4 103 690-0050-7 51 68 45 46 37 34 30 R5 250 840-0060-7 57 84 55 52 45 42 37 R5 250 1010-0070-7 79 104 75 73 55 54 45 R6 405 1220-0100-7 93 124 90 86 75 62 55 R6 405 1650-0120-7 113 172 110 108 90 86 75 R6 405 1960-0145-7 134 190 132 125 110 95 90 R6 405 2660-0175-7 166 245 160 155 132 131 110 R6 405 3470-0205-7 190 245 160 180 160 147 132 R6 405 4180

PDM code: 00096931-J

Nominal ratingsIcont.max continuous rms output current. No overload capability at 40°C. Imax maximum output current. Available for 10 s at start, otherwise as long as allowed by drive

temperature. Typical ratings:No-overload usePcont.max typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V.Light-overload use (10% overload capability)I2N continuous rms current. 10% overload is allowed for one minute every 5 minutes. PN typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V. Heavy-duty use (50% overload capability)I2hd continuous rms current. 50% overload is allowed for one minute every 5 minutes.Phd typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V.

ACS800-04 size Nominal ratings

No-overload use

Light-overload use

Heavy-duty use Frame size

Air flow

Heat dissipation

Icont.max

AImax

A

Pcont.maxkW

I2NA

PNkW

I2hdA

Phd kW m3/h W

Page 94: VSDS Manual-ABB

Technical data

94

DeratingThe load capacity (current and power) decreases if the installation site altitude exceeds 1000 metres (3300 ft), or if the ambient temperature exceeds 40°C (104°F).

Temperature derating

In the temperature range +40°C (+104°F) to +50°C (+122°F) the rated output current is decreased by 1% for every additional 1°C (1.8°F). The output current is calculated by multiplying the current given in the rating table by the derating factor.

Example If the ambient temperature is 50°C (+122°F), the derating factor is 100% - 1 · 10°C = 90% or 0.90. The output current is then 0.90 · I2N or 0.90 · I2hd.

Altitude derating

In altitudes from 1000 to 4000 m (3300 to 13123 ft) above sea level, the derating is 1% for every 100 m (328 ft). For a more accurate derating, use the DriveSize PC tool. See Installation sites above 2000 metres (6562 feet) on page 57.

Cooling characteristics

Cooling requirements for flange mounting

ACS800-04frame size

Minimum effective area of air inlet Minimum effective area of air outletcm2 cm2

IP22 cabinet IP54 cabinet IP22 cabinet IP54 cabinetR2 125 250 200 400R3 250 500 400 800R4 375 750 600 1200R5 500 1000 800 1600R6 1000 2000 1600 3200

ACS800-04frame size

Air flow: drive front side Air flow: heat sink sidem3/h m3/h

R2 18 35R3 30 69R4 30 103R5 30 168R6 30 405

%°C

Page 95: VSDS Manual-ABB

Technical data

95

Fuses

gG and aR fuses for protection against short-circuit in the input power cable or drive are listed below. Either fuse type may be used if it operates rapidly enough.

Frame sizes R2 to R4

Check from the fuse time-current curve that the operating time of the fuse is below 0.5 seconds. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. The short-circuit current can be calculated as shown below in section Frame sizes R5 and R6. Note 1: See also Planning the electrical installation: Thermal overload and short-circuit protection. For UL recognized fuses, see NEMA data on page 103.

Note 2: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 3: Larger fuses than the recommended ones must not be used.

Note 4: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table.

ACS800-04 size

Input current

FuseA A2s * V Manufacturer Type IEC size

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V-0001-2 4.4 10 483 500 ABB Control OFAF000H10 000-0002-2 5.2 10 483 500 ABB Control OFAF000H10 000-0003-2 6.7 10 483 500 ABB Control OFAF000H10 000-0004-2 9.3 16 993 500 ABB Control OFAF000H16 000-0005-2 12 16 993 500 ABB Control OFAF000H16 000-0006-2 16 20 1620 500 ABB Control OFAF000H20 000-0009-2 23 25 3100 500 ABB Control OFAF000H25 000-0011-2 31 40 9140 500 ABB Control OFAF000H40 000-0016-2 40 50 15400 500 ABB Control OFAF000H50 000-0020-2 51 63 21300 500 ABB Control OFAF000H63 000Three-phase supply voltage 380 V, 400 V or 415 V -0003-3 4.7 10 483 500 ABB Control OFAF000H10 000-0004-3 6.0 10 483 500 ABB Control OFAF000H10 000-0005-3 7.9 10 483 500 ABB Control OFAF000H10 000-0006-3 10 16 993 500 ABB Control OFAF000H16 000-0009-3 13 16 993 500 ABB Control OFAF000H16 000-0011-3 17 20 1620 500 ABB Control OFAF000H20 000-0016-3 23 25 3100 500 ABB Control OFAF000H25 000-0020-3 32 40 9140 500 ABB Control OFAF000H40 000-0023-3 38 50 15400 500 ABB Control OFAF000H50 000-0025-3 42 50 15400 500 ABB Control OFAF000H50 000-0030-3 53 63 21300 500 ABB Control OFAF000H63 000-0035-3 56 63 21300 500 ABB Control OFAF000H63 000

Page 96: VSDS Manual-ABB

Technical data

96

Frame sizes R5 and R6

Choose between gG and aR fuses according to the table under Quick guide for selecting between gG and aR fuses on page 100, or verify the operating time by checking that the short-circuit current of the installation is at least the value given in the fuse table. The short-circuit current can be calculated as follows:

where

Ik2-ph = short-circuit current in symmetrical two-phase short-circuit (A)

U = network line-to-line voltage (V)

Rc = cable resistance (ohm)

Zk = = zk · UN2/SN = transformer impedance (ohm)

zk = transformer impedance (%)

UN = transformer rated voltage (V)

SN = nominal apparent power of the transformer (kVA)

Xc = cable reactance (ohm).

Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0004-5 4.7 10 483 500 ABB Control OFAF000H10 000-0005-5 5.9 10 483 500 ABB Control OFAF000H10 000-0006-5 7.7 10 483 500 ABB Control OFAF000H10 000-0009-5 10.0 16 993 500 ABB Control OFAF000H16 000-0011-5 12.5 16 993 500 ABB Control OFAF000H16 000-0016-5 17 20 1620 500 ABB Control OFAF000H20 000-0020-5 23 25 3100 500 ABB Control OFAF000H25 000-0025-5 31 40 9140 500 ABB Control OFAF000H40 000-0028-5 36 50 15400 500 ABB Control OFAF000H50 000-0030-5 41 50 15400 500 ABB Control OFAF000H50 000-0040-5 47 63 21300 500 ABB Control OFAF000H63 000-0045-5 54 63 21300 500 ABB Control OFAF000H63 000Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0011-7 12 16 1100 690 ABB Control OFAA000GG16 000-0016-7 15 20 2430 690 ABB Control OFAA000GG20 000-0020-7 21 25 4000 690 ABB Control OFAA000GG25 000-0025-7 24 32 7000 690 ABB Control OFAA000GG32 000-0030-7 33 35 11400 690 ABB Control OFAA000GG35 000-0040-7 35 50 22800 690 ABB Control OFAA000GG50 000

PDM code:00096931-J

ACS800-04 size

Input current

FuseA A2s * V Manufacturer Type IEC size

Ik2-ph =2 · Rc

2 + (Zk + Xc)2

U

Page 97: VSDS Manual-ABB

Technical data

97

Calculation exampleDrive:

� ACS800-04-0075-3

� supply voltage U = 410 V

Transformer:

� rated power SN = 600 kVA

� rated voltage UN = 430 V

� transformer impedance zk = 7.2%.

Supply cable:

� length = 170 m

� resistance/length = 0.398 ohm/km

� reactance/length = 0.082 ohm/km.

The calculated short-circuit current 2.7 kA is higher than the minimum short-circuit current of the drive gG fuse type OFAF00H160 (2400 A). -> The 500 V gG fuse (ABB Control OFAF00H160) can be used.

·(430 V)2

600 kVA= 22.19 mohmZk = zk ·

UN2

SN= 0.072

m · 0.398ohmkm = 67.66 mohmRc = 170

m · 0.082 ohmkm = 13.94 mohmXc = 170

=410 V

2 · (67.66 mohm)2 + (22.19 mohm + 13.94 mohm)2Ik2-ph = 2.7 kA

Page 98: VSDS Manual-ABB

Technical data

98

gG fuses

* maximum total I2t value for 550 V or 690 V1) minimum short-circuit current of the installationNote 1: See also Planning the electrical installation: Thermal overload and short-circuit protection. For UL recognized fuses, see NEMA data on page 103.

Note 2: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 3: Larger fuses than the recommended ones must not be used.

Note 4: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table.

ACS800-04 size Input current

Min. short-circuit

current 1)

Fuse

A A A2s * V Manufacturer Type IEC sizeThree-phase supply voltage 208 V, 220 V, 230 V or 240 V-0025-2 67 1050 80 34500 500 ABB Control OFAF000H80 000-0030-2 81 1480 100 63600 500 ABB Control OFAF000H100 000-0040-2 101 1940 125 103000 500 ABB Control OFAF00H125 00-0050-2 138 2400 160 200000 500 ABB Control OFAF00H160 00-0060-2 163 2850 200 350000 500 ABB Control OFAF1H200 1-0070-2 202 3300 224 420000 500 ABB Control OFAF1H224 1Three-phase supply voltage 380 V, 400 V or 415 V -0040-3 69 1050 80 34500 500 ABB Control OFAF000H80 000-0050-3 83 1480 100 63600 500 ABB Control OFAF000H100 000-0060-3 100 1940 125 103000 500 ABB Control OFAF00H125 00-0075-3 142 2400 160 200000 500 ABB Control OFAF00H160 00-0070-3 138 2400 160 200000 500 ABB Control OFAF00H160 00-0100-3 163 2850 200 350000 500 ABB Control OFAF1H200 1-0120-3 198 3300 224 420000 500 ABB Control OFAF1H224 1-0135-3 221 3820 250 550000 500 ABB Control OFAF1H250 1-0165-3 254 4510 315 1100000 500 ABB Control OFAF2H315 2Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0050-5 64 1050 80 34500 500 ABB Control OFAF000H80 000-0060-5 78 1480 100 63600 500 ABB Control OFAF000H100 000-0070-5 95 1940 125 103000 500 ABB Control OFAF00H125 00-0105-5 142 2400 160 200000 500 ABB Control OFAF00H160 00-0100-5 121 2400 160 200000 500 ABB Control OFAF00H160 00-0120-5 155 2850 200 350000 500 ABB Control OFAF1H200 1-0140-5 180 2850 200 350000 500 ABB Control OFAF1H200 1-0165-5 222 3820 250 550000 500 ABB Control OFAF1H250 1-0205-5 256 4510 315 1100000 500 ABB Control OFAF2H315 2Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0050-7 52 740 63 28600 690 ABB Control OFAA0GG63 0-0060-7 58 740 63 28600 690 ABB Control OFAA0GG63 0-0070-7 79 1050 80 52200 690 ABB Control OFAA0GG80 0-0100-7 91 1480 100 93000 690 ABB Control OFAA1GG100 1-0120-7 112 1940 125 126000 690 ABB Control OFAA1GG125 1-0145-7 131 2400 160 220000 690 ABB Control OFAA1GG160 1-0175-7 162 2850 200 350000 690 ABB Control OFAA1GG200 1-0205-7 186 3820 250 700000 690 ABB Control OFAA2GG250 2

PDM code:00096931-J, 00556489

Page 99: VSDS Manual-ABB

Technical data

99

Ultrarapid (aR) fuses

1) minimum short-circuit current of the installationNote 1: See also Planning the electrical installation: Thermal overload and short-circuit protection. For UL recognized fuses, see NEMA data on page 103.

Note 2: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 3: Larger fuses than the recommended ones must not be used.

Note 4: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table.

ACS800-04 size Input current

Min. short-circuit

current 1)

Fuse

A A A2s V Manufacturer Type IEC sizeThree-phase supply voltage 208 V, 220 V, 230 V or 240 V-0025-2 67 400 100 4 650 690 Bussmann 170M1567 DIN000-0030-2 81 520 125 8 500 690 Bussmann 170M1568 DIN000-0040-2 101 695 160 8 500 690 Bussmann 170M1569 DIN000-0050-2 138 1630 315 80 500 690 Bussmann 170M1572 DIN000-0060-2 163 1280 315 46 500 690 Bussmann 170M3817 DIN1*-0070-2 202 1810 400 105 000 690 Bussmann 170M3819 DIN1*Three-phase supply voltage 380 V, 400 V or 415 V -0040-3 69 400 100 4 650 690 Bussmann 170M1567 DIN000-0050-3 83 520 125 8 500 690 Bussmann 170M1568 DIN000-0060-3 100 695 160 8 500 690 Bussmann 170M1569 DIN000-0075-3 142 1630 315 80 500 690 Bussmann 170M1572 DIN000-0070-3 138 1630 315 80 500 690 Bussmann 170M1572 DIN000-0100-3 163 1280 315 46 500 690 Bussmann 170M3817 DIN1*-0120-3 198 1810 400 105 000 690 Bussmann 170M3819 DIN1*-0135-3 221 2210 500 145 000 690 Bussmann 170M5810 DIN2*-0165-3 254 2620 550 190 000 690 Bussmann 170M5811 DIN2*Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0050-5 64 400 100 4650 690 Bussmann 170M1567 DIN000-0060-5 78 520 125 8500 690 Bussmann 170M1568 DIN000-0070-5 95 520 125 8500 690 Bussmann 170M1568 DIN000-0105-5 142 1630 315 80500 690 Bussmann 170M1572 DIN000-0100-5 121 1630 315 80500 690 Bussmann 170M1572 DIN000-0120-5 155 1280 315 46500 690 Bussmann 170M3817 DIN1*-0140-5 180 1810 400 105000 690 Bussmann 170M3819 DIN1*-0165-5 222 2210 500 145 000 690 Bussmann 170M5810 DIN2*-0205-5 256 2620 550 190 000 690 Bussmann 170M5811 DIN2*Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0050-7 52 400 100 4650 690 Bussmann 170M1567 000-0060-7 58 400 100 4650 690 Bussmann 170M1567 000-0070-7 79 520 125 8500 690 Bussmann 170M1568 000-0100-7 91 695 160 16000 690 Bussmann 170M1569 000-0120-7 112 750 200 15 000 690 Bussmann 170M3815 1*-0145-7 131 1520 350 68 500 690 Bussmann 170M3818 DIN1*-0175-7 162 1520 350 68 500 690 Bussmann 170M3818 DIN1*-0205-7 186 1610 400 74 000 690 Bussmann 170M5808 DIN2*

PDM code: 00096931-J, 00556489

Page 100: VSDS Manual-ABB

Technical data

100

Quick guide for selecting between gG and aR fuses

The table below is a short cut in selecting between gG and aR fuses. The combinations (cable size, cable length, transformer size and fuse type) in the table fulfil the minimum requirements for the proper operation of the fuse.

Note 1: The supply transformer minimum power in kVA is calculated with a zk value of 6% and frequency 50 Hz.

Note 2: The table is not intended for transformer selection - that must be done separately.

ACS800-01 size Cable type Supply transformer minimum apparent power SN (kVA)Copper Aluminium Maximum cable length with gG fuses Maximum cable length with aR fuses

10 m 50 m 100 m 10 m 100 m 200 mThree-phase supply voltage 208 V, 220 V, 230 V or 240 V -0025-2 3×25 Cu 3×35 Al 33 39 28 28-0030-2 3×35 Cu 3×50 Al 46 56 34 34-0040-2 3×50 Cu 3×70 Al 60 73 42 42-0050-2 3×70 Cu 3×95 Al 75 89 58 71-0060-2 3×95 Cu 3×120 Al 89 110 68 71-0070-2 3×120 Cu 3×185 Al 110 120 84 84Three-phase supply voltage 380 V, 400 V or 415 V -0040-3 3×25 Cu 3×35 Al 56 59 72 50 50 50-0050-3 3×35 Cu 3×50 Al 79 85 110 60 60 60-0060-3 3×50 Cu 3×70 Al 110 120 140 72 72 72-0075-3 3×70 Cu 3×95 Al 130 140 160 99 99 140-0070-3 3×70 Cu 3×95 Al 130 140 170 100 100 140-0100-3 3×95 Cu 3×120 Al 160 170 200 120 120 140-0120-3 3×120 Cu 3×185 Al 180 190 220 150 150 150-0135-3 3×150 Cu 3×240 Al 210 220 260 160 160 160-0165-3 3×185 Cu 3×240 Al 250 270 320 190 190 200Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0050-5 3×25 Cu 3×35 Al 67 70 79 56 56 56-0060-5 3×25 Cu 3×50 Al 95 110 130 68 68 68-0070-5 3×35 Cu 3×70 Al 130 140 160 83 83 83-0105-5 3×70 Cu 3×95 Al 160 170 190 130 130 150-0100-5 3×70 Cu 3×95 Al 160 170 190 110 120 150-0120-5 3×95 Cu 3×120 Al 190 200 220 140 140 150-0140-5 3×95 Cu 3×150 Al 190 200 220 160 160 160-0165-5 3×150 Cu 3×240 Al 250 260 290 200 200 200-0205-5 3×185 Cu 3×240 Al 290 320 360 230 230 230Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0050-7 3×16 Cu 3×25 Al 65 67 70 63 63 63-0060-7 3×16 Cu 3×25 Al 70 70 70 70 70 70-0070-7 3×25 Cu 3×50 Al 95 95 99 95 95 95-0100-7 3×35 Cu 3×50 Al 130 140 150 110 110 110-0120-7 3×50 Cu 3×70 Al 180 180 190 140 140 140-0145-7 3×70 Cu 3×95 Al 220 220 240 160 160 160-0175-7 3×95 Cu 3×120 Al 260 260 280 200 200 200-0205-7 3×95 Cu 3×150 Al 340 360 390 230 230 230

PDM code: 00556489 A

Page 101: VSDS Manual-ABB

Technical data

101

The following parameters can effect on the correct operation of the protection:

� cable length, i.e. the longer the cable the weaker the fuse protection, as the long cable limits the fault current

� cable size, i.e. the smaller the cable the weaker the fuse protection, as the small cable size limits the fault current

� transformer size, i.e the smaller the transformer the weaker the fuse protection, as the small transformer limits the fault current

� transformer impedance, i.e. the higher the zk the weaker the fuse protection as high impedance limits the fault current.

The protection can be improved by installing a bigger supply transformer and/or bigger cables, and in most cases by selecting aR fuses instead of gG fuses. Selection of smaller fuses improves the protection, but may also affect the fuse life time and lead to unnecessary operation of the fuses.

In case of any uncertainty regarding the drive protection, please contact your local ABB.

Cable types

The table below gives copper and aluminium cable types for different load currents. Cable sizing is based on max. 9 cables laid on a cable ladder side by side, ambient temperature 30°C, PVC insulation, surface temperature 70°C (EN 60204-1 and IEC 60364-5-52/2001). For other conditions, size the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

Copper cables with concentric copper shield

Aluminium cables with concentric copper shield

Max. load currentA

Cable typemm2

Max. load currentA

Cable typemm2

13 3×1.5 61 3×2518 3×2.5 69 3×3524 3×4 83 3×5030 3×6 107 3×7042 3×10 130 3×9556 3×16 151 3×12071 3×25 174 3×15088 3×35 199 3×185

107 3×50 235 3×240137 3×70 274 3 × (3×50)167 3×95 260 2 × (3×95)193 3×120223 3×150255 3×185

3BFA 01051905 C

Page 102: VSDS Manual-ABB

Technical data

102

Cable entries

Brake resistor, mains and motor cable terminal sizes (per phase) and tightening torques are given below.

* 16 mm2 rigid solid cable, 10 mm2 flexible stranded cable

** with cable lugs 16...70 mm2, tightening torque 20...40 Nm. Cable lugs are not included in the delivery. See page 64.

Dimensions, weights and noise

* Depth depends on the options included in the drive.

Frame size

U1, V1, W1, U2, V2, W2, R+, R- Earthing PEMaximum wire size Tightening torque Maximum wire size Tightening torque

mm2 Nm mm2 NmR2 up to 16 * 1.2...1.5 up to 10 1.5R3 up to 16 * 1.2...1.5 up to 10 1.5R4 up to 25 2�4 up to 16 3.0R5 6...70 15 6...70 15R6 95...185 ** 20...40 95 8

Frame size Height Width Depth* Weight Noisemm mm mm kg dB

R2 370 165 193...226 8 62R3 420 173 231.5...265 13 62R4 490 240 252.2...271.5 24 62R5 602 265 275.5 32 65R6 700 300 399 64 65

Page 103: VSDS Manual-ABB

Technical data

103

NEMA data

Ratings

The NEMA ratings for the ACS800-U4 with 60 Hz supplies are given below. The symbols are described below the table. For sizing, derating and 50 Hz supplies, see section IEC data.ACS800-U4 size Imax Normal use Heavy-duty use Frame

sizeAir flow Heat

dissipation

AI2NA

PN HP

I2hdA

PhdHP ft3/min BTU/Hr

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V-0002-2 8.2 6.6 1.5 4.6 1 R2 21 350-0003-2 10.8 8.1 2 6.6 1.5 R2 21 350-0004-2 13.8 11 3 7.5 2 R2 21 410-0006-2 24 21 5 13 3 R3 41 550-0009-2 32 27 7.5 17 5 R3 41 680-0011-2 46 34 10 25 7.5 R3 41 850-0016-2 62 42 15 31 10 R4 61 1150-0020-2 72 54 20 * 42 15 ** R4 61 1490-0025-2 86 69 25 54 20 ** R5 147 1790-0030-2 112 80 30 68 25 ** R5 147 2090-0040-2 138 104 40 * 80 30 ** R5 147 2770-0050-2 164 132 50 104 40 R6 238 3370-0060-2 202 157 60 130 50 ** R6 238 4050-0070-2 282 192 75 154 60 ** R6 238 4910Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V or 480 V -0004-5 6.5 4.9 3 3.4 2 R2 21 410-0005-5 8.2 6.2 3 4.2 2 R2 21 480-0006-5 10.8 8.1 5 5.6 3 R2 21 550-0009-5 13.8 11 7.5 8.1 5 R2 21 690-0011-5 17.6 14 10 11 7.5 R2 21 860-0016-5 24 21 15 15 10 R3 41 1150-0020-5 32 27 20 21 15 R3 41 1490-0025-5 46 34 25 27 20 R3 41 1790-0030-5 62 42 30 34 25 R4 61 2090-0045-5 72 54 40 39 30 R4 61 2770-0050-5 86 65 50 52 40 R5 147 3370-0060-5 112 79 60 65 50 R5 147 4050-0070-5 138 96 75 77 60 R5 147 4910-0105-5 170 141 100 100 75 R5 238 7340-0100-5 164 124 100 96 75 R6 238 6610-0120-5 202 157 125 124 100 R6 238 7890-0140-5 282 180 150 156 125 R6 238 9600-0205-5 326 254 200 215 150 R6 238 12980

Page 104: VSDS Manual-ABB

Technical data

104

* Overload may be limited to 5% at high speeds (> 90% speed) by the internal power limit of the drive. The limitation also depends on motor characteristics and network voltage.

** Overload may be limited to 40% at high speeds (> 90% speed) by the internal power limit of the drive. The limitation also depends on motor characteristics and network voltage.

*** Higher rating is available with special 4-pole high-efficiency NEMA motor.

Symbols

Note 1: The ratings apply in ambient temperature of 40°C (104°F). In lower temperatures the ratings are higher (except Imax).

Sizing

See page 93.

Derating

See page 94.

Three-phase supply voltage 525 V, 575 V or 600 V -0011-7 14 11.5 10 8.5 7.5 R4 61 1050-0016-7 19 15 10 11 10 R4 61 1200-0020-7 28 20 15/20*** 15 15** R4 61 1550-0025-7 38 23 20 20 20** R4 61 1850-0030-7 44 30 25/30*** 25 25** R4 61 2100-0040-7 54 34 30 30 30** R4 61 2400-0050-7 68 46 40 40 40** R5 147 2900-0060-7 84 52 50 42 40 R5 147 3450-0070-7 104 73 60 54 50 R6 238 4200-0100-7 124 86 75 62 60 R6 238 5650-0120-7 172 108 100 86 75 R6 238 6700-0145-7 190 125 125 99 100 R6 238 9100-0175-7 245 155 150 131 125 R6 238 11900-0205-7 245 192 200 147 150 R6 238 14300

PDM code: 00096931-J

Nominal ratingsImax maximum output current. Available for 10 s at start, otherwise as long as allowed by drive

temperature. Normal use (10% overload capability)I2N continuous rms current. 10% overload is typically allowed for one minute every 5 minutes. PN typical motor power. The power ratings apply to most 4-pole NEMA rated motors (230 V,

460 V or 575 V).Heavy-duty use (50% overload capability)I2hd continuous rms current. 50% overload is typically allowed for one minute every 5 minutes.Phd typical motor power. The power ratings apply to most 4-pole NEMA rated motors (230 V,

460 V or 575 V).

ACS800-U4 size Imax Normal use Heavy-duty use Frame size

Air flow Heat dissipation

AI2NA

PN HP

I2hdA

PhdHP ft3/min BTU/Hr

Page 105: VSDS Manual-ABB

Technical data

105

Fuses

UL class T fuses for branch circuit protection are listed below. Fast acting class T or faster fuses are recommended in the USA.

Check from the fuse time-current curve that the operating time of the fuse is below 0.5 seconds for units of frame sizes R2 to R4 and 0.1 seconds for units of frame sizes R5 and R6. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. The short-circuit current can be calculated as shown in section Frame sizes R5 and R6 on page 96. Note 1: See also Planning the electrical installation: Thermal overload and short-circuit protection.

Note 2: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 3: Larger fuses than the recommended ones must not be used.

Note 4: Fuses from other manufacturers can be used if they meet the ratings and the melting curve of the fuse does not exceed the melting curve of the fuse mentioned in the table.

ACS800-U4 type

Frame size Input current

Fuse

A A V Manufacturer Type UL classThree-phase supply voltage 208 V, 220 V, 230 V or 240 V-0002-2 R2 5.2 10 600 Bussmann JJS-10 T-0003-2 R2 6.5 10 600 Bussmann JJS-10 T-0004-2 R2 9.2 15 600 Bussmann JJS-15 T-0006-2 R3 18 25 600 Bussmann JJS-25 T-0009-2 R3 24 30 600 Bussmann JJS-30 T-0011-2 R3 31 40 600 Bussmann JJS-40 T-0016-2 R4 38 50 600 Bussmann JJS-50 T-0020-2 R4 49 70 600 Bussmann JJS-70 T-0025-2 R5 64 90 600 Bussmann JJS-90 T-0030-2 R5 75 100 600 Bussmann JJS-100 T-0040-2 R5 102 125 600 Bussmann JJS-125 T-0050-2 R6 126 175 600 Bussmann JJS-175 T-0060-2 R6 153 200 600 Bussmann JJS-200 T-0070-2 R6 190 250 600 Bussmann JJS-250 TThree-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V or 480 V-0004-5 R2 4.1 10 600 Bussmann JJS-10 T-0005-5 R2 5.4 10 600 Bussmann JJS-10 T-0006-5 R2 6.9 10 600 Bussmann JJS-10 T-0009-5 R2 9.8 15 600 Bussmann JJS-15 T-0011-5 R2 13 20 600 Bussmann JJS-20 T-0016-5 R3 18 25 600 Bussmann JJS-25 T-0020-5 R3 24 35 600 Bussmann JJS-35 T-0025-5 R3 31 40 600 Bussmann JJS-40 T-0030-5 R4 40 50 600 Bussmann JJS-50 T-0045-5 R4 54 70 600 Bussmann JJS-70 T-0050-5 R5 63 80 600 Bussmann JJS-80 T-0060-5 R5 77 100 600 Bussmann JJS-100 T-0070-5 R5 94 125 600 Bussmann JJS-125 T-0105-5 R5 138 150 600 Bussmann JJS-150 T-0100-5 R6 121 150 600 Bussmann JJS-150 T-0120-5 R6 155 200 600 Bussmann JJS-200 T-0140-5 R6 179 225 600 Bussmann JJS-225 T-0205-5 R6 243 350 600 Bussmann JJS-350 T

Page 106: VSDS Manual-ABB

Technical data

106

Cable types

Cable sizing is based on NEC Table 310-16 for copper wires, 75°C (167°F) wire insulation at 40°C (104°F) ambient temperature. Not more than three current-carrying conductors in raceway or cable or earth (directly buried). For other conditions, dimension the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

Three-phase supply voltage 525 V, 575 V, 600 V-0011-7 R4 10 20 600 Bussmann JJS-20 T-0016-7 R4 13 20 600 Bussmann JJS-20 T-0020-7 R4 19 30 600 Bussmann JJS-30 T-0025-7 R4 21 30 600 Bussmann JJS-30 T-0030-7 R4 29 45 600 Bussmann JJS-45 T-0040-7 R4 32 45 600 Bussmann JJS-45 T-0050-7 R5 45 70 600 Bussmann JJS-70 T-0060-7 R5 51 80 600 Bussmann JJS-80 T-0070-7 R6 70 100 600 Bussmann JJS-100 T-0100-7 R6 82 125 600 Bussmann JJS-125 T-0120-7 R6 103 150 600 Bussmann JJS-150 T-0145-7 R6 121 200 600 Bussmann JJS-200 T-0175-7 R6 150 200 600 Bussmann JJS-200 T-0205-7 R6 188 250 600 Bussmann JJS-250 T

PDM code: 00096931-J

Copper cables with concentric copper shieldMax. load current

ACable type

AWG/kcmil18 1422 1231 1044 857 675 488 3101 2114 1132 1/0154 2/0176 3/0202 4/0224 250 MCM or 2 x 1251 300 MCM or 2 x 1/0

PDM code: 00096931

ACS800-U4 type

Frame size Input current

Fuse

A A V Manufacturer Type UL class

Page 107: VSDS Manual-ABB

Technical data

107

Cable Entries

Brake resistor, input and motor cable (per phase) terminal sizes and tightening torques are given below.

* 6 AWG rigid solid cable, 8 AWG flexible stranded cable

** with cable lugs 6...2/0 AWG, tightening torque 14.8...29.5 lbf ft. Cable lugs are not included in the delivery. See page 64.

Dimensions, weights and noise

* Depth depends on the options included in the drive.

Frame size

U1, V1, W1, U2, V2, W2, R+, R- Earthing PEMaximum wire size Tightening torque Maximum wire size Tightening torque

AWG lbf ft AWG lbf ftR2 up to 6 * 0.9�1.1 up to 8 1.1R3 up to 6 * 0.9...1.1 up to 8 1.1R4 up to 4 1.5�3.0 up to 5 2.2R5 10...2/0 11.1 10...2/0 11.1R6 3/0...350 MCM ** 14.8...29.5 4/0 5.9

Frame size Height Width Depth* Weight Noisein. in. in. lb dB

R2 14.57 6.5 7.6...8.9 18 62R3 16.54 6.81 9.11...10.43 29 62R4 19.29 9.45 9.93...10.69 53 62R5 23.70 10.43 10.85...11.11 71 65R6 27.56 11.81 15.71 141 65

Input power connectionVoltage (U1) 208/220/230/240 VAC 3-phase ±10% for 230 VAC units

380/400/415 VAC 3-phase ±10% for 400 VAC units 380/400/415/440/460/480/500 VAC 3-phase ±10% for 500 VAC units525/550/575/600/660/690 VAC 3-phase ±10% for 690 VAC units

Rated conditional short-circuit current (IEC 60439-1)

65 kA when protected by fuses given in the IEC data fuse tables.

Short-circuit current protection (UL 508 CCSA C22.2 No. 14-05)

US and Canada: The drive is suitable for use on a circuit capable of delivering not more than 100 kA rms symmetrical amperes at the drive nominal voltage when protected by fuses given in the NEMA data fuse table.

Frequency 48 to 63 Hz, maximum rate of change 17%/sImbalance Max. ±3% of nominal phase to phase input voltageFundamental power factor (cos phi1)

0.98 (at nominal load)

Page 108: VSDS Manual-ABB

Technical data

108

Motor connectionVoltage (U2) 0 to U1, 3-phase symmetrical, Umax at the field weakening pointFrequency DTC mode: 0 to 3.2 · fFWP. Maximum frequency 300 Hz.

fFWP =

fFWP: frequency at field weakening point; UNmains: mains (input power) voltage; UNmotor: rated motor voltage; fNmotor: rated motor frequency

Frequency resolution 0.01 HzCurrent See section IEC data.Power limit 1.5 · Phd, 1.1 · PN or Pcont.max (whichever value is greatest)Field weakening point 8 to 300 HzSwitching frequency 3 kHz (average). In 690 V units 2 kHz (average).Maximum recommended motor cable length

Sizing method Max. motor cable lengthDTC control Scalar control

according to I2N and I2hd R2 to R3: 100 m (328 ft)R4 to R6: 300 m (984 ft)

R2: 150 m (492 ft)R3 to R6: 300 m (984 ft)according to Icont.max at

ambient temperatures below 30°C (86°F)according to Icont.max at ambient temperatures above 30°C (86°F)

R2: 50 m (164 ft) Note: This applies to units with EMC filter also.R3 and R4: 100 m (328 ft) R5 and R6: 150 m (492 ft)

Note: With cables longer than 100 m (328 ft), the EMC Directive requirements may not be fulfilled. See section CE marking.

EfficiencyApproximately 98% at nominal power level

CoolingMethod Internal fan, flow direction from bottom to top. Free space around the unit See chapter Mechanical installation.

Degrees of protectionIP20 (UL open type). See chapter Planning the cabinet assembly.

UNmainsUNmotor

· fNmotor

Page 109: VSDS Manual-ABB

Technical data

109

AGPS-11CNominal input voltage 115...230 VAC ±10%Nominal input current 0.1 A (230 V) / 0.2 A (115 V)Nominal frequency 50/60 HzMax. external fuse 16 AX1 terminal sizes 3 x 2.5 mm2

Output voltage 15 VDC ±0.5 VNominal output current 0.4 AX2 terminal block type JST B4P-VHAmbient temperature 0...50°CRelative humidity Max. 90%, no condensation allowedDimensions (with enclosure) 167 x 128 x 52 mm (Height x Width x Depth)Weight (with enclosure) 0.75 kgApprovals C-UL, US listed

Ambient conditionsEnvironmental limits for the drive are given below. The drive is to be used in a heated, indoor, controlled environment.

Operation installed for stationary use

Storagein the protective package

Transportationin the protective package

Installation site altitude 0 to 4000 m (13123 ft) above sea level [above 1000 m (3281 ft), see section Derating]

- -

Air temperature -15 to +50°C (5 to 122°F). No frost allowed. See section Derating.

-40 to +70°C (-40 to +158°F) -40 to +70°C (-40 to +158°F)

Relative humidity 5 to 95% Max. 95% Max. 95%No condensation allowed. Maximum allowed relative humidity is 60% in the presence of corrosive gases.

Contamination levels (IEC 60721-3-3, IEC 60721-3-2, IEC 60721-3-1)

No conductive dust allowed.Boards without coating: Chemical gases: Class 3C1Solid particles: Class 3S2Boards with coating: Chemical gases: Class 3C2Solid particles: Class 3S2

Boards without coating: Chemical gases: Class 1C2Solid particles: Class 1S3Boards with coating: Chemical gases: Class 1C2Solid particles: Class 1S3

Boards without coating: Chemical gases: Class 2C2Solid particles: Class 2S2Boards with coating: Chemical gases: Class 2C2Solid particles: Class 2S2

Atmospheric pressure 70 to 106 kPa0.7 to 1.05 atmospheres

70 to 106 kPa0.7 to 1.05 atmospheres

60 to 106 kPa0.6 to 1.05 atmospheres

Vibration (IEC 60068-2)* Max. 1 mm (0.04 in.)(5 to 13.2 Hz),max. 7 m/s2 (23 ft/s2)(13.2 to 100 Hz) sinusoidal

Max. 1 mm (0.04 in.)(5 to 13.2 Hz),max. 7 m/s2 (23 ft/s2)(13.2 to 100 Hz) sinusoidal

Max. 3.5 mm (0.14 in.)(2 to 9 Hz), max. 15 m/s2 (49 ft/s2)(9 to 200 Hz) sinusoidal

Shock (IEC 60068-2-29) Not allowed Max. 100 m/s2 (330 ft./s2), 11 ms

Max. 100 m/s2 (330 ft./s2), 11 ms

Free fall Not allowed 250 mm (10 in.) for weight under 100 kg (220 lb)100 mm (4 in.) for weight over 100 kg (220 lb)

250 mm (10 in.) for weight under 100 kg (220 lb)100 mm (4 in.) for weight over 100 kg (220 lb)

*Note: For frame sizes R2 to R4 with panel option maximum allowed vibration is 3 m/s2. For higher vibration use the RPMP kit. See Control Panel Mounting Platform Kit (RPMP) Installation Guide [3AFE64677560 (English)].

Page 110: VSDS Manual-ABB

Technical data

110

MaterialsDrive enclosure � PC/ABS 2.5 mm, colour NCS 1502-Y (RAL 90021 / PMS 420 C)

� hot-dip zinc coated steel sheet 1.5 to 2 mm, thickness of coating 100 micrometres� cast aluminium AlSi (R2 and R3)� extruded aluminium AlSi (R4 to R6)

Package Corrugated cardboard (frames R2 to R5 and option modules), plywood and wood (frame size R6), expanded polystyrene. Plastic covering of the package: PE-LD, bands PP or steel.

Disposal The drive contains raw materials that should be recycled to preserve energy and natural resources. The package materials are environmentally compatible and recyclable. All metal parts can be recycled. The plastic parts can either be recycled or burned under controlled circumstances, according to local regulations. Most recyclable parts are marked with recycling marks.If recycling is not feasible, all parts excluding electrolytic capacitors and printed circuit boards can be landfilled. The DC capacitors (C1-1 to C1-x) contain electrolyte and the printed circuit boards contain lead, both of which are classified as hazardous waste within the EU. They must be removed and handled according to local regulations. For further information on environmental aspects and more detailed recycling instructions, please contact your local ABB distributor.

Applicable standardsThe drive complies with the following standards. The compliance with the European Low Voltage Directive is verified according to standards EN 61800-5-1 and EN 60204-1.

� EN 60204-1 (2006) Safety of machinery. Electrical equipment of machines. Part 1: General requirements. Provisions for compliance: The final assembler of the machine is responsible for installing - an emergency-stop device - a supply disconnecting device- the ACS800-04/U4 into a cabinet.

� EN 60529: 1991 (IEC 60529)

Degrees of protection provided by enclosures (IP code)

� IEC 60664-1 (2007) Insulation coordination for equipment within low-voltage systems. Part 1: Principles, requirements and tests.

� EN 61800-3 (2004) Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods

� EN 61800-5-1 (2003) Adjustable speed electrical power drive systems. Part 5-1: Safety requirements � electrical, thermal and energy

� UL 508C (2002) UL Standard for Safety, Power Conversion Equipment, second edition� NEMA 250 (2003) Enclosures for Electrical Equipment (1000 Volts Maximum)� CSA C22.2 No. 14-05

(2005)Industrial control equipment

Page 111: VSDS Manual-ABB

Technical data

111

CE markingA CE mark is attached to the drive to verify that the unit follows the provisions of the European Low Voltage and EMC Directives (Directive 73/23/EEC, as amended by 93/68/EEC and Directive 89/336/EEC, as amended by 2004/108EC).

DefinitionsEMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes establishments connected to a network not supplying domestic premises.

Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and commissioned only by a professional when used in the first environment. Note: A professional is a person or organisation having necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment.

Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

Compliance with the EMC DirectiveThe EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard [EN 61800-3 (2004)] covers requirements stated for drives.

Compliance with the EN 61800-3 (2004)

First environment (drive of category C2)The drive complies with the standard with the following provisions:

1. The drive is equipped with EMC filter +E202.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! The drive may cause radio interference if used in a residential or domestic environment. The user is required to take measures to prevent interference, in addition to the requirements for CE compliance listed above, if necessary.

Note: It is not allowed to install a drive equipped with EMC filter +E202 on IT (unearthed) systems. The supply network becomes connected to earth potential through the EMC filter capacitors which may cause danger or damage the unit.

Page 112: VSDS Manual-ABB

Technical data

112

Second environment (drive of category C3)The drive complies with the standard with the following provisions:

1. Frame sizes R2�R5: The drive is equipped with EMC filter +E200. The filter is suitable for TN (earthed) systems only.Frame size R6: The drive is equipped with EMC filter +E210. The filter is suitable for TN (earthed) and IT (unearthed) systems.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Second environment (drive of category C4)If the provisions under Second environment (drive of category C3) cannot be met, e.g. the drive cannot be equipped with EMC filter +E200 when installed to an IT (unearthed) network, the requirements of the standard can be met as follows:

1. It is ensured that no excessive emission is propagated to neighbouring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, a supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative.

3. The motor and control cables are selected as specified in the Hardware Manual.

4. The drive is installed according to the instructions given in the Hardware Manual.

WARNING! A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Machinery DirectiveThe drive complies with the European Union Machinery Directive (98/37/EC) requirements for an equipment intended to be incorporated into machinery.

Low voltage

Equipment

Low voltage

Equipment

Equipment(victim)

Supply transformer

Medium voltage network

Static screen

Point of measurement

Drive

Neighbouring network

Page 113: VSDS Manual-ABB

Technical data

113

�C-tick� marking�C-tick� marking is required in Australia and New Zealand. A �C-tick� mark is attached to each drive in order to verify compliance with the relevant standard (IEC 61800-3 (2004) � Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods), mandated by the Trans-Tasman Electromagnetic Compatibility Scheme.

DefinitionsEMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

The Trans-Tasman Electromagnetic Compatibility Scheme (EMCS) was introduced by the Australian Communication Authority (ACA) and the Radio Spectrum Management Group (RSM) of the New Zealand Ministry of Economic Development (NZMED) in November 2001. The aim of the scheme is to protect the radiofrequency spectrum by introducing technical limits for emission from electrical/electronic products.

First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes establishments connected to a network not supplying domestic premises.

Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and commissioned only by a professional when used in the first environment. Note: A professional is a person or organisation having necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment.

Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

Compliance with IEC 61800-3

First environment (drive of category C2)The drive complies with the limits of IEC 61800-3 with the following provisions:

1. The drive is equipped with EMC filter +E202.

2. The drive is installed according to the instructions given in the Hardware Manual.

3. The motor and control cables used are selected as specified in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! The drive may cause radio interference if used in a residential or domestic environment. The user is required to take measures to prevent interference, in addition to the requirements for CE compliance listed above, if necessary.

Note: The drive must not be equipped with EMC filter +E202 when installed to IT (unearthed) systems. The mains becomes connected to earth potential through the EMC filter capacitors. In IT systems this may cause danger or damage the unit.

Page 114: VSDS Manual-ABB

Technical data

114

Second environment (drive of category C3)The drive complies with the standard with the following provisions:

1. Frame sizes R2�R5: The drive is equipped with EMC filter +E200. The filter is suitable for TN (earthed) systems only.Frame size R6: The drive is equipped with EMC filter +E210. The filter is suitable for TN (earthed) and IT (unearthed) systems.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Second environment (drive of category C4)If the provisions under Second environment (drive of category C3) cannot be met, e.g. the drive cannot be equipped with EMC filter +E200 when installed to an IT (unearthed) network, the requirements of the standard can be met as follows for restricted distribution:

1. It is ensured that no excessive emission is propagated to neighbouring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, a supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative.

3. The motor and control cables are selected as specified in the Hardware Manual.

4. The drive is installed according to the instructions given in the Hardware Manual.

WARNING! A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Marine type approvalsACS800-04+C132 are type approved by American Bureau of Shipping, Lloyd�s Register of Shipping and Det Norske Veritas.

Marine type approvals are pending for the following types: ACS800-04-0135-3+C132, ACS800-04-0165-3+C132, ACS800-04-0165-5+C132, ACS800-04-0205-5+C132, ACS800-04-0145-7+C132, ACS800-04-0175-7+C132 and ACS800-04-0205-7+C132.

Low voltage

Equipment

Low voltage

Equipment

Equipment(victim)

Supply transformer

Medium voltage network

Static screen

Point of measurement

Drive

Neighbouring network

Page 115: VSDS Manual-ABB

Technical data

115

UL/CSA markingsThe ACS800-04 and ACS800-U4 are C-UL US listed and CSA marked.

ULThe drive is suitable for use on a circuit capable of delivering not more than 100 kA rms symmetrical amperes at the drive nominal voltage (600 V maximum for 690 V units) when protected by fuses given in the NEMA data fuse table. The ampere rating is based on tests done according to UL 508C.

The drive provides overload protection in accordance with the National Electrical Code (US). See ACS800 Firmware Manual for setting. Default setting is off, must be activated at start-up.

The drives are to be used in a heated indoor controlled environment. See section Ambient conditions for specific limits.

Brake chopper - ABB has brake choppers that, when applied with appropriately sized brake resistors, will allow the drive to dissipate regenerative energy (normally associated with quickly decelerating a motor). Proper application of the brake chopper is defined in chapter Resistor braking.

Equipment warranty and liabilityThe manufacturer warrants the equipment supplied against defects in design, materials and workmanship for a period of twelve (12) months after installation or twenty-four (24) months from date of manufacturing, whichever first occurs. The local ABB office or distributor may grant a warranty period different to the above and refer to local terms of liability as defined in the supply contract.

The manufacturer is not responsible for

� any costs resulting from a failure if the installation, commissioning, repair, alternation, or ambient conditions of the drive do not fulfil the requirements specified in the documentation delivered with the unit and other relevant documentation.

� units subjected to misuse, negligence or accident

� units comprised of materials provided or designs stipulated by the purchaser.

In no event shall the manufacturer, its suppliers or subcontractors be liable for special, indirect, incidental or consequential damages, losses or penalties.

This is the sole and exclusive warranty given by the manufacturer with respect to the equipment and is in lieu of and excludes all other warranties, express or implied, arising by operation of law or otherwise, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose.

If you have any questions concerning your ABB drive, please contact the local distributor or ABB office. The technical data, information and specifications are valid at the time of printing. The manufacturer reserves the right to modifications without prior notice.

Page 116: VSDS Manual-ABB

Technical data

116

Product protection in the USThis product is protected by one or more of the following US patents:

Other patents are pending.

4,920,306 5,301,085 5,463,302 5,521,483 5,532,568 5,589,754 5,612,604 5,654,624 5,799,805 5,940,286 5,942,874 5,952,6136,094,364 6,147,887 6,175,256 6,184,740 6,195,274 6,229,3566,252,436 6,265,724 6,305,464 6,313,599 6,316,896 6,335,6076,370,049 6,396,236 6,448,735 6,498,452 6,552,510 6,597,1486,741,059 6,774,758 6,844,794 6,856,502 6,859,374 6,922,8836,940,253 6,934,169 6,956,352 6,958,923 6,967,453 6,972,9766,977,449 6,984,958 6,985,371 6,992,908 6,999,329 7,023,1607,034,510 7,036,223 7,045,987 7,057,908 7,059,390 7,067,9977,082,374 7,084,604 7,098,623 7,102,325 D503,931 D510,319D510,320 D511,137 D511,150 D512,026 D512,696 D521,466.

Page 117: VSDS Manual-ABB

Dimensional drawings

117

Dimensional drawings

What this chapter containsDimensional drawings of the ACS800-04/U4, flange mounting kits and AGPS board are shown below. The dimensions are given in millimetres and [inches].

Page 118: VSDS Manual-ABB

Dimensional drawings

118

Frame size R2 (with optional control panel)

3AFE

6834

7432

Page 119: VSDS Manual-ABB

Dimensional drawings

119

Frame size R3 (with optional control panel)

3AFE

6836

0544

Page 120: VSDS Manual-ABB

Dimensional drawings

120

Frame size R4 (with optional control panel)

3AFE

6836

4655

Page 121: VSDS Manual-ABB

Dimensional drawings

121

Frame size R5 (with optional control panel)

3AFE

6836

5741

Page 122: VSDS Manual-ABB

Dimensional drawings

122

Frame size R6 (with optional control panel)

3AFE

6836

5945

Page 123: VSDS Manual-ABB

Dimensional drawings

123

Flange mounting kitsFlange mounting kit dimensions:

Frame size H W Dmm [in.] mm [in.] mm [in.]

R2 476.5 [18.76] 235.5 [9.27] 25 [0.984]R3 530.5 [20.89] 245.5 [9.67] 25 [0.984]R4 595.95 [23.46] 373.6 [14.71] 25 [0.984]R5 700 [27.56] 398.8 [15.70] 25 [0.984]R6 786 [30.94] 433.4 [17.06] 25 [0.984]

H

W

D

Lifting lug

7 [0.276]

Page 124: VSDS Manual-ABB

Dimensional drawings

124

Flange mounting kit for frame size R2

3AFE

6836

1001

98.2

5

22[7.54]

[5.5

1]

[0.866]

[6.69]

[0.276]

[2.1

7][5

.51]

[15.

16]

[3.8

7]

[0.787]

Page 125: VSDS Manual-ABB

Dimensional drawings

125

Flange mounting kit for frame size R3

3AFE

6837

0418

22

105.

25[4

.14]

[7.09]

[2.3

6][6

.30]

[17.

32]

[6.3

0]

[0.866] [7.93]

[0.394]

[0.276]

Page 126: VSDS Manual-ABB

Dimensional drawings

126

Flange mounting kit for frame size R4

3AFE

6837

5371

86.8

142.

9515

3

21

[0.276]

[0.827]

[3.42]

[1.3

0]

[3.94]

[6.53]

[12.40]

[6.0

2]

[11.

81]

[20.

08]

[0.78

7]

[4.9

6]

[5.6

3]

[5.2

3]

Page 127: VSDS Manual-ABB

Dimensional drawings

127

Flange mounting kit for frame size R5

3AFE

6837

161913

0

119.4

[14.33]

[4.70]

[13.39]

[0.276]

[3.15]

[5.1

2]

[4.3

3][8

.66]

[4.3

3]

[0.8

66]

[24.

57]

[8.6

6]

[0.78

7]

Page 128: VSDS Manual-ABB

Dimensional drawings

128

Flange mounting kit for frame size R6

3AFE

6836

7280

18

16.7

100116.7

[28.

35]

[6.6

1][4

.84]

[0.7

87]

[0.7

09]

[3.94]

[0.78

7]

[6.6

1][6

.61]

[4.8

4]

[0.787]

[8.66]

[15.75]

[0.276]

[4.59] [3.94]

[0.657]

Page 129: VSDS Manual-ABB

Dimensional drawings

129

AGPS board

3AFE

6829

3898

Page 130: VSDS Manual-ABB

Dimensional drawings

130

Page 131: VSDS Manual-ABB

Resistor braking

131

Resistor braking

What this chapter containsThis chapter describes how to select, protect and wire brake choppers and resistors. The chapter also contains the technical data.

Availability of brake choppers and resistorsFrame R2 and R3 drives and 690 V units of frame size R4 have a built-in brake chopper as standard equipment. For other units, brake choppers are optionally available as built-in units, indicated in the type code by +D150.

Resistors are available as add-on kits.

How to select the correct drive/chopper/resistor combination1. Calculate the maximum power (Pmax) generated by the motor during braking.

2. Select a suitable drive / brake chopper / brake resistor combination for the application according to the following tables (take account of other factors in the drive selection also). The following condition must be met:

3. Check the resistor selection. The energy generated by the motor during a 400 second period must not exceed the resistor heat dissipation capacity ER.

If the ER value is not sufficient, it is possible to use a four-resistor assembly in which two standard resistors are connected in parallel, two in series. The ER value of the four-resistor assembly is four times the value specified for the standard resistor.

Pbrcont > Pmax

Page 132: VSDS Manual-ABB

Resistor braking

132

Note: A resistor other than the standard resistor can be used provided that:

� its resistance is not lower than the resistance of the standard resistor.

� the resistance does not restrict the braking capacity needed, i.e.

where

� the heat dissipation capacity (ER) is sufficient for the application (see step 3 above).

WARNING! Never use a brake resistor with a resistance below the value specified for the particular drive / brake chopper / resistor combination. The drive and the chopper are not able to handle the overcurrent caused by the low resistance.

Optional brake chopper and resistor(s)The nominal ratings for dimensioning the brake resistors are given below at an ambient temperature of 40°C (104°F).

Pmax maximum power generated by the motor during brakingUDC voltage over the resistor during braking, e.g.

1.35 · 1.2 · 415 VDC (when supply voltage is 380 to 415 VAC),1.35 · 1.2 · 500 VDC. (when supply voltage is 440 to 500 VAC) or1.35 · 1.2 · 690 VDC (when supply voltage is 525 to 690 VAC).

R resistor resistance (ohm)

ACS800-04 typeACS800-U4 type

Braking power of the chopper and the drive

Brake resistor(s)

Pbrcont(kW)

Type R(ohm)

ER(kJ)

PRcont(kW)

230 V units-0001-2 0.55 SACE08RE44 44 210 1-0002-2 0.8 SACE08RE44 44 210 1-0003-2 1.1 SACE08RE44 44 210 1-0004-2 1.5 SACE08RE44 44 210 1-0005-2 2.2 SACE15RE22 22 420 2-0006-2 3.0 SACE15RE22 22 420 2-0009-2 4.0 SACE15RE22 22 420 2-0011-2 5.5 SACE15RE13 13 435 2-0016-2 11 SAFUR90F575 8 1800 4.5-0020-2 17 SAFUR90F575 8 1800 4.5-0025-2 23 SAFUR80F500 6 2400 6-0030-2 28 SAFUR125F500 4 3600 9-0040-2 33 SAFUR125F500 4 3600 9-0050-2 45 2xSAFUR125F500 2 7200 18-0060-2 56 2xSAFUR125F500 2 7200 18-0070-2 68 2xSAFUR125F500 2 7200 18

Pmax <UDC

R

2

Page 133: VSDS Manual-ABB

Resistor braking

133

400 V units-0003-3 1.1 SACE08RE44 44 210 1-0004-3 1.5 SACE08RE44 44 210 1-0005-3 2.2 SACE08RE44 44 210 1-0006-3 3.0 SACE08RE44 44 210 1-0009-3 4.0 SACE08RE44 44 210 1-0011-3 5.5 SACE15RE22 22 420 2-0016-3 7.5 SACE15RE22 22 420 2-0020-3 11 SACE15RE22 22 420 2-0023-3 11 SACE15RE22 22 420 2-0025-3 23 SACE15RE13 13 435 2-0030-3 28 SACE15RE13 13 435 2-0035-3 28 SACE15RE13 13 435 2-0040-3 33 SAFUR90F575 8 1800 4.5-0050-3 45 SAFUR90F575 8 1800 4.5-0060-3 56 SAFUR90F575 8 1800 4.5-0075-3 70 SAFUR80F500 3 2400 6-0070-3 68 SAFUR80F500 6 2400 6-0100-3 83 SAFUR125F500 4 3600 9-0120-3 113 SAFUR125F500 4 3600 9-0135-3 132 SAFUR200F500 2.7 5400 13.5-0165-3 132 SAFUR200F500 2.7 5400 13.5500 V units-0004-5 1.5 SACE08RE44 44 210 1-0005-5 2.2 SACE08RE44 44 210 1-0006-5 3.0 SACE08RE44 44 210 1-0009-5 4.0 SACE08RE44 44 210 1-0011-5 5.5 SACE08RE44 44 210 1-0016-5 7.5 SACE15RE22 22 420 2-0020-5 11 SACE15RE22 22 420 2-0025-5 15 SACE15RE22 22 420 2-0028-5 15 SACE15RE22 22 420 2-0030-5 28 SACE15RE13 13 435 2-0040-5 33 SACE15RE13 13 435 2-0045-5 33 SACE15RE13 13 435 2-0050-5 45 SAFUR90F575 8 1800 4.5-0060-5 56 SAFUR90F575 8 1800 4.5-0070-5 68 SAFUR90F575 8 1800 4.5-0105-5 83 SAFUR80F500 6 2400 6-0100-5 83 SAFUR125F500 4 3600 9-0120-5 113 SAFUR125F500 4 3600 9-0140-5 135 SAFUR125F500 4 3600 9-0165-5 160 SAFUR125F500 4 3600 9-0205-5 160 SAFUR125F500 4 3600 9

ACS800-04 typeACS800-U4 type

Braking power of the chopper and the drive

Brake resistor(s)

Pbrcont(kW)

Type R(ohm)

ER(kJ)

PRcont(kW)

Page 134: VSDS Manual-ABB

Resistor braking

134

PbrcontThe drive and the chopper will withstand this continuous braking power. The braking is considered continuous if the braking time exceeds 30 s. Note: The braking energy transmitted to the specified resistor(s) in 400 seconds may not exceed ER.

R Resistance value for the listed resistor assembly. Note: This is also the minimum allowed resistance for the braking resistor.

ER Short energy pulse that the resistor assembly withstands every 400 seconds. This energy will heat the resistor element from 40°C (104°F) to the maximum allowable temperature.

PRcont Continuous power (heat) dissipation of the resistor when placed correctly. Energy ER dissipates in 400 seconds.1) 22 kW with standard 22 ohm resistor and 33 kW with 32�37 ohm resistorAll braking resistors must be installed outside the converter module. The SACE braking resistors are built in an IP21 metal housing. The SAFUR braking resistors are built in an IP00 metal frame. Note: The SACE and SAFUR resistors are not UL listed.

Resistor installation and wiringAll resistors must be installed outside the drive module in a place where they will cool.

WARNING! The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. Protect the resistor against contact.

Use the cable type used for drive input cabling (see to chapter Technical data) to ensure the input fuses will also protect the resistor cable. Alternatively, two-conductor shielded cable with the same cross-sectional area can be used. The maximum length of the resistor cable(s) is 10 m (33 ft). For the connections, see the power connection diagram of the drive.

690 V units-0011-7 8.0 SACE08RE44 44 210 1-0016-7 11 SACE08RE44 44 210 1-0020-7 16 SACE08RE44 44 210 1-0025-7 20 SACE08RE44 44 210 1-0030-7 28 SACE15RE22 22 420 2-0040-7 22 / 33 1) SACE15RE22 22 420 2-0050-7 45 SACE15RE13 13 435 2-0060-7 56 SACE15RE13 13 435 2-0070-7 68 SAFUR90F575 8 1800 4.5-0100-7 83 SAFUR90F575 8 1800 4.5-0120-7 113 SAFUR80F500 6 2400 6-0145-7 160 SAFUR80F500 6 2400 6-0175-7 160 SAFUR80F500 6 2400 6-0205-7 160 SAFUR80F500 6 2400 6

PDM code 00096931-J

ACS800-04 typeACS800-U4 type

Braking power of the chopper and the drive

Brake resistor(s)

Pbrcont(kW)

Type R(ohm)

ER(kJ)

PRcont(kW)

Page 135: VSDS Manual-ABB

Resistor braking

135

Protection of frame sizes R2 to R5It is highly recommended to equip the drive with a main contactor for safety reasons. Wire the contactor so that it opens in case the resistor overheats. This is essential for safety since the drive will not otherwise be able to interrupt the main supply if the chopper remains conductive in a fault situation.

Below is a simple example wiring diagram.

ACS800U1 V1 W1

L1 L2 L3

1

2

3

4

5

6

13

14

3

4

1

2

K1

Θ

FusesOFF

ON

Thermal switch (stand-ard in ABB resistors)

Page 136: VSDS Manual-ABB

Resistor braking

136

Protection of frame size R6A main contactor is not required for protecting against resistor overheating when the resistor is dimensioned according to the instructions and the internal brake chopper is used. The drive will disable power flow through the input bridge if the chopper remains conductive in a fault situation. Note: If an external brake chopper (outside the drive module) is used, a main contactor is always required.

A thermal switch (standard in ABB resistors) is required for safety reasons. The cable must be shielded and not longer than the resistor cable.

With Standard Control Program, wire the thermal switch as shown below. By default, the drive will stop by coasting when the switch opens.

For other control programs, the thermal switch may be wired to a different digital input. Programming of the input to trip the drive by �EXTERNAL FAULT� may be needed. See the appropriate Firmware Manual.

Brake circuit commissioningFor Standard Control Program:

� Enable the brake chopper function (parameter 27.01).

� Switch off the overvoltage control of the drive (parameter 20.05).

� Check the resistance value setting (parameter 27.03).

� Frame sizes R6: Check the setting of parameter 21.09. If stop by coasting is required, select OFF2 STOP.

For the use of the brake resistor overload protection (parameters 27.02...27.05), consult an ABB representative.

WARNING! If the drive is equipped with a brake chopper but the chopper is not enabled by parameter setting, the brake resistor must be disconnected because the protection against resistor overheating is then not in use.

For settings of other control programs, see the appropriate Firmware Manual.

1 DI12 DI23 DI34 DI45 DI56 DI67 +24V8 +24V9 DGND10 DGND11 DIIL

Θ

Resistor thermal switch (standard in ABB resistors)

RMIO:X22 or X2: X22

Page 137: VSDS Manual-ABB
Page 138: VSDS Manual-ABB

3AFE

6837

2984

Rev

D E

NEF

FEC

TIVE

: 25.

6.20

07

ABB OyAC DrivesP.O. Box 184FI-00381 HELSINKiFINLANDTelephone +358 10 22 211Telefax +358 10 22 22681Internet www.abb.com

ABB Inc.Automation TechnologiesDrives & Motors16250 West Glendale DriveNew Berlin, WI 53151USATelephone 262 785-3200

800-HELP-365Fax 262 780-5135

ABB Beijing Drive Systems Co. Ltd.No. 1, Block D, A-10 Jiuxianqiao BeiluChaoyang DistrictBeijing, P.R. China, 100015Telephone +86 10 5821 7788Fax +86 10 5821 7618Internet www.abb.com

Page 139: VSDS Manual-ABB

ACS 800

Firmware ManualACS 800 Standard Application Program 7.x

Page 140: VSDS Manual-ABB
Page 141: VSDS Manual-ABB

ACS 800 Standard Application Program 7.x

Firmware Manual

3AFE 64527592 REV DEN

EFFECTIVE: 22.02.2003

� 2003 ABB Oy. All Rights Reserved.

Page 142: VSDS Manual-ABB
Page 143: VSDS Manual-ABB

Table of Contents

5

Table of Contents

Table of Contents

Introduction to the manual

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Start-up; and control through the I/O

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15How to start-up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

How to perform the guided start-up (covers all essential settings) . . . . . . . . . . . . . . . . . . . . . . . 15How to perform the limited start-up (covers only the basic settings) . . . . . . . . . . . . . . . . . . . . . 17

How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Control panel

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32How to adjust a source selection (pointer) parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34How to enter an assistant, browse and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35How to upload data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37How to set the contrast of the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Page 144: VSDS Manual-ABB

Table of Contents

6

How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Program features

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Start-up Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41The default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41List of tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Programmable analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Update cycles in the Standard Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Programmable analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Update cycles in the Standard Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Update cycles in the Standard Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Update cycles in the Standard Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55DC Magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Page 145: VSDS Manual-ABB

Table of Contents

7

DC Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Flux Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Hexagonal motor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Panel Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

External Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Underload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Earth Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Supervision of optional IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Preprogrammed faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Page 146: VSDS Manual-ABB

Table of Contents

8

Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Sleep function for the process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Motor temperature measurement through the analogue I/O extension . . . . . . . . . . . . . . . . . . . . . 72Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Adaptive Programming using the function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Master/Follower use of several drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Settings and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Application macros

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Factory macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Page 147: VSDS Manual-ABB

Table of Contents

9

PID Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Connection example, 24 VDC / 4…20 mA two-wire sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Torque Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Sequential Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9501 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9602 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9803 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9809 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9910 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10011 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10212 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10713 ANALOGUE INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11014 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11315 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11816 SYSTEM CTRL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12120 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12321 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12622 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12923 SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13124 TORQUE CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13325 CRITICAL SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13426 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13427 BRAKE CHOPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13530 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13631 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14232 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14333 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14534 PROCESS VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14635 MOT TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14740 PID CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14942 BRAKE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15450 ENCODER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15651 COMM MOD DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15752 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15760 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15870 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16083 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16184 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16285 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16490 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Page 148: VSDS Manual-ABB

Table of Contents

10

92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16596 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16598 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16899 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Fault tracing

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Fieldbus control

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . 188Setting up communication through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Communication set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Modbus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Setting up an Advant Fieldbus 100 (AF 100) connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Optical component types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Communication Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Fieldbus reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Actual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Block diagram: Control data input from fieldbus when a type Rxxx fieldbus adapter is used . 202Block diagram: Actual value selection for fieldbus when a type Rxxx fieldbus adapter is used 203Block diagram: Control data input from fieldbus when a type Nxxx fieldbus adapter is used . 204Block Diagram: Actual value selection for fieldbus when a type Nxxx fieldbus adapter is used 205

Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Generic Drive communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Speed reference and actual speed scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Diverse status, fault, alarm and limit words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Analogue Extension Module

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Page 149: VSDS Manual-ABB

Table of Contents

11

Speed control through the analogue extension module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Basic checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Settings of the analogue extension module and the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Parameter settings: bipolar input in basic speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224Parameter settings: bipolar input in joystick mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Additional data: actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Control block diagrams

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Reference control chain, sheet 1: FACTORY, HAND/AUTO, SEQ CTRL and T CTRL macros (contin-ued on the next page …) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240Reference control chain sheet 1: PID CTRL macro (continued on the next page …) . . . . . . . . . . 242Reference control chain sheet 2: All macros (continued on the next page …) . . . . . . . . . . . . . . . 244Handling of Start, Stop, Run Enable and Start Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Handling of Reset and On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Page 150: VSDS Manual-ABB

Table of Contents

12

Page 151: VSDS Manual-ABB

Introduction to the manual

13

Introduction to the manual

Chapter overviewThe chapter includes a description of the contents of the manual. In addition it contains information about the compatibility, safety, intended audience, and related publications.

CompatibilityThe manual is compatible with ACS 800 Standard Application Program 7.x.

Safety instructionsFollow all safety instructions delivered with the drive.

• Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual.

• Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in this manual in the subsection describing the related user-adjustable parameters.

ReaderThe reader of the manual is expected to know the standard electrical wiring practices, electronic components, and electrical schematic symbols.

ContentsThe manual consists of the following chapters:

• Start-up; and control through the I/O instructs in setting up the application program, and how to start, stop and regulate the speed of the drive.

• Control panel gives instructions for using the panel.

• Program features contains the feature descriptions and the reference lists of the user settings and diagnostic signals.

• Application macros contains a short description of each macro together with a connection diagram.

• Actual signals and parameters describes the actual signals and parameters of the drive.

• Fault tracing lists the warning and fault messages with the possible causes and remedies.

Page 152: VSDS Manual-ABB

Introduction to the manual

14

• Fieldbus control describes the communication through the serial communication links.

• Analogue Extension Module, describes the communication between the drive and the analogue I/O extension (optional).

• Additional data: actual signals and parameters contains more information on the actual signals and parameters.

Page 153: VSDS Manual-ABB

Start-up; and control through the I/O

15

Start-up; and control through the I/O

Chapter overviewThe chapter instructs how to:

• do the start-up

• start, stop, change the direction of rotation, and adjust the speed of the motor through the I/O interface

• perform an Identification Run for the drive.

How to start-up the driveThere are two start-up methods between which the user can select: Run the Start-up Assistant, or perform a limited start-up. The Assistant guides the user through all essential settings to be done. In the limited start-up, the drive gives no guidance: The user goes through the very basic settings by following the instructions given in the manual.

• If you want to run the Assistant, follow the instructions given in the subsection How to perform the guided start-up (covers all essential settings).

• If you want to perform the limited start-up, follow the instructions given in the subsection How to perform the limited start-up (covers only the basic settings).

How to perform the guided start-up (covers all essential settings) Before you start, ensure you have the motor nameplate data on hand.

SAFETY

The start-up may only be carried out by a qualified electrician.The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger. De-couple the driven machine if:- there is a risk of damage in case of incorrect direction of rotation, or - a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)

POWER-UP

Apply mains power. The control panel first shows the panel identification data …

CDP312 PANEL Vx.xx.......

Page 154: VSDS Manual-ABB

Start-up; and control through the I/O

16

… then the Identification Display of the drive … ACS800ID NUMBER 1

… then the Actual Signal Display … 1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

…after which the display suggests starting the Language Selection.(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on selecting the language.)The drive is now ready for the start-up.

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start Language Selection

SELECTING THE LANGUAGE

Press the FUNC key. Language Selection 1/1 LANGUAGE ? [ENGLISH]ENTER:OK ACT:EXIT

Scroll to the desired language by the arrow keys ( or ) and press ENTER to accept.(The drive loads the selected language into use, shifts back to the Actual Signal Display and starts to alternate between the Actual Signal Display and the suggestion on starting the guided motor set-up.)

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start guided Motor Setup

STARTING THE GUIDED MOTOR SET-UP

Press FUNC to start the guided motor set-up.(The display shows which general command keys to use when stepping through the assistant.)

Motor Setup 1/10ENTER: Ok/ContinueACT: ExitFUNC: More Info

Press ENTER to step forward. Follow the instructions given on the display.

Motor Setup 2/10MOTOR NAMEPLATE DATA AVAILABLE?ENTER:Yes FUNC:Info

Page 155: VSDS Manual-ABB

Start-up; and control through the I/O

17

How to perform the limited start-up (covers only the basic settings) Before you start, ensure you have the motor nameplate data at your hand.

SAFETY

The start-up may only be carried out by a qualified electrician.The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger. De-couple the driven machine if:- there is a risk of damage in case of incorrect direction of rotation, or - a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)

POWER-UP

Apply mains power. The control panel first shows the panel identification data …

CDP312 PANEL Vx.xx.......

… then the Identification Display of the drive … ACS800ID NUMBER 1

… then the Actual Signal Display … 1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

…after which the display suggests starting the Language Selection.(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on starting the Language Selection.)

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start Language Selection

Press ACT to remove the suggestion on starting the language selection.The drive is now ready for the limited start-up.

1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

MANUAL START-UP DATA ENTERING (parameter group 99)

Select the language. The general parameter setting procedure is described below.The general parameter setting procedure:- Press PAR to select the Parameter Mode of the panel.- Press the double-arrow keys ( or ) to scroll the parameter groups.- Press the arrow keys ( or ) to scroll parameters within a group.- Activate the setting of a new value by ENTER.- Change the value by the arrow keys ( or ), fast change by the double-arrow keys ( or ).- Press ENTER to accept the new value (brackets disappear).

1 -> 0.0 rpm O99 START-UP DATA 01 LANGUAGEENGLISH

1 -> 0.0 rpm O99 START-UP DATA01 LANGUAGE[ENGLISH]

Page 156: VSDS Manual-ABB

Start-up; and control through the I/O

18

Select the Application Macro. The general parameter setting procedure is given above.The default value FACTORY is suitable in most cases.

1 -> 0.0 rpm O99 START-UP DATA02 APPLICATION MACRO[ ]

Select the motor control mode. The general parameter setting procedure is given above.DTC is suitable in most cases. The SCALAR control mode is recommended- for multimotor drives when the number of the motors connected to the drive is variable- when the nominal current of the motor is less than 1/6 of the nominal current of the inverter- when the inverter is used for test purposes with no motor connected.

1 -> 0.0 rpm O99 START-UP DATA04 MOTOR CTRL MODE[DTC]

Enter the motor data from the motor nameplate: Note: Set the motor data to exactly the same value as on the motor nameplate. For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter 99.08 MOTOR NOM SPEED to 1500 rpm results in the wrong operation of the drive.

- motor nominal voltageAllowed range: 1/2 · UN … 2 · UN of ACS800. (UN refers to the highest voltage in each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500 VAC units and 690 VAC for 600 VAC units.)

1 -> 0.0 rpm O99 START-UP DATA05 MOTOR NOM VOLTAGE[ ]

- motor nominal currentAllowed range: approx. 1/6 · I2hd … 2 · I2hd of ACS800 (0…2·I2hd if parameter 99.04 = SCALAR))

1 -> 0.0 rpm O99 START-UP DATA06 MOTOR NOM CURRENT[ ]

- motor nominal frequencyRange: 8 … 300 Hz

1 -> 0.0 rpm O99 START-UP DATA07 MOTOR NOM FREQ[ ]

- motor nominal speedRange: 1 …18000 rpm

1 -> 0.0 rpm O99 START-UP DATA08 MOTOR NOM SPEED[ ]

-motor nominal powerRange: 0 …9000 kW

1 -> 0.0 rpm O99 START-UP DATA09 MOTOR NOM POWER[ ]

M2AA 200 MLA 4

147514751470147014751770

32.55634595459

0.830.830.830.830.830.83

3GAA 202 001 - ADA

180

IEC 34-1

6210/C36312/C3

Cat. no 35 30 30 30 30 3050

5050505060

690 Y400 D660 Y380 D415 D440 D

V Hz kW r/min A cos IA/IN t E/sIns.cl. F IP 55

NoIEC 200 M/L 55

3 motor

ABB Motors

380 Vmainsvoltage

Page 157: VSDS Manual-ABB

Start-up; and control through the I/O

19

When the motor data has been entered, two displays (warning and information) start to alternate. Move to next step without pressing any key.

1 -> 0.0 rpm OACS800** WARNING **ID MAGN REQ

1 L-> 0.0 rpm I*** Information ***Press green button to start ID MAGN

Select the motor identification method.The default value ID MAGN (ID Magnetisation) is suitable for most applications. It is applied in this basic start-up procedure. If your selection is ID Magnetisation, move to next step without pressing any key. The ID Run (STANDARD or REDUCED) should be selected if:- The operation point is near zero speed, and/or- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.If your selection is ID Run, continue by following the separate instructions given a few pages ahead in subsection How to perform the ID Run.

IDENTIFICATION MAGNETISATION (with Motor ID Run selection ID MAGN)

Press the LOC/REM key to change to local control (L shown on the first row).Press to start the Identification Magnetisation. The motor is magnetised at zero speed for 20 to 60 s. Two warnings are displayed:The upper warning is displayed while the magnetisation is on. The lower warning is displayed after the magnetisation is completed.

1 L-> 0.0 rpm I** WARNING **ID MAGN

1 L-> 0.0 rpm O** WARNING **ID DONE

DIRECTION OF ROTATION OF THE MOTOR

Check the direction of rotation of the motor.- Press ACT to get the status row visible. - Increase the speed reference from zero to a small value by pressing REF and then the arrow keys ( , , or ).- Press to start the motor. - Check that the motor is running in the desired direction.- Stop the motor by pressing .

1 L->[xxx] rpm IFREQ xxx HzCURRENT xx APOWER xx %

Page 158: VSDS Manual-ABB

Start-up; and control through the I/O

20

To change the direction of rotation of the motor:- Disconnect mains power from the drive, and wait 5 minutes for the intermediate circuit capacitors to discharge. Measure the voltage between each input terminal (U1, V1 and W1) and earth with a multimeter to ensure that the frequency converter is discharged.- Exchange the position of two motor cable phase conductors at the motor terminals or at the motor connection box.- Verify your work by applying mains power and repeating the check as described above.

SPEED LIMITS AND ACCELERATION/DECELERATION TIMES

Set the minimum speed. 1 L-> 0.0 rpm O20 LIMITS01 MINIMUM SPEED[ ]

Set the maximum speed. 1 L-> 0.0 rpm O20 LIMITS02 MAXIMUM SPEED[ ]

Set the acceleration time 1.Note: Check also acceleration time 2, if two acceleration times will be used in the application.

1 L-> 0.0 rpm O22 ACCEL/DECEL02 ACCELER TIME 1[ ]

Set the deceleration time 1.Note: Set also deceleration time 2, if two deceleration times will be used in the application.

1 L-> 0.0 rpm O22 ACCEL/DECEL03 DECELER TIME 1[ ]

The drive is now ready for use.

forward direction

reverse direction

Page 159: VSDS Manual-ABB

Start-up; and control through the I/O

21

How to control the drive through the I/O interfaceThe table below instructs how to operate the drive through the digital and analogue inputs, when:

• the motor start-up is performed, and

• the default (factory) parameter settings are valid.

PRELIMINARY SETTINGS

Ensure the Factory macro is active. See parameter 99.02.

If you need to change the direction of rotation, change the setting of parameter 10.03 to REQUEST.

Ensure the control connections are wired according to the connection diagram given for the Factory macro.

See the chapter Application macros.

Ensure the drive is in external control mode. Press the LOC/REM key to change between external and local control.

In External control, there is no L visible on the first row of the panel display.

STARTING AND CONTROLLING THE SPEED OF THE MOTOR

Start by switching digital input DI1 on. 1 -> 0.0 rpm IFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

Regulate the speed by adjusting the voltage of analogue input AI1. 1 -> 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

CHANGING THE DIRECTION OF ROTATION OF THE MOTOR

Forward direction: Switch digital input DI2 off. 1 -> 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

Reverse direction: Switch digital input DI2 on. 1 <- 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

STOPPING THE MOTOR

Switch off digital input DI1. 1 -> 500.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

Page 160: VSDS Manual-ABB

Start-up; and control through the I/O

22

How to perform the ID RunThe drive performs the ID Magnetisation automatically at the first start. In most applications there is no need to perform a separate ID Run. The ID Run (Standard or Reduced) should be selected if:

• The operation point is near zero speed, and/or

• Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.

The Reduced ID Run is to be performed instead of the Standard if it is not possible to disengage the driven machine from the motor.

ID Run Procedure

Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions:

• 20.01 MINIMUM SPEED < 0 rpm

• 20.02 MAXIMUM SPEED > 80% of motor rated speed

• 20.03 MAXIMUM CURRENT > 100% · Ihd

• 20.04 MAXIMUM TORQUE > 50%

• Ensure that the panel is in the local control mode (L displayed on the status row). Press the LOC/REM key to switch between modes.

• Change the ID Run selection to STANDARD or REDUCED.

• Press ENTER to verify selection. The following message will be displayed:

• To start the ID Run, press the key. The Run Enable signal must be active (see parameter 16.01 RUN ENABLE).

Warning when the ID Run is started

Warning during the ID Run Warning after a successfully completed ID Run

1 L -> 1242.0 rpm IACS800**WARNING**MOTOR STARTS

1 L -> 1242.0 rpm IACS800**WARNING**ID RUN

1 L -> 1242.0 rpm IACS800**WARNING**ID DONE

99 START-UP DATA

10 MOTOR ID RUN[STANDARD]

1 L ->1242.0 rpm O

1 L ->1242.0 rpm O

ACS800**WARNING**

ID RUN SEL

Page 161: VSDS Manual-ABB

Start-up; and control through the I/O

23

In general it is recommended not to press any control panel keys during the ID run. However:

• The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ).

• After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).

Page 162: VSDS Manual-ABB

Start-up; and control through the I/O

24

Page 163: VSDS Manual-ABB

Control panel

25

Control panel

Chapter overviewThe chapter describes how to use the control panel CDP 312R.

The same control panel is used with all ACS 800 series drives, so the instructions given apply to all ACS 800 types. The display examples shown are based on the Standard Application Program; displays produced by other application programs may differ slightly.

Overview of the panel

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR FUNC DRIVE

ENTER

LOC RESET REF

REM

I 0

1367

5 24

The LCD type display has 4 lines of 20 characters.The language is selected at start-up (parameter 99.01).The control panel has four operation modes: - Actual Signal Display Mode (ACT key)- Parameter Mode (PAR key)- Function Mode (FUNC key)- Drive Selection Mode (DRIVE key)The use of single arrow keys, double arrow keys and ENTER depend on the operation mode of the panel.The drive control keys are:

No. Use

1 Start

2 Stop

3 Activate reference setting

4 Forward direction of rotation

5 Reverse direction of rotation

6 Fault reset

7 Change between Local / Remote (external) control

Page 164: VSDS Manual-ABB

Control panel

26

Panel operation mode keys and displaysThe figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode.

Status rowThe figure below describes the status row digits.

Parameter Mode

Function Mode

Drive Selection Mode

Act. signal / Fault history

Enter selection modeAccept new signal

Group selection

Parameter selection

Enter change modeAccept new value

Fast value change

Slow value change

Function start

Drive selection

Enter change modeAccept new value

Actual Signal Display Mode

ENTER

ENTER

ENTER

ENTER

selection

ID number change

Status row

Status row

ACT

PAR

FUNC

DRIVE

1 L -> 1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

1 L -> 1242.0 rpm O10 START/STOP/DIR01 EXT1 STRT/STP/DIR DI1,2

1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

ACS800

ASXR7050 xxxxxxID NUMBER 1

Act. signal / Fault message scrolling

Actual signal names and values

Parameter groupParameterParameter value

Status row

List of functions

Device type

SW loading package name and ID number

Row selection

Page selection

Drive ID number

Drive control statusL = Local control

R = Remote control“ “ = External control

Drive statusI = RunningO = Stopped“ “ = Run disabled

1 L -> 1242.0 rpm I

Direction of rotation-> = Forward<- = Reverse

Drive reference

Page 165: VSDS Manual-ABB

Control panel

27

Drive control with the panelThe user can control the drive with the panel as follows:

• start, stop, and change direction of the motor

• give the motor speed reference or torque reference

• give a process reference (when the process PID control is active)

• reset the fault and warning messages

• change between local and external drive control.

The panel can be used for control of the drive control always when the drive is under local control and the status row is visible on the display.

How to start, stop and change direction

Step Action Press Key Display

1. To show the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To stop 1 L ->1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To start 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To change the direction to reverse. 1 L <-1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

6. To change the direction to forward. 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

0

I

Page 166: VSDS Manual-ABB

Control panel

28

How to set speed reference

Step Action Press Key Display

1. To show the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(Only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the Reference Setting function. 1 L ->[1242.0 rpm]IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To change the reference.(slow change)

(fast change)

1 L ->[1325.0 rpm]I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To save the reference.(The value is stored in the permanent memory; it is restored automatically after power switch-off.)

1 L -> 1325.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

REF

ENTER

Page 167: VSDS Manual-ABB

Control panel

29

Actual signal display modeIn the Actual Signal Display Mode, the user can:

• show three actual signals on the display at a time

• select the actual signals to display

• view the fault history

• reset the fault history.

The panel enters the Actual Signal Display Mode when the user presses the ACT key, or if he does not press any key within one minute.

How to select actual signals to the display

Step Action Press key Display

1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To select a row (a blinking cursor indicates the selected row).

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the actual signal selection function. 1 L -> 1242.0 rpm I1 ACTUAL SIGNALS04 CURRENT 80.00 A

4. To select an actual signal.

To change the actual signal group.

1 L -> 1242.0 rpm I1 ACTUAL SIGNALS05 TORQUE 70.00 %

5.a To accept the selection and to return to the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzTORQUE 70.00 %POWER 75.00 %

5.b To cancel the selection and keep the original selection.

The selected keypad mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Page 168: VSDS Manual-ABB

Control panel

30

How to display the full name of the actual signals

How to view and reset the fault history

Note: The fault history cannot be reset if there are active faults or warnings.

Step Action Press key Display

1. To display the full name of the three actual signals. Hold 1 L -> 1242.0 rpm IFREQUENCYCURRENTPOWER

2. To return to the Actual Signal Display Mode. Release 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

Step Action Press key Display

1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To enter the Fault History Display. 1 L -> 1242.0 rpm I1 LAST FAULT+OVERCURRENT 6451 H 21 MIN 23 S

3. To select the previous (UP) or the next fault/warning (DOWN).

1 L -> 1242.0 rpm I2 LAST FAULT+OVERVOLTAGE 1121 H 1 MIN 23 S

To clear the Fault History. 1 L -> 1242.0 rpm I2 LAST FAULTH MIN S

4. To return to the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ACT

ACT

RESET

Page 169: VSDS Manual-ABB

Control panel

31

How to display and reset an active fault

WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again.

About the fault history The fault history restores information on the latest events (faults, warnings and resets) of the drive. The table below shows how the events are stored in the fault history.

Step Action Press Key Display

1. To display an active fault. 1 L -> 1242.0 rpmACS800** FAULT **ACS800 TEMP

2. To reset the fault. 1 L -> 1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

RESET

1 L -> 1242.0 rpm I2 LAST FAULT+DC OVERVOLT (3210) 1121 H 1 MIN 23 S

Event Information on displayDrive detects a fault and generates a fault message

Sequential number of the event and LAST FAULT text.Name of the fault and a “+” sign in front of the name.Total power-on time.

User resets the fault message. Sequential number of the event and LAST FAULT text.-RESET FAULT text.Total power-on time.

Drive generates a warning message.

Sequential number of the event and LAST WARNING text.Name of the warning and a “+” sign in front of the name.Total power-on time.

Drive deactivates the warning message.

Sequential number of the event and LAST WARNING text.Name of the warning and a “-” sign in front of the name.Total power-on time.

Sequential number (1 is the most recent event)

Sign

Power-on time

Name andcode

A Fault History View

Page 170: VSDS Manual-ABB

Control panel

32

Parameter modeIn the Parameter Mode, the user can:

• view the parameter values

• change the parameter settings.

The panel enters the Parameter Mode when the user presses the PAR key.

How to select a parameter and change the value

Step Action Press key Display

1. To enter the Parameter Mode. 1 L -> 1242.0 rpm O10 START/STOP/DIR01 EXT1 STRT/STP/DIR DI1,2

2. To select a group. 1 L -> 1242.0 rpm O11 REFERENCE SELECT01 KEYPAD REF SEL REF1 (rpm)

3. To select a parameter within a group. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

4. To enter the parameter setting function. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI1]

5. To change the parameter value.- (slow change for numbers and text)

- (fast change for numbers only)

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI2]

6a. To save the new value. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI2

6b. To cancel the new setting and keep the original value, press any of the mode selection keys.The selected mode is entered.

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

PAR

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Page 171: VSDS Manual-ABB

Control panel

33

How to adjust a source selection (pointer) parameterMost parameters define values that are used directly in the drive application program. Source selection (pointer) parameters are exceptions: They point to the value of another parameter. The parameter setting procedure differs somewhat from that of the other parameters.

1)

Note: Instead of pointing to another parameter, it is also possible to define a constant by the source selection parameter. Proceed as follows:

- Change the inversion field to C. The appearance of the row changes. The rest of the line is now a constant setting field.

- Give the constant value to the constant setting field.

- Press Enter to accept.

Step Action Press Key Display

1. See the table above to- enter the Parameter Mode- select the correct parameter group and parameter- enter the parameter setting mode

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

2. To scroll between the inversion, group, index and bit fields.1)

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

3. To adjust the value of a field. 1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.018.00]

4. To accept the value.

PAR

ENTER

ENTER

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±001.018.00]

Inversion fieldGroup fieldIndex field

Bit field

Inversion field inverts the selected parameter value. Plus sign (+): no inversion, minus (-) sign: inversion.Bit field selects the bit number (relevant only if the parameter value is a packed boolean word).Index field selects the parameter index.Group field selects the parameter group.

Page 172: VSDS Manual-ABB

Control panel

34

Function modeIn the Function Mode, the user can:

• start a guided procedure for adjusting the drive settings (assistants)

• upload the drive parameter values and motor data from the drive to the panel.

• download group 1 to 97 parameter values from the panel to the drive. 1)

• adjust the contrast of the display.

The panel enters the Function Mode when the user presses the FUNC key.

1) The parameter groups 98, 99 and the results of the motor identification are not included by default. The restriction prevents downloading of unfit motor data. In special cases it is, however, possible to download all. For more information, please contact your local ABB representative.

Page 173: VSDS Manual-ABB

Control panel

35

How to enter an assistant, browse and exitThe table below shows the operation of the basic keys which lead the user through an assistant. The Motor Setup task of the Start-up Assistant is used as an example.

Step Action Press Key Display

1. To enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. To select a task or function from the list (a flashing cursor indicates the selection).Double arrows: To change page to see more assistants/functions.

1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT 1

3. To enter the task. Motor Setup 1/10ENTER: Ok/ContinueACT: ExitFUNC: More Info

4. To accept and continue. Motor Setup 2/10MOTOR NAMEPLATE DATA AVAILABLE?ENTER:Yes FUNC:Info

5. To accept and continue. Motor Setup 3/10MOTOR NOM VOLTAGE?[0 V]ENTER:Ok RESET:Back

6. a. To adjust the requested drive parameter. Motor Setup 3/10MOTOR NOM VOLTAGE?[415 V]ENTER:Ok RESET:back

b. To ask for information on the requested value.(To scroll the information displays and return to the task).

INFO P99.05Set as given on the motor nameplate.

7. a. To accept a value and step forward. Motor Setup 4/10MOTOR NOM CURRENT?[0.0 A]ENTER:Ok RESET:Back

b. To cancel the setting and take one step back. Motor Setup 3/10MOTOR NOM VOLTAGE?[415 V]ENTER:Ok RESET:back

8. To cancel and exit.Note: 1 x ACT returns to the first display of the task.

1 L -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

FUNC

ENTER

ENTER

ENTER

)(FUNC, ACT

FUNC

ENTER

RESET

2 x ACT

Page 174: VSDS Manual-ABB

Control panel

36

How to upload data from a drive to the panel

Note: • Upload before downloading.

• Ensure the program versions of the destination drive are the same as the versions of the source drive, see parameters 33.01 and 33.02.

• Before removing the panel from a drive, ensure the panel is in remote operating mode (change with the LOC/REM key).

• Stop the drive before downloading.

Before upload, repeat the following steps in each drive:

• Setup the motors.

• Activate the communication to the optional equipment. (See parameter group 98 OPTION MODULES.)

Before upload, do the following in the drive from which the copies are to be taken:

• Set the parameters in groups 10 to 97 as preferred.

• Proceed to the upload sequence (below).

Step Action Press Key Display

1. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

3. Select the upload function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Enter the upload function. 1 L -> 1242.0 rpm OUPLOAD <=<=

5. Switch to external control.(No L on the first row of the display.)

1 -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

6. Disconnect the panel and reconnect it to the drive into which the data will be downloaded.

FUNC

ENTER

LOC

REM

Page 175: VSDS Manual-ABB

Control panel

37

How to download data from the panel to a driveConsider the notes in section How to upload data from a drive to the panel above.

Step Action Press Key Display

1. Connect the panel containing the uploaded data to the drive.

2. Ensure the drive is in local control (L shown on the first row of the display). If necessary, press the LOC/REM key to change to local control.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

4. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

5. Select the download function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

6. Start the download. 1 L -> 1242.0 rpm ODOWNLOAD =>=>

LOC

REM

FUNC

ENTER

Page 176: VSDS Manual-ABB

Control panel

38

How to set the contrast of the display

Step Action Press Key Display

1. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

3. Select a function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Enter the contrast setting function. 1 L -> 1242.0 rpm OCONTRAST [4]

5. Adjust the contrast. 1 L -> 1242.0 rpm CONTRAST [6]

6.a Accept the selected value. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 6

6.b Cancel the new setting and retain the original value by pressing any of the mode selection keys.

The selected mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

FUNC

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Page 177: VSDS Manual-ABB

Control panel

39

Drive selection modeIn normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, Code: 3AFY 58919748 [English]).

In the Drive Selection Mode, the user can:

• Select the drive with which the panel communicates through the panel link.

• Change the identification number of a drive connected to the panel link.

• View the status of the drives connected on the panel link.

The panel enters the Drive Selection Mode when the user presses the DRIVE key.

Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1.

Note: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.

How to select a drive and change its panel link ID number

Step Action Press key Display

1. To enter the Drive Selection Mode. ACS800

ASAAA5000 xxxxxxID NUMBER 1

2. To select the next drive/view. The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.

ACS800

ASAAA5000 xxxxxx

ID NUMBER 1

The status display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them. Status Display Symbols:

= Drive stopped, direction forward

= Drive running, direction reverseF = Drive tripped on a fault

3. To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.

The selected mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

DRIVE

1o

o

PAR

FUNC

ACT

Page 178: VSDS Manual-ABB

Control panel

40

Reading and entering packed boolean values on the displaySome actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format.

In this example, bits 1, 3 and 4 of the packed boolean value are ON:

Boolean 0000 0000 0001 1010Hex 0 0 1 A

Bit 15 Bit 0

Page 179: VSDS Manual-ABB

Program features

41

Program features

Chapter overviewThe chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Start-up Assistant

IntroductionThe assistant guides the user through the start-up procedure, helping the user to feed the requested data (parameter values) to the drive. The assistant also check that the entered values are valid, i.e. within the allowed range. At the first start, the drive suggests entering the first task of the assistant, Language Select, automatically.

The Start-up Assistant is divided into tasks. The user may activate the tasks either one after the other as the Start-up Assistant suggests, or independently. The user may also adjust the drive parameters in the conventional way without using the assistant at all.

See the chapter Control panel on how to start the assistant, browse and exit.

The default order of the tasksDepending on the selection made in the Application task (parameter 99.02), the Start-up Assistant decide which consequent tasks it suggests. The default tasks are shown in the table below.

Application Selection

Default Tasks

FACTORY, SEQ CTRL

Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT1, Start/Stop Control, Protections, Output Signals

HAND/AUTO Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT2, Start/Stop Control, Speed Control 1, Protections, Output Signals

T CTRL Language Select, Motor Set-up, Application, Option Modules, Torque Control, Start/Stop Control, Speed Control EXT1, Protections, Output Signals

PID CTRL Language Select, Motor Set-up, Application, Option Modules, PID Control, Start/Stop Control, Speed Control EXT1, Protections, Output Signals

Page 180: VSDS Manual-ABB

Program features

42

List of tasks and the relevant drive parameters

Name Description Set ParametersLanguage Select Selecting the language 99.01Motor Set-up Setting the motor data

Performing the motor identification. (If the speed limits are not in the allowed range: Setting the limits).

99.05, 99.06, 99.09, 99.07, 99.08, 99.0499.10 (20.8, 20.07)

Application Selecting the application macro 99.02, parameters associated to the macro

Option Modules Activating the option modules Group 98, 35, 52Speed Control EXT1

Selecting the source for the speed reference 11.03(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.04, 11.05Setting the speed (frequency) limits 20.02, 20.01, (20.08, 20.07)Setting acceleration and deceleration times 22.02, 22.03(Setting up the brake chopper if activated by parameter 27.01) (Group 27, 20.05, 14.01)(If 99.02 is not SEQ CTRL: Setting constant speeds) (Group 12)

Speed Control EXT2

Setting the source for the speed reference 11.06(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07Torque Control Selecting the source for the torque reference 11.06

(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07Setting the torque ramp up and ramp down times 24.01, 24.02

PID Control Selecting the source for the process reference 11.06(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07Setting the speed (reference) limits 20.02, 20.01 (20.08, 20.07)Setting the source and limits for the process actual value 40.07, 40.09, 40.10

Start/Stop Control Selecting the source for start and stop signals of the two external control locations, EXT1 and EXT2

10.01, 10.02

Selecting between EXT1 and EXT2 11.02Defining the direction control 10.03Defining the start and stop modes 21.01, 21.02, 21.03Selecting the use of Run Enable signal 16.01, 21.07Setting the ramp time for the Run Enable function 22.07

Protections Setting the torque and current limits 20.03, 20.04Output Signals Selecting the signals indicated through the relay outputs RO1,

RO2, RO3 and optional RO’s (if installed)Group 14

Selecting the signals indicated through the analogue output AO1, AO2 and optional AO’s (if installed). Setting the minimum, maximum, scaling and inversion.

15.01, 15.02, 15.03, 15.04, 15.05, (Group 96)

Page 181: VSDS Manual-ABB

Program features

43

Contents of the assistant displaysThere are two types of displays in the Start-up Assistant: The main displays and the information displays. The main displays prompt the user to feed in information or answer a question. The assistant steps through the main displays. The information displays contain help texts for the main displays. The figure below shows a typical example of both and explanations of the contents.

Local control vs. external controlThe drive can receive start, stop and direction commands and reference values from the control panel or through digital and analogue inputs. An optional fieldbus adapter enables control over an open fieldbus link. A PC equipped with DriveWindow can also control the drive.

Main Display Information Display1234

Motor Setup 3/10MOTOR NOM VOLTAGE?[0 V]ENTER:Ok RESET:Back

INFO P99.05Set as given on the motor nameplate.

1 Name of the assistant, step number / total number of steps

Text INFO, index of parameter to be set

2 Request/question Help text …3 Feed-in field … help text continued4 Commands: accept value and

step forward or cancel and step backwards

double arrow symbol (indicates that the text continues)

Slot 1

AF 100 Interface

CH0(DDCS)

Fieldbus

ACS800

RDCOBoard

Control panel

DriveWindow

External ControlLocal Control

Standard I/O

Slot 1 or Slot 2Optional I/O

(Advant fieldbusconnection only)

Adapter

Module

CH3(DDCS)

Page 182: VSDS Manual-ABB

Program features

44

Local controlThe control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.

The control panel always overrides the external control signal sources when used in local mode.

External controlWhen the drive is in external control, the commands are given through the standard I/O terminals (digital and analogue inputs), optional I/O extension modules and/or the fieldbus interface. In addition, it is also possible to set the control panel as the source for the external control.

External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.

The user can connect the control signals to two external control locations, EXT1 or EXT2. Depending on the user selection, either one is active at a time.

Settings

Diagnostics

Panel key Additional informationLOC/REM Selection between local and external controlParameter11.02 Selection between EXT1 and EXT210.01 Start, stop, direction source for EXT111.03 Reference source for EXT110.02 Start, stop, direction source for EXT211.06 Reference source for EXT2Group 98 OPTION MODULES

Activation of the optional I/O and serial communication

Actual signals Additional information01.11, 01.12 EXT1 reference, EXT2 reference03.02 EXT1/EXT2 selection bit in a packed boolean word

1 L ->1242 rpm I

External Control through the Input/Output terminals, or through the fieldbus interfaces

1 R ->1242 rpm I 1 ->1242 rpm I

External Control by control panel

Page 183: VSDS Manual-ABB

Program features

45

Block diagram: start, stop, direction source for EXT1The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1.

Block diagram: reference source for EXT1The figure below shows the parameters that select the interface for the speed reference of external control location EXT1.

DI1 / Std IO

Fb. selection See the chapter Fieldbus control.

Fieldbus adapter slot 1

KEYPAD

EXT1 DI6 / Std IO

DI1 / DIO ext 1DI2 / DIO ext 1

DI1 / DIO ext 2DI2 / DIO ext 2

I/O ExtensionsSee group 98 OPTION MODULES.

DI7 to DI9

COMM. CW

DI1

DI6

Control panel

Start/stop/

DI1 / Std IO = Digital input DI1 on the standard I/O terminal blockDI1 / DIO ext 1 = Digital input DI1 on the digital I/O extension module 1

direction 10.01

Select

CH0 / RDCO boardStandard Modbus Link

EXT1

AI1 / Std IO

AI1 / AIO extAI2 / AIO ext

11.03

Select

DI1 / DIO ext 3DI2 / DIO ext 3

KEYPAD

COMM. REF

Control panel

I/O ExtensionsSee parameter group 98 OPTION MODULES.

AI2 / Std IOAI3 / Std IODI3 / Std IODI4 / Std IO

AI1, AI2, AI3, DI3, DI4

Fb. selectionSee the chapter Fieldbus control.

AI5, AI6DI11, DI12 REF1 (rpm)

Reference

AI1 / Std IO = Analogue input AI1 on the standard I/O terminal blockAI1 / AIO ext = Analogue input AI1 on the analogue I/O extension module

Fieldbus adapter slot 1CH0 / RDCO boardStandard Modbus Link

Page 184: VSDS Manual-ABB

Program features

46

Reference types and processingThe drive can accept a variety of references in addition to the conventional analogue input signal and control panel signals.

• The drive reference can be given with two digital inputs: One digital input increases the speed, the other decreases it.

• The drive accepts a bipolar analogue speed reference. This feature allows both the speed and direction to be controlled with a single analogue input. The minimum signal is full speed reversed and the maximum signal is full speed forward.

• The drive can form a reference out of two analogue input signals by using mathematical functions: Addition, subtraction, multiplication, minimum selection, and maximum selection.

• The drive can form a reference out of an analogue input signal and a signal received through a serial communication interface by using mathematical functions: addition and multiplication.

It is possible to scale the external reference so that the signal minimum and maximum values correspond to a speed other than the minimum and maximum speed limits.

Settings

Diagnostics

Parameter Additional informationGroup 11 REFERENCE SELECT

External reference source, type and scaling

Group 20 LIMITS Operating limitsGroup 22 ACCEL/DECEL Speed reference acceleration and deceleration rampsGroup 24 TORQUE CTRL Torque reference ramp timesGroup 32 SUPERVISION Reference supervision

Actual signal Additional information01.11, 01.12 Values of external referencesGroup 02 ACTUAL SIGNALS The reference values in different stages of the reference processing

chain.ParameterGroup 14 RELAY OUTPUTS Active reference / reference loss through a relay outputGroup 15 ANALOGUE OUTPUTS

Reference value

Page 185: VSDS Manual-ABB

Program features

47

Reference trimming In reference trimming, the external %-reference (External reference REF2) is corrected depending on the measured value of a secondary application variable. The block diagram below illustrates the function.

Settings

Parameter Additional information40.14 … 40.18 Trimming function settings40.01 … 40.13, 40.19 PID control block settingsGroup 20 LIMITS Drive operation limits

40.14

Select

%ref

1

Mul.Mul.

Add

%ref= The drive reference before trimming%ref’ = The drive reference after trimmingmax. speed= Par. 20.02 (or 20.01 if the absolute value is greater)max. freq = Par. 20.08 (or 20.07 if the absolute value is greater)max. torq = Par. 20.14 (or 20.13 if the absolute value is greater)

%ref%ref’

DIRECT (3)

PROPOR. (2)

OFF (1)

max.speed

Switchmax.freq

99.04 (DTC)

40.17PID

trefktitdidFiltTerrVInvrIntoh1ol1

Actual Values40.05

40.07AI1AI2AI3AI5AI6

IMOT40.19

Filter

40.15

SelectAI1AI2

...40.16

40.0140.0240.03

40.0440.0540.13

PIDmaxPIDmin

.

.

.

40.18

Select

max.torque

Page 186: VSDS Manual-ABB

Program features

48

ExampleThe drive runs a conveyor line. It is speed-controlled but the line tension also needs to be taken into account: If the measured tension exceeds the tension setpoint, the speed will be slightly decreased, and vice versa.

To accomplish the desired speed correction, the user:

• activates the trimming function and connects the tension setpoint and the measured tension to it

• tunes the trimming to a suitable level.

Drive rollers (pull)Tension measurement

Speed controlled conveyor line

PID

Add

Tension measurement

Speed reference

Tension setpoint

Trimmed speed reference

Simplified block diagram

Page 187: VSDS Manual-ABB

Program features

49

Programmable analogue inputs The drive has three programmable analogue inputs: one voltage input (0/2 to 10 V or -10 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if an optional analogue I/O extension module is used. Each input can be inverted and filtered, and the maximum and minimum values can be adjusted.

Update cycles in the Standard Application Program

1) Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

Diagnostics

Input CycleAI / standard 6 msAI / extension 6 ms (100 ms 1))

Parameter Additional informationGroup 11 REFERENCE SELECT

AI as a reference source

Group 13 ANALOGUE INPUTS

Processing of the standard inputs

30.01 Supervision of AI lossGroup 40 PID CONTROL

AI as a PID process control reference or actual values

35.01 AI in a motor temperature measurement40.15 AI in a drive reference trimming42.07 AI in a mechanical brake control function98.06 Activation of optional analogue inputs98.13 Optional AI signal type definition (bipolar or unipolar)98.14 Optional AI signal type definition (bipolar or unipolar)

Actual value Additional information01.18, 01.19, 01.20 Values of standard inputs01.38, 01.39 Value of optional inputsGroup 09 ACTUAL SIGNALS

Scaled analogue input values (integer values for function block programming)

Page 188: VSDS Manual-ABB

Program features

50

Programmable analogue outputsTwo programmable current outputs (0/4 to 20 mA) are available as standard, and two outputs can be added by using an optional analogue I/O extension module. Analogue output signals can be inverted and filtered.

The analogue output signals can be proportional to motor speed, process speed (scaled motor speed), output frequency, output current, motor torque, motor power, etc.

It is possible to write a value to an analogue output through a serial communication link.

Update cycles in the Standard Application Program

1) Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

Diagnostics

Output CycleAO / standard 24 msAO / extension 24 ms (1000 ms 1) )

Parameter Additional informationGroup 15 ANALOGUE OUTPUTS

AO value selection and processing (standard outputs)

30.20 Operation of an externally controlled AO in a communication break30.22 Supervision of the use of optional AOGroup 35 MOT TEMP MEAS

AO in motor temperature measurement

Group 96 EXTERNAL AO

Optional AO value selection and processing

Group 98 OPTION MODULES

Activation of optional I/O

Actual value Additional information01.22, 01.23 Values of the standard outputs01.28, 01.29 Values of the optional outputsWarningIO CONFIG Improper use of optional I/O

Page 189: VSDS Manual-ABB

Program features

51

Programmable digital inputs The drive has six programmable digital inputs as a standard. Six extra inputs are available if optional digital I/O extension modules are used.

Update cycles in the Standard Application Program

Settings

Diagnostics

Input CycleDI / standard 6 msDI / extension 12 ms

Parameter Additional informationGroup 10 START/STOP/DIR

DI as start, stop, direction

Group 11 REFERENCE SELECT

DI in reference selection, or reference source

Group 12 CONSTANT SPEEDS

DI in constant speed selection

Group 16 SYSTEM CTRL INPUTS

DI as external Run Enable, fault reset or user macro change signal

22.01 DI as acceleration and deceleration ramp selection signal30.03 DI as external fault source30.05 DI in motor overtemperature supervision function30.22 Supervision of optional I/O use40.20 DI as sleep function activation signal (in PID process control)42.02 DI as mechanical brake acknowledgement signal98.03 … 96.05 Activation of the optional digital I/O extension modules98.09 … 98.11 Naming of the optional digital inputs in the application program

Actual value Additional information01.17 Values of the standard digital inputs01.40 Values of the optional digital inputsWarningIO CONFIG Improper use of optional I/OFaultI/O COMM ERR (7000) Communication loss to I/O

Page 190: VSDS Manual-ABB

Program features

52

Programmable relay outputsAs standard there are three programmable relay outputs. Six outputs can be added by using the optional digital I/O extension modules. By means of a parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc.

It is possible to write a value to a relay output through a serial communication link.

Update cycles in the Standard Application Program

Settings

Diagnostics

Output CycleRO / standard 100 msRO / extension 100 ms

Parameter Additional informationGroup 14 RELAY OUTPUTS

RO value selections and operation times

30.20 Operation of an externally controlled relay output on a communication breakGroup 42 BRAKE CONTROL

RO in a mechanical brake control

Group 98 OPTION MODULES

Activation of optional relay outputs

Actual value Additional information01.21 Standard relay output states01.41 Optional relays output states

Page 191: VSDS Manual-ABB

Program features

53

Actual signalsSeveral actual signals are available:

• Drive output frequency, current, voltage and power

• Motor speed and torque

• Mains voltage and intermediate circuit DC voltage

• Active control location (Local, EXT1 or EXT2)

• Reference values

• Drive temperature

• Operating time counter (h), kWh counter

• Digital I/O and Analogue I/O status

• PID controller actual values (if the PID Control macro is selected)

Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analogue outputs.

Settings

Diagnostics

Parameter Additional informationGroup 15 ANALOGUE OUTPUTS

Selection of an actual signal to an analogue output

Group 92 D SET TR ADDR

Selection of an actual signal to a dataset (serial communication)

Actual value Additional informationGroup 01 ACTUAL SIGNALS … 09 ACTUAL SIGNALS

Lists of actual signals

Page 192: VSDS Manual-ABB

Program features

54

Motor identificationThe performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up.

A motor Identification Magnetisation is automatically done the first time the start command is given. During this first start-up, the motor is magnetised at zero speed for several seconds to allow the motor model to be created. This identification method is suitable for most applications.

In demanding applications a separate Identification Run can be performed.

SettingsParameter 99.10.

Power loss ride-through If the incoming supply voltage is cut off, the drive will continue to operate by utilising the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.

Note: Cabinet assembled units equipped with main contactor option have a “hold circuit” that keeps the contactor control circuit closed during a short supply break. The allowed duration of the break is adjustable. The factory setting is five seconds.

130

260

390

520

1.6 4.8 8 11.2 14.4t(s)

UDC

fout

TM

UDC= Intermediate circuit voltage of the drive, fout = output frequency of the drive, TM = Motor torqueLoss of supply voltage at nominal load (fout = 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the mains is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.

Umains

20

40

60

80

40

80

120

160

TM(Nm)

fout(Hz)

UDC(V d.c.)

Page 193: VSDS Manual-ABB

Program features

55

Automatic StartSince the drive can detect the state of the motor within a few milliseconds, the starting is immediate under all conditions. There is no restart delay. E.g. the starting of turbining pumps or windmilling fans is easy.

SettingsParameter 21.01.

DC Magnetising When DC Magnetising is activated, the drive automatically magnetises the motor before starting. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetising time, it is possible to synchronise the motor start and e.g. a mechanical brake release. The Automatic Start feature and DC Magnetising cannot be activated at the same time.

SettingsParameters 21.01 and 21.02.

DC HoldBy activating the motor DC Hold feature it is possible to lock the rotor at zero speed. When both the reference and the motor speed fall below the preset DC hold speed, the drive stops the motor and starts to inject DC into the motor. When the reference speed again exceeds the DC hold speed, the normal drive operation resumes.

SettingsParameters 21.04, 21.05, and 21.06.

DC hold t

Motor

DC Hold

speed

DC hold speed

t

Speed

ReferenceSpeed

Page 194: VSDS Manual-ABB

Program features

56

Flux BrakingThe drive can provide greater deceleration by raising the level of magnetisation in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW.

The drive monitors the motor status continuously, also during the Flux Braking. Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are:

• The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.

• The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor.

SettingsParameter 26.02.

Flux Braking

No Flux Braking

t (s)

Motor

Flux Braking

No Flux Brakingf (Hz)

TBrTN

20

40

60

(%)

TN = 100 NmTBr = Braking Torque

Speed

50 HZ/60 Hz

120

80

40

05 10 20 30 40 50

1

2345

120

80

40

05 10 20 30 40 50

1

2

3

45

f (Hz)

Braking Torque (%)

f (Hz)

Flux Braking

No Flux Braking

12345

2.2 kW15 kW37 kW75 kW250 kW

Rated Motor Power

Page 195: VSDS Manual-ABB

Program features

57

Flux OptimisationFlux Optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed.

SettingsParameter 26.01.

Acceleration and deceleration rampsTwo user-selectable acceleration and deceleration ramps are available. It is possible to adjust the acceleration/deceleration times and the ramp shape. Switching between the two ramps can be controlled via a digital input.

The available ramp shape alternatives are Linear and S-curve.

Linear: Suitable for drives requiring steady or slow acceleration/deceleration.

S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

SettingsParameter group 22 ACCEL/DECEL.

Critical speedsA Critical Speeds function is available for applications where it is necessary to avoid certain motor speeds or speed bands because of e.g. mechanical resonance problems.

SettingsParameter group 25 CRITICAL SPEEDS.

Constant speeds It is possible to predefine 15 constant speeds. Constant speeds are selected with digital inputs. Constant speed activation overrides the external speed reference.

SettingsParameter group 12 CONSTANT SPEEDS.

Linear

t (s)

Motor

2

speed

S-curve

Page 196: VSDS Manual-ABB

Program features

58

Speed controller tuning During the motor identification, the speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%).

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

Settings Parameter group 23 SPEED CTRL and 20 LIMITS.

DiagnosticsActual signal 01.02.

A : UndercompensatedB : Normally tuned (autotuning)C : Normally tuned (manually). Better dynamic performance than with BD : Overcompensated speed controller

%

t

n

CB D

nN

A

Derivative

Proportional,integral

Derivativeaccelerationcompensation

Torquereference

Speedreference

Calculated actual speed

Errorvalue-

++

++

Page 197: VSDS Manual-ABB

Program features

59

Speed control performance figuresThe table below shows typical performance figures for speed control when Direct Torque Control is used.

Torque control performance figuresThe drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used.

Scalar controlIt is possible to select Scalar Control as the motor control method instead of Direct Torque Control (DTC). In the Scalar Control mode, the drive is controlled with a frequency reference. The outstanding performance of the default motor control method, Direct Torque Control, is not achieved in Scalar Control.

It is recommended to activate the Scalar Control mode in the following special applications:

100

t (s)

TTN

(%)

Tload

nact-nrefnN

0.1 - 0.4 %sec

TN = rated motor torquenN = rated motor speednact = actual speednref = speed reference

*Dynamic speed error depends on speed controller tuning.

Speed Control No Pulse Encoder

With Pulse Encoder

Static speed error, % of nN

+ 0.1 to 0.5 %(10% of nominal slip)

+ 0.01 %

Dynamic speed error

0.4 %sec.* 0.1 %sec.*

*When operated around zero frequency, the error may be greater.

Torque Control No Pulse Encoder

With Pulse Encoder

Linearity error + 4 %* + 3 %Repeatability error

+ 3 %* + 1 %

Torque rise time 1 to 5 ms 1 to 5 ms

100

t(s)

TTN

< 5 ms

90

10

(%)

Tref

Tact

TN = rated motor torqueTref = torque referenceTact = actual torque

Page 198: VSDS Manual-ABB

Program features

60

• In multimotor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after the motor identification

• If the nominal current of the motor is less than 1/6 of the nominal output current of the drive

• If the drive is used without a motor connected (e.g. for test purposes)

• The drive runs a medium voltage motor via a step-up transformer.

In the Scalar Control mode, some standard features are not available.

SettingsParameter 99.04.

IR compensation for a scalar controlled driveIR Compensation is active only when the motor control mode is Scalar (see the section Scalar control above). When IR Compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control, no IR Compensation is possible/needed.

SettingsParameter 26.03.

Hexagonal motor fluxTypically the drive controls the motor flux in such a way that the rotating flux vector follows a circular pattern. This is ideal in most applications. When operated above the field weakening point (FWP, typically 50 or 60 Hz), it is, however, not possible to reach 100% of the output voltage. The peak load capacity of the drive is lower than with the full voltage.

If hexagonal flux control is selected, the motor flux is controlled along a circular pattern below the field weakening point, and along a hexagonal pattern in the field weakening range. The applied pattern is changed gradually as the frequency increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the maximum output voltage can be reached; The peak load capacity is higher than with the circular flux pattern but the continuous load capacity is lower in the frequency range of FWP to 1.6 · FWP, due to increased losses.

SettingsParameter 26.05.

f (Hz)

Motor Voltage

No compensation

IR Compensation

Page 199: VSDS Manual-ABB

Program features

61

Programmable protection functions

AI<MinAI<Min function defines the drive operation if an analogue input signal falls below the preset minimum limit.

Settings

Parameter 30.01.

Panel LossPanel Loss function defines the operation of the drive if the control panel selected as control location for the drive stops communicating.

Settings

Parameter 30.02.

External Fault External Faults can be supervised by defining one digital input as a source for an external fault indication signal.

Settings

Parameter 30.03.

Motor Thermal ProtectionThe motor can be protected against overheating by activating the Motor Thermal Protection function and by selecting one of the motor thermal protection modes available.

The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor.

Motor temperature thermal model

The drive calculates the temperature of the motor on the basis of the following assumptions:

1) The motor is in the ambient temperature of 30 °C when power is applied to the drive.

2) Motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time and motor load curve (see the figures below). The load curve should be adjusted in case the ambient temperature exceeds 30 °C.

Page 200: VSDS Manual-ABB

Program features

62

Use of the motor thermistor

It is possible to detect motor overtemperature by connecting a motor thermistor (PTC) between the +24 VDC voltage supply offered by the drive and digital input DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kohm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kohm. The installation must meet the regulations for protecting against contact.

Settings

Parameters 30.04 to 30.09.

Note: It is also possible to use the motor temperature measurement function. See the subsection Motor temperature measurement through the standard I/O.

Stall Protection The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (frequency, time) and choose how the drive reacts to the motor stall condition (warning indication / fault indication & stop the drive / no reaction).

Settings

Parameters 30.10 to 30.12.

Underload Protection Loss of motor load may indicate a process malfunction. The drive provides an underload function to protect the machinery and process in such a serious fault condition. Supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (warning indication / fault indication & stop the drive / no reaction).

Settings

Parameters 30.13 to 30.15.

Motor

100%

Temp.

63%

Motor thermal time

t

t

100%

50

100

150

Zero speed load

Motor load curve

Break pointMotor

Speed

Load Current(%)

Rise

Page 201: VSDS Manual-ABB

Program features

63

Motor Phase Loss The Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive detects if any of the motor phases is not connected and refuses to start. The Phase Loss function also supervises the motor connection status during normal operation.

Settings

Parameter 30.16.

Earth Fault ProtectionThe Earth Fault Protection detects earth faults in the motor or motor cable.

The Earth Fault protection is based on earth leakage current measurement with a summation current transformer at the output of the converter.

• An earth fault in the mains does not activate the protection.

• In an earthed (grounded) supply, the protection activates in 200 microseconds.

• In floating mains, the mains capacitance should be 1 microfarad or more.

• The capacitive currents due to screened copper motor cables up to 300 metres do not activate the protection.

Settings

Parameter 30.17.

Communication FaultThe Communication Fault function supervises the communication between the drive and an external control device (e.g. a fieldbus adapter module).

Settings

Parameters 30.18 to 30.21.

Supervision of optional IOThe function supervises the use of the optional analogue and digital inputs and outputs in the application program, and warns if the communication to the input/output is not operational.

Settings

Parameter 30.22.

Page 202: VSDS Manual-ABB

Program features

64

Preprogrammed faults

OvercurrentThe overcurrent trip limit for the drive is 1.65 to 2.17 · Imax depending on the drive type.

DC overvoltageThe DC overvoltage trip limit is 1.3 ·U1max, where U1max is the maximum value of the mains voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. For 690 V units, U1max is 690 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 728 VDC for 400 V units, 877 VDC for 500 V units, and 1210 VDC for 690 V units.

DC undervoltageThe DC undervoltage trip limit is 0.65 · U1min, where U1min is the minimum value of the mains voltage range. For 400 V and 500 V units, U1min is 380 V. For 690 V units, U1min is 525 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 334 VDC for 400 V and 500 V units, and 461 VDC for 690 V units.

Drive temperatureThe drive supervises the inverter module temperature. There are two supervision limits: warning limit and fault trip limit.

Short circuit There are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given.

Input phase lossInput phase loss protection circuits supervise the mains cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%.

Ambient temperature The drive will not start if the ambient temperature is above 73 to 82 °C (the exact limits vary within the given range depending on drive type).

OverfrequencyIf the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active).

Page 203: VSDS Manual-ABB

Program features

65

Internal faultIf the drive detects an internal fault, the drive is stopped and a fault indication is given.

Operation limitsACS800 has adjustable limits for speed, current (maximum), torque (maximum) and DC voltage.

SettingsParameter group 20 LIMITS.

Power limitThe maximum allowed motor power is 1.5 · Phd or Pcont whichever value is greater (varies depending on the drive type). If the limit is exceeded, the motor torque is automatically restricted. The function protects the input bridge of the drive against overload.

Automatic resetsThe drive can automatically reset itself after overcurrent, overvoltage, undervoltage and “analogue input below a minimum” faults. The Automatic Resets must be activated by the user.

SettingsParameter group 31 AUTOMATIC RESET.

Page 204: VSDS Manual-ABB

Program features

66

SupervisionsThe drive monitors whether certain user selectable variables are within the user-defined limits. The user may set limits for speed, current etc.

SettingsParameter group 32 SUPERVISION.

Diagnostics

Parameter lockThe user can prevent parameter adjustment by activating the parameter lock.

SettingsParameters 16.02 and 16.03.

Process PID controlThere is a built-in PID controller in the drive. The controller can be used to control process variables such as pressure, flow or fluid level.

When the process PID control is activated, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PID control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (reference).

Block diagramsThe block diagram below right illustrates the process PID control.

The figure on the left shows an application example: The controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference.

Actual Signals Additional information03.02 Supervision limit indicating bits in a packed boolean word 03.04 Supervision limit indicating bits in a packed boolean word03.14 Supervision limit indicating bits in a packed boolean wordGroup 14 RELAY OUTPUTS

Supervision limit indication through a relay output

Page 205: VSDS Manual-ABB

Program features

67

Settings

Diagnostics

Parameter Purpose

99.02 Process PID control activation

40.01 - 40.13, 40.19, 40.25 - 40.27

The settings of the process PID controller

32.13 to 32.18 The supervision limits for the process reference REF2 and the variables ACT1 and ACT2

Actual Signals Purpose

01.12, 01.24, 01.25, 01.26 and 01.34

PID process controller reference, actual values and error value

Group 14 RELAY OUTPUTS

Supervision limit exceeded indication through a relay output

Group 15 ANALOGUE OUTPUTS

PID process controller values through standard analogue outputs

Group 96 EXTERNAL AO

PID process controller values through optional analogue outputs

� � � � � � � � � � � � �

� � � � �

� �

� � �

� � � � � � � �

� � � � � � �

� � � � � � � �

� � � � � � � �

PIDrefktitdidFiltTerrVInvrIntoh1ol1

Actual Values40.06

40.12AI1AI2AI3AI5AI6

IMOT40.19

Filter

%ref40.0140.0240.03

40.0440.0540.13

PIDmaxPIDmin

Switch

Speed reference

Frequency reference

99.04 = 0(DTC)

Example:

.

..

PID Control Block Diagram

%ref = external reference EXT REF2 (see parameter 11.06)

Pressure boost pump

ACS800

Page 206: VSDS Manual-ABB

Program features

68

Sleep function for the process PID controlThe block diagram below illustrates the sleep function enable/disable logic. The sleep function can be put into use only when the process PID control is active.

ExampleThe time scheme below visualises the operation of the sleep function.

1)1 = Activate sleeping0 = Deactivate sleeping

40.20

SelectCompare

1<2

Or

<1

40.22

Delay

t

1

240.21

Mot.speed0

DI1

And

&%refActivePIDCtrlActive

modulating

Set/ResetS

R

S/R

Compare

1<21

240.23

0INTERNAL

DI1

40.24

Delay

t

Or

<1StartRq

03.02 (B1)

03.02 (B2)

1)

01.34

INTERNAL

...

40.20

Select

...

Mot.speed: Actual speed of the motor%refActive: The % reference (EXT REF2) is in use. See Parameter 11.02.PIDCtrlActive: 99.02 is PID CTRLmodulating: The inverter IGBT control is operating

Actual Value

Wake-up levelParameter 42.23

Motor Speed

Sleep levelPar. 40.21

Time

TimeSTARTSTOP

t<td td

td = Sleep delay, parameter 40.22

Text on displaySLEEP MODE

twd

twd = Wake-up delay, parameter 40.24

Page 207: VSDS Manual-ABB

Program features

69

Sleep function for a PID controlled pressure boost pump: The water consumption falls at night. As a consequence, the PID process controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor does not stop but keeps rotating. The sleep function detects the slow rotation, and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed.

Settings

DiagnosticsWarning SLEEP MODE on the panel display.

Parameter Additional information

99.02 Process PID control activation

40.20 - 40.24 Sleep function settings

Page 208: VSDS Manual-ABB

Program features

70

Motor temperature measurement through the standard I/OThis subsection describes the temperature measurement of one motor when the drive control board RMIO is used as the connection interface.

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RMIO board, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:

• The RMIO board terminals must be protected against contact and they may not be connected to other equipment.

Or

• The temperature sensor must be isolated from the RMIO board terminals.

Motor

T

10 nF

RMIO board

AI1+

AI1-

AO1+

AO1-

Motor

T

RMIO board

AI1+

AI1-

AO1+

AO1-

TT

One sensor

Three sensors

10 nF

Page 209: VSDS Manual-ABB

Program features

71

Settings

Diagnostics

Parameter Additional information15.01 Analogue output in a motor 1 temperature measurement. Set to M1 TEMP

MEAS.35.01 … 35.03 Settings of motor 1 temperature measurementOtherParameters 13.01 to 13.05 (AI1 processing) and 15.02 to 15.05 (AO1 processing) are not effective.At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Actual values Additional information01.35 Temperature value03.08 Warning bit state03.15 Fault bit states03.16 Warning bit statesWarningsMOTOR 1 TEMP (4312)

Chapter Fault tracing and parameter 03.16

T MEAS ALM Chapter Fault tracing and parameter 03.08Faults MOTOR 1 TEMP (4312)

Chapter Fault tracing and parameter 03.15

Page 210: VSDS Manual-ABB

Program features

72

Motor temperature measurement through an analogue I/O extensionThis subsection describes the motor temperature measurement of one motor when an optional analogue I/O extension module RAIO is used as the connection interface.

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RAIO module, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:

• The RAIO module terminals must be protected against contact and they may not be connected to other equipment.

Or

• The temperature sensor must be isolated from the RAIO module terminals.

Motor

T

10 nF

RAIO module

AI1+

AI1-

AO1+

AO1-

Motor

TTT

One sensor

Three sensors

10 nF

RAIO module

AI1+

AI1-

AO1+

AO1-

Page 211: VSDS Manual-ABB

Program features

73

Settings

Diagnostics

Parameter Additional information35.01 … 35.03 Settings of motor 1 temperature measurement98.12 Activation of optional analogue I/O for motor temperature measurementOtherParameters 13.16 to 13.20 (AI1 processing) and 96.01 to 96.05 (AO1 signal selection and processing) are not effective.At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Actual values Additional information01.35 Temperature value03.08 Fault bit in a packed boolean word03.15 Warning bit in a packed boolean word03.16 Fault bit in a packed boolean wordWarningsMOTOR 1 TEMP (4312)

Chapter Fault tracing and parameter 03.16

T MEAS ALM Chapter Fault tracing and parameter 03.08Faults MOTOR 1 TEMP (4312)

Chapter Fault tracing and parameter 03.15

Page 212: VSDS Manual-ABB

Program features

74

Adaptive Programming using the function blocksConventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited. The user cannot customise the operation any further. The Adaptive Program makes freer customising possible without the need of a special programming tool or language:

• The program is built of standard function blocks included in the drive application program.

• The control panel is the programming tool.

• The user can document the program by drawing it on block diagram template sheets.

The maximum size of the Adaptive Program is 15 function blocks. The program may consist of several separate functions.

For more information, see Application Guide for Adaptive Program (code: 3AFE 64527274 [English]).

Page 213: VSDS Manual-ABB

Program features

75

Control of a mechanical brakeThe mechanical brake is used for holding the motor and driven machinery at zero speed when the drive is stopped, or not powered.

ExampleThe figure below shows a brake control application example.

WARNING! Make sure that the machinery into which the drive with brake control function is integrated fulfils the personnel safety regulations. Note that the frequency converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC 61800-2), is not considered as a safety device mentioned in the European Machinery Directive and related harmonised standards. Thus, the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations.

Motor

M

230 VAC

RMIO board

Mechanical brake

Brake control hardware

Emergency brake

X25

1 RO12 RO13 RO1

X22

5 DI5

7 +24 V

Brake control logic is integrated in the drive application program. The brake control hardware and wirings needs to be done by the user.- Brake on/off control through relay output RO1.- Brake supervision through digital input DI5 (optional).- Emergency brake switch in the brake control circuit.

Page 214: VSDS Manual-ABB

Program features

76

Operation time schemeThe time scheme below illustrates the operation of the brake control function. See also the state machine on the following page.

Ts Start torque at brake release (Parameter 42.07 and 42.08)tmd Motor magnetising delaytod Brake open delay (Parameter 42.03)ncs Brake close speed (Parameter 42.05)tcd Brake close delay (Parameter 42.04)

Start command

Inverter modulating

Motor magnetised

Open brake command

Internal speed reference (actual motor speed)

Torque reference

time

tod

tcd

ncs

Ts

External speed reference

tmd

1

2

3

4

5

6

7

Page 215: VSDS Manual-ABB

Program features

77

State shifts

RFG INPUTTO ZERO

CLOSEBRAKE

BRAKEACK FAULT

OPENBRAKE

From any state

1/1/1

0/1/1

1/1/1

1/1/0

0/0/1

1)

2)

RELEASE RFGINPUT

3)

4)

7)

8)

10)11)

12)

13)

5)

NOMODULATION 0/0/1

9)

6)

A

A

State (Symbol )

- NN: State name- X/Y/Z: State outputs/operations

X = 1 Open the brake. The relay output set to brake on/off control energises.Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in spite of the

status of the external Start signal.Z = 1 Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.

NN X/Y/Z

State change conditions (Symbol )

1) Brake control active 0 -> 1 OR Inverter is modulating = 02) Motor magnetised = 1 AND Drive running = 13) Brake acknowledgement = 1 AND Brake open delay passed AND Start = 14) Start = 05) Start = 06) Start = 17) Actual motor speed < Brake close speed AND Start = 08) Start = 19) Brake acknowledgement = 0 AND Brake close delay passed = 1 AND Start = 0Only if parameter 42.02 OFF: 10) Brake acknowledgement = 0 AND Brake open delay passed =111) Brake acknowledgement = 012) Brake acknowledgement = 013) Brake acknowledgement = 1 AND Brake close delay passed = 1

=

RFG = Ramp Function Generator in the speed control loop (reference handling).

(rising edge)

Page 216: VSDS Manual-ABB

Program features

78

Settings

Diagnostics

Parameter Additional information14.01 Relay output for the brake control (set to BRAKE CTRL)Group 42 BRAKE CONTROL

Brake function settings

Actual value Additional information03.01 Ramp in zero bit03.13 The state of bit “brake open/close command”03.15 Fault bit state03.16 Warning bit stateWarningsBRAKE ACKN (ff74) Chapter Fault tracing, and actual signal 03.16FaultsBRAKE ACKN (ff74) Chapter Fault tracing, and actual signal 03.15

Page 217: VSDS Manual-ABB

Program features

79

Master/Follower use of several drivesIn a Master/Follower application, the system is run by several drives, the motor shafts of which are coupled to each other. The master and follower drives communicate via a fibre optic link. The figures below illustrate two basic application types.

Settings and diagnostics

Parameter Additional informationGroup 60 MASTER/FOLLOWER

Master/Follower parameters

OtherMaster/Follower Application Guide (3AFE 64590430 [English]) explains the functionality in further detail.

Supply 33

Solidly coupled motor shafts:- Speed-controlled Master - Follower follows the torque reference of the Master

External control signals

Supply 3n3

22 Master/Follower LinkFollower fault

supervision

3

22 Master/Follower Link

Follower fault supervision

3 3

External control signals

Supply 3n

Flexibly coupled motor shafts:- Speed-controlled Master - Follower follows the speed reference of the Master

Supply

M/F Application, Overview

Page 218: VSDS Manual-ABB

Program features

80

JoggingThe jogging function is typically used to control a cyclical movement of a machine section. One push button controls the drive through the whole cycle: When it is on, the drive starts, accelerates to a preset speed at a preset rate. When it is off, the drive decelerates to zero speed at a preset rate.

The figure and table below describe the operation of the drive. They also represent how the drive shifts to normal operation ( = jogging inactive) when the drive start command is switched on. Jog cmd = State of the jogging input, Start cmd = State of the drive start command.

x = State can be either 1 or 0.

Phase Jog cmd

Start cmd

Description

1-2 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function. 2-3 1 0 Drive runs at the jogging speed.3-4 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.4-5 0 0 Drive is stopped.5-6 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function. 6-7 1 0 Drive runs at the jogging speed.7-8 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the

active acceleration ramp.8-9 x 1 Normal operation overrides the jogging. Drive follows the speed reference.

9-10 0 0 Drive decelerates to zero speed along the active deceleration ramp.10-11 0 0 Drive is stopped.11-12 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the

active acceleration ramp.12-13 x 1 Normal operation overrides the jogging. Drive follows he speed reference.13-14 1 0 Drive decelerates to the jogging speed along the deceleration ramp of the jogging function.14-15 1 0 Drive runs at the jogging speed.15-16 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.

Time

Speed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Page 219: VSDS Manual-ABB

Program features

81

Note: The jogging is not operational when:

• the drive start command is on, or

• the drive is in local control (L visible on the first row of the panel display).

Note: The jogging speed overrides the constant speeds.

Note: The ramp shape time is set to zero during the jogging.

Settings

Parameter Additional information10.06 Input for the on/off control of the jogging.12.15 Jogging speed.21.10 Switch off delay for the inverter IGBT control. A delay keeps the inverter

modulation live over a short standstill period enabling a smooth restart.22.04, 22.05 Acceleration and deceleration times used during the jogging.22.06 Acceleration and deceleration ramp shape time: Set to zero during the

jogging.

Page 220: VSDS Manual-ABB

Program features

82

Page 221: VSDS Manual-ABB

Application macros

83

Application macros

Chapter overviewThis chapter describes the intended use, operation and the default control connections of the standard application macros. It also describes how to save a user macro, and how to recall it.

Overview of macrosApplication macros are preprogrammed parameter sets. While starting up the drive, the user typically selects one of the macros - the one that is best suited to his needs - by parameter 99.02, makes the essential changes and saves the result as a user macro.

There are five standard macros and two user macros. The table below contains a summary of the macros and describes suitable applications.

Macro Suitable Applications

Factory Ordinary speed control applications where no, one, two or three constant speeds are used:- Conveyors- Speed-controlled pumps and fans- Test benches with predefined constant speeds

Hand/Auto Speed control applications. Switching between two external control devices is possible.

PID Control Process control applications e.g. different closed loop control systems such as pressure control, level control, and flow control. For example:- pressure boost pumps of municipal water supply systems- level controlling pumps of water reservoirs- pressure boost pumps of district heating systems- material flow control on a conveyor line.It is also possible to switch between process and speed control.

Torque Control

Torque control applications. Switching between torque and speed control is possible.

Sequential Control

Speed control applications in which speed reference, seven constant speeds and two acceleration and deceleration ramps can be used.

User The user can save the customised standard macro i.e. the parameter settings including group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. Two user macros are essential when switching between two different motors is required

Page 222: VSDS Manual-ABB

Application macros

84

Factory macroAll drive commands and reference settings can be given from the control panel or from an external control location. The active control location is selected with the LOC/REM key of the panel. The drive is speed-controlled.

In external control, the control location is EXT1. The reference signal is connected to analogue input AI1 and Start/Stop and Direction signals are connected to digital inputs DI1 and DI2. By default, the direction is fixed to FORWARD (parameter 10.03). DI2 does not control the direction of rotation unless parameter 10.03 is changed to REQUEST.

Three constant speeds are selected by digital inputs DI5 and DI6. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are used according to the state of digital input DI4.

Two analogue signals (speed and current) and three relay output signals (ready, running and inverted fault) are available.

The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.

Page 223: VSDS Manual-ABB

Application macros

85

Default control connectionsThe figure below shows the external control connections for the Factory macro. The markings of the standard I/O terminals on the RMIO board are shown.

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed reference 0(2) … 10 V, Rin > 200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start 2)

2 DI2 Forward/reverse 1, 2)

3 DI3 By default, not in use. 2)

4 DI4 Acceleration & deceleration select 3)

5 DI5 Constant speed select 4)

6 DI6 Constant speed select 4)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 5)

X231 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=A

rpm

Fault

1) Effective only if parameter 10.03 is switched to REQUEST by the user.

2) The US default settings differ as follows:

3) 0 = ramp times according to par. 22.02 and 22.03. 1 = ramp times according to par. 22.04 and 22.05.

4) See parameter group 12 CONSTANT SPEEDS:

5) See parameter 21.09.

DI1 Start (Pulse: 0->1)DI2 Stop (Pulse: 1->0)DI3 Forward/Reverse

DI5 DI6 Operation0 0 Set speed through AI11 0 Speed 10 1 Speed 2 1 1 Speed 3

Page 224: VSDS Manual-ABB

Application macros

86

Hand/Auto macroStart/Stop and Direction commands and reference settings can be given from one of two external control locations, EXT1 (Hand) or EXT2 (Auto). The Start/Stop/Direction commands of EXT1 (Hand) are connected to digital inputs DI1 and DI2, and the reference signal is connected to analogue input AI1. The Start/Stop/Direction commands of EXT2 (Auto) are connected to digital inputs DI5 and DI6, and the reference signal is connected to analogue input AI2. The selection between EXT1 and EXT2 is dependent on the status of digital input DI3. The drive is speed controlled. Speed reference and Start/Stop and Direction commands can be given from the control panel keypad also. One constant speed can be selected through digital input DI4.

Speed reference in Auto Control (EXT2) is given as a percentage of the maximum speed of the drive.

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are FREQUENCY, CURRENT and CTRL LOC.

Page 225: VSDS Manual-ABB

Application macros

87

Default control connectionsThe figure below shows the external control connections for the Hand/Auto macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

Fault

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC, kohm < RL <

10 kohm2 GND3 AI1+ Speed reference (Hand control). 0(2) … 10 V,

Rin > 200 kohm4 AI1-5 AI2+ Speed reference (Auto control). 0(4) …

20 mA, Rin = 100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA,

Rin = 100 ohm.8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start (Hand control)2 DI2 Forward/Reverse (Hand control)3 DI3 Hand/Auto control select 1) 4 DI4 Constant speed 4: Par. 12.055 DI5 Forward/Reverse (Auto control)6 DI6 Stop/Start (Auto control)7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 2)

X231 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

1) Selection between two external control locations, EXT1 and EXT2.

2) See parameter 21.09.

Page 226: VSDS Manual-ABB

Application macros

88

PID Control macroThe PID Control macro is used for controlling a process variable – such as pressure or flow – by controlling the speed of the driven motor.

Process reference signal is connected to analogue input AI1 and process feedback signal to analogue input AI2.

Alternatively, a direct speed reference can be given to the drive through analogue input AI1. Then the PID controller is bypassed and the drive no longer controls the process variable. Selection between the direct speed control and the process variable control is done with digital input DI3.

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, ACTUAL VALUE1 and CONTROL DEVIATION.

Connection example, 24 VDC / 4…20 mA two-wire sensor

Note: The sensor is supplied through its current output. Thus the output signal must be 4…20 mA, not 0…20 mA.

X21 / RMIO board5 AI2+ Process actual value measurement. 0(4) …

20 mA, Rin = 100 ohm6 AI2-…X23 / RMIO board1 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GND

PI

4…20 mA

Page 227: VSDS Manual-ABB

Application macros

89

Default control connectionsThe figure below shows the external control connections for the PID Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

PT

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed ref. (speed cntrl) or process ref.

(process cntrl). 0(2) … 10 V, Rin > 200 kohm4 AI1-5 AI2+ Process actual value measurement. 0(4) …

20 mA, Rin = 100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm.8 AI3-9 AO1+ Motor speed 0(4) … 20 mA

0 … motor nom. speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA

0 … motor nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start (speed control)2 DI2 By default, not in use. 3 DI3 Speed / process control select 1)

4 DI4 Constant speed 4: Par. 12.05 2)

5 DI5 Run Enable. 3)

6 DI6 Stop/Start (process control)7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 4)

X231 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

5)

1) Selection between two external control locations, EXT1 and EXT2

2) In use only when the speed control is active (DI3 = 0)

3) Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.

4) See parameter 21.09.

5) The sensor needs to be powered. See the manufacturer’s instructions. A connection example of a two-wire 24 VDC / 4…20 mA sensor is shown above.

Page 228: VSDS Manual-ABB

Application macros

90

Torque Control macroTorque Control macro is used in applications in which torque control of the motor is required. Torque reference is given through analogue input AI2 as a current signal. By default, 0 mA corresponds to 0 %, and 20 mA to 100 % of the rated motor torque. The Start/Stop/Direction commands are given through digital inputs DI1 and DI2. The Run Enable signal is connected to DI6.

Through digital input DI3 it is possible to select speed control instead of torque control. It is also possible to change the external control location to local (i.e. to control panel) by pressing the LOC/REM key. The panel controls the speed by default. If torque control with panel is required, the value of parameter 11.01 should be changed to REF2 (%).

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, TORQUE and CTRL LOC.

Page 229: VSDS Manual-ABB

Application macros

91

Default control connectionsThe figure below shows the external control connections for the Torque Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed reference. 0(2) … 10 V, Rin >

200 kohm4 AI1-5 AI2+ Torque reference. 0(4) … 20 mA, Rin = 100

ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start2 DI2 Forward/Reverse3 DI3 Speed / torque control select 1)

4 DI4 Constant speed 4: Par. 12.05 2)

5 DI5 Acceleration & deceleration select 3)

6 DI6 Run Enable 4)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 5)

X231 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

1) Selection between external control locations EXT1 and EXT2

2) In use only when the speed control is active (DI3 = 0)

3) Off = Ramp times according to par. 22.02 and 22.03. On = Ramp times according to par. 22.04 and 22.05.

4) Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.

5) See parameter 21.09.A

rpm

Page 230: VSDS Manual-ABB

Application macros

92

Sequential Control macroThis macro offers seven preset constant speeds which can be activated by digital inputs DI4 to DI6. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are applied according to the state of digital input DI3. The Start/Stop and Direction commands are given through digital inputs DI1 and DI2.

External speed reference can be given through analogue input AI1. The reference is active only when all of the digital inputs DI4 to DI6 are 0 VDC. Giving operational commands and setting reference is possible also from the control panel.

Two analogue and three relay output signals are available on terminal blocks. Default stop mode is ramp. The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.

Operation diagramThe figure below shows an example of the use of the macro.

Accel1 Accel1 Accel2 Decel2

Speed 3

Speed 2

Speed 1

Speed

Time

Start/Stop

Accel1/Decel1

Speed 1

Speed 2Accel2/Decel2Speed 3

Stop with deceleration ramp

Page 231: VSDS Manual-ABB

Application macros

93

Default control connectionsThe figure below shows the external control connections for the Sequential Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ External speed reference 0(2) … 10 V, Rin >

200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start2 DI2 Forward/Reverse3 DI3 Acceleration & deceleration selection 1)

4 DI4 Constant speed select 2)

5 DI5 Constant speed select 2)

6 DI6 Constant speed select 2)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 3)

X231 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

1) Off = Ramp times according to par. 22.02 and 22.03. On = Ramp times according to par. 22.04 and 22.05.

2) See parameter group 12 CONSTANT SPEEDS:

3) See parameter 21.09.

DI4 DI5 DI6 Operation0 0 0 Set speed through AI11 0 0 Speed 10 1 0 Speed 21 1 0 Speed 30 0 1 Speed 41 0 1 Speed 50 1 1 Speed 61 1 1 Speed 7

Page 232: VSDS Manual-ABB

Application macros

94

User macrosIn addition to the standard application macros, it is possible to create two user macros. The user macro allows the user to save the parameter settings including Group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. The panel reference and the control location setting (Local or Remote) are also saved.

To create User Macro 1:

• Adjust the parameters. Perform the motor identification if not performed yet.

• Save the parameter settings and the results of the motor identification by changing parameter 99.02 to USER 1 SAVE (press ENTER). The storing takes 20 s to 1 min.

To recall the user macro:

• Change parameter 99.02 to USER 1 LOAD.

• Press ENTER to load.

The user macro can also be switched via digital inputs (see parameter 16.05).

Note: User macro load restores also the motor settings in group 99 START-UP DATA and the results of the motor identification. Check that the settings correspond to the motor used.

Example: The user can switch the drive between two motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. The user needs only to adjust the settings and perform the motor identification once for both motors and then to save the data as two user macros. When the motor is changed, only the corresponding User macro needs to be loaded, and the drive is ready to operate.

Page 233: VSDS Manual-ABB

Actual signals and parameters

95

Actual signals and parameters

Chapter overviewThe chapter describes the actual signals and parameters and gives the fieldbus equivalent values for each signal/parameter. More data is given in chapter Additional data: actual signals and parameters.

Terms and abbreviations

Term Definition

Absolute Maximum Frequency

Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed

Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.

Actual signal Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Parameter A user-adjustable operation instruction of the drive.

Page 234: VSDS Manual-ABB

Actual signals and parameters

96

No. Name/Value Description FbEq

01 ACTUAL SIGNALS Basic signals for monitoring of the drive.

01.01 PROCESS VARIABLE Process variable based on settings in parameter group 34 PROCESS VARIABLE.

1 = 1

01.02 SPEED Calculated motor speed in rpm. Filter time setting by parameter 34.04. -20000 = -100% 20000 = 100% of motor abs. max. speed

01.03 FREQUENCY Calculated drive output frequency. -100 = -1 Hz 100 = 1 Hz

01.04 CURRENT Measured motor current. 10 = 1 A01.05 TORQUE Calculated motor torque. 100 is the motor nominal torque. Filter time

setting by parameter 34.05.-10000 = -100% 10000 = 100% of motor nom. torque

01.06 POWER Motor power. 100 is the nominal power. -1000 = -100% 1000 = 100% of motor nom. power

01.07 DC BUS VOLTAGE V Measured intermediate circuit voltage. 1 = 1 V01.08 MAINS VOLTAGE Calculated supply voltage. 1 = 1 V01.09 OUTPUT VOLTAGE Calculated motor voltage. 1 = 1 V01.10 ACS800 TEMP Temperature of the heatsink. 1 = 1 °C01.11 EXTERNAL REF 1 External reference REF1 in rpm. (Hz if value of parameter 99.04 is

SCALAR.)1 = 1 rpm

01.12 EXTERNAL REF 2 External reference REF2. Depending on the use, 100% is the motor maximum speed, motor nominal torque, or maximum process reference.

0 = 0% 10000 = 100% 1)

01.13 CTRL LOCATION Active control location. (1,2) LOCAL; (3) EXT1; (4) EXT2. See the chapter Program features.

See Descr.

01.14 OP HOUR COUNTER Elapsed time counter. Runs when the control board is powered. 1 = 1 h01.15 KILOWATT HOURS kWh counter. 1 = 100 kWh01.16 APPL BLOCK OUTPUT Application block output signal. E.g. the process PID controller output

when the PID Control macro is active.0 = 0% 10000 = 100%

01.17 DI6-1 STATUS Status of digital inputs. Example: 0000001 = DI1 is on, DI2 to DI6 are off.

01.18 AI1 [V] Value of analogue input AI1. 1 = 0.001 V01.19 AI2 [mA] Value of analogue input AI2. 1 = 0.001 mA01.20 AI3 [mA] Value of analogue input AI3. 1 = 0.001 mA01.21 RO3-1 STATUS Status of relay outputs. Example: 001 = RO1 is energised, RO2 and

RO3 are de-energised.01.22 AO1 [mA] Value of analogue output AO1. 1 =0.001 mA

Page 235: VSDS Manual-ABB

Actual signals and parameters

97

01.23 AO2 [mA] Value of analogue output AO2. 1 = 0.001 mA01.24 ACTUAL VALUE 1 Feedback signal for the process PID controller. Updated only when

parameter 99.02 = PD CTRL0 = 0% 10000 = 100%

01.25 ACTUAL VALUE 2 Feedback signal for the process PID controller. Updated only when parameter 99.02 = PID CTRL.

0 = 0% 10000 = 100%

01.26 CONTROL DEVIATION Deviation of the process PID controller, i.e. the difference between the reference value and the actual value. Updated only when parameter 99.02 = PID CTRL.

-10000 = -100% 10000 = 100%

01.27 APPLICATION MACRO Active application macro (value of parameter 99.02). See 99.0201.28 EXT AO1 [mA] Value of output 1 of the analogue I/O extension module (optional). 1 = 0.001 mA01.29 EXT AO2 [mA] Value of output 2 of the analogue I/O extension module (optional). 1 = 0.001 mA01.30 PP 1 TEMP IGBT maximum temperature in inverter no. 1 (used only in high power

units with parallel inverters).1 = 1 °C

01.31 PP 2 TEMP IGBT maximum temperature in inverter no. 2 (used only in high power units with parallel inverters).

1 = 1 °C

01.32 PP 3 TEMP IGBT maximum temperature in inverter no. 3 (used only in high power units with parallel inverters).

1 = 1 °C

01.33 PP 4 TEMP IGBT maximum temperature in inverter no. 4 (used only in high power units with parallel inverters).

1 = 1 °C

01.34 ACTUAL VALUE Process PID controller actual value. See parameter 40.06. 0 = 0% 10000 = 100%

01.35 MOTOR 1 TEMP Measured temperature of motor 1. See parameter 35.01. 1 = 1 °C01.36 MOTOR 2 TEMP Measured temperature of motor 2. See parameter 35.04. 1 = 1 °C01.37 MOTOR TEMP EST Estimated motor temperature. 1 = 1 °C01.38 AI5 [mA] Value of analogue input AI5 read from AI1 of the analogue I/O

extension module (optional). A voltage signal is also displayed in mA (instead of V).

1 = 0.001 mA

01.39 AI6 [mA] Value of analogue input AI6 read from AI2 of the analogue I/O extension module (optional). A voltage signal is also displayed in mA (instead of V).

1 = 0.001 mA

01.40 DI7-12 STATUS Status of digital inputs DI7 to DI12 read from the digital I/O extension modules (optional). E.g. value 000001: DI7 is on, DI8 to DI12 are off.

1 = 1

01.41 EXT RO STATUS Status of the relay outputs on the digital I/O extension modules (optional). E.g. value 0000001: RO1 of module 1 is energised. Other relay outputs are de-energised.

1 = 1

01.42 PROCESS SPEED REL Motor actual speed in percent of the Absolute Maximum Speed. If parameter 99.04 is SCALAR, the value is the relative actual output frequency.

1 = 1

01.43 MOTOR RUN TIME Motor run time counter. The counter runs when the inverter modulates. Can be reset by parameter 34.06.

1 = 10 h

01.44 FAN ON-TIME Running time of the drive cooling fan. Note: The counter can be reset by the DriveWindow PC tool. Resetting is recommended when the fan is replaced.

01.45 CTRL BOARD TEMP Control board temperature.

No. Name/Value Description FbEq

Page 236: VSDS Manual-ABB

Actual signals and parameters

98

02 ACTUAL SIGNALS Speed and torque reference monitoring signals.

02.01 SPEED REF 2 Limited speed reference. 100% corresponds to the Absolute Maximum Speed of the motor.

0 = 0% 20000 = 100% of motor absolute max. speed

02.02 SPEED REF 3 Ramped and shaped speed reference. 100% corresponds to the Absolute Maximum Speed of the motor.

20000 = 100%

02.09 TORQUE REF 2 Speed controller output. 100% corresponds to the motor nominal torque.

0 = 0% 10000 = 100% of motor nominal torque

02.10 TORQUE REF 3 Torque reference. 100% corresponds to the motor nominal torque. 10000 = 100% 02.13 TORQ USED REF Torque reference after frequency, voltage and torque limiters. 100%

corresponds to the motor nominal torque.10000 = 100%

02.14 FLUX REF Flux reference in percent. 10000 = 100%02.17 SPEED ESTIMATED Estimated motor speed. 100% corresponds to the Absolute Maximum

Speed of the motor.20000 = 100%

02.18 SPEED MEASURED Measured motor actual speed (zero when no encoder is used). 100% corresponds to the Absolute Maximum Speed of the motor.

20000 = 100%

03 ACTUAL SIGNALS Data words for monitoring of fieldbus communication (each signal is a 16-bit data word).

2)

03.01 MAIN CTRL WORD A 16-bit data word. See the chapter Fieldbus control.03.02 MAIN STATUS WORD A 16-bit data word. See the chapter Fieldbus control.03.03 AUX STATUS WORD A 16-bit data word. See the chapter Fieldbus control.03.04 LIMIT WORD 1 A 16-bit data word. See the chapter Fieldbus control.03.05 FAULT WORD 1 A 16-bit data word. See the chapter Fieldbus control.03.06 FAULT WORD 2 A 16-bit data word. See the chapter Fieldbus control.03.07 SYSTEM FAULT A 16-bit data word. See the chapter Fieldbus control.03.08 ALARM WORD 1 A 16-bit data word. See the chapter Fieldbus control.03.09 ALARM WORD 2 A 16-bit data word. See the chapter Fieldbus control.03.11 FOLLOWER MCW A 16-bit data word. See the chapter Fieldbus control.03.12 INT FAULT INFO A 16-bit data word. See the chapter Fieldbus control.03.13 AUX STATUS WORD 3 A 16-bit data word. See the chapter Fieldbus control.03.14 AUX STATUS WORD 4 A 16-bit data word. See the chapter Fieldbus control.03.15 FAULT WORD 4 A 16-bit data word. See the chapter Fieldbus control.03.16 ALARM WORD 4 A 16-bit data word. See the chapter Fieldbus control.03.17 FAULT WORD 5 A 16-bit data word. See the chapter Fieldbus control.03.18 ALARM WORD 5 A 16-bit data word. See the chapter Fieldbus control.03.19 INT INIT FAULT A 16-bit data word. See the chapter Fieldbus control.3.20 LATEST FAULT Fieldbus code of the latest fault. See chapter Fault tracing for the

codes.3.21 2.LATEST FAULT Fieldbus code of the 2nd latest fault.3.22 3.LATEST FAULT Fieldbus code of the 3rd latest fault.3.23 4.LATEST FAULT Fieldbus code of the 4th latest fault.

No. Name/Value Description FbEq

Page 237: VSDS Manual-ABB

Actual signals and parameters

99

1) Percent of motor maximum speed / nominal torque / maximum process reference (depending on the ACS800 macro selected).

2) The contents of these data words are detailed in the chapter Fieldbus control. For the contents of Actual Signal 3.11, see the Master/Follower Application Guide (3AFE 64590430 [English]).

3.24 5.LATEST FAULT Fieldbus code of the 5th latest fault.3.25 LATEST WARNING Fieldbus code of the latest warning.3.26 2.LATEST WARNING Fieldbus code of the 2nd latest warning.3.27 3.LATEST WARNING Fieldbus code of the 3rd latest warning.3.28 4.LATEST WARNING Fieldbus code of the 4th latest warning.3.29 5.LATEST WARNING Fieldbus code of the 5th latest warning.

09 ACTUAL SIGNALS Signals for the Adaptive Program

09.01 AI1 SCALED Value of analogue input AI1 scaled to an integer value. 20000 = 10 V09.02 AI2 SCALED Value of analogue input AI2 scaled to an integer value. 20000 = 20

mA09.03 AI3 SCALED Value of analogue input AI3 scaled to an integer value. 20000 = 20

mA09.04 AI5 SCALED Value of analogue input AI5 scaled to an integer value. 20000 = 20

mA09.05 AI6 SCALED Value of analogue input AI6 scaled to an integer value. 20000 = 20

mA09.06 DS MCW Control Word (CW) of the Main Reference Dataset received from the

master station through the fieldbus interface0 ... 65535 (Decimal)

09.07 MASTER REF1 Reference 1 (REF1) of the Main Reference Dataset received from the master station through the fieldbus interface

-32768 … 32767

09.08 MASTER REF2 Reference 2 (REF2) of the Main Reference Dataset received from the master station through the fieldbus interface

-32768 … 32767

09.09 AUX DS VAL1 Reference 3 (REF3) of the Auxiliary Reference Dataset received from the master station through the fieldbus interface

-32768 … 32767

09.10 AUX DS VAL2 Reference 4 (REF4) of the Auxiliary Reference Dataset received from the master station through the fieldbus interface

-32768 … 32767

09.11 AUX DS VAL3 Reference 5 (REF5) of the Auxiliary Reference Dataset received from the master station through the fieldbus interface

-32768 … 32767

No. Name/Value Description FbEq

Page 238: VSDS Manual-ABB

Actual signals and parameters

100

Index Name/Selection Description FbEq

10 START/STOP/DIR The sources for external start, stop and direction control

10.01 EXT1 STRT/STP/DIR Defines the connections and the source of the start, stop and direction commands for external control location 1 (EXT1).

NOT SEL No start, stop and direction command source. 1DI1 Start and stop through digital input DI1. 0 = stop; 1 = start. Direction is fixed

according to parameter 10.3 DIRECTION.WARNING! After a fault reset, the drive will start if the start signal is on.

2

DI1,2 Start and stop through digital input DI1. 0 = stop, 1 = start. Direction through digital input DI2. 0 = forward, 1 = reverse. To control direction, parameter 10.03 DIRECTION must be REQUEST.

WARNING! After a fault reset, the drive will start if the start signal is on.

3

DI1P,2P Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction of rotation is fixed according to parameter 10.03 DIRECTION.

4

DI1P,2P,3 Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction through digital input DI3. 0 = forward, 1 = reverse. To control direction, parameter 10.03 DIRECTION must be REQUEST.

5

DI1P,2P,3P Pulse start forward through digital input DI1. 0 -> 1: Start forward. Pulse start reverse through digital input DI2. 0 -> 1: Start reverse. Pulse stop through digital input DI3. 1 -> ”0”: stop. To control the direction, parameter 10.03 DIRECTION must be REQUEST.

6

DI6 See selection DI1. 7DI6,5 See selection DI1,2. DI6: Start/stop, DI5: direction. 8KEYPAD Control panel. To control the direction, parameter 10.03 DIRECTION must be

REQUEST.9

COMM.CW Fieldbus Control Word. 10DI7 See selection DI1. 11DI7,8 See selection DI1,2. 12DI7P,8P See selection DI1P,2P. 13DI7P,8P,9 See selection DI1P,2P,3. 14DI7P,8P,9P See selection DI1P,2P,3P. 15PARAM 10.04 Source selected by 10.04. 16DI1 F, DI2 R Start, stop and direction commands through digital inputs DI1 and DI2.

Note: Parameter 10.03 DIRECTION must be REQUEST.

17

10.02 EXT2 STRT/STP/DIR Defines the connections and the source of the start, stop and direction commands for external control location 2 (EXT2).

DI1 DI2 Operation0 0 Stop1 0 Start forward0 1 Start reverse1 1 Stop

Page 239: VSDS Manual-ABB

Actual signals and parameters

101

NOT SEL See parameter 10.01. 1DI1 See parameter 10.01. 2DI1,2 See parameter 10.01. 3DI1P,2P See parameter 10.01. 4DI1P,2P,3 See parameter 10.01. 5DI1P,2P,3P See parameter 10.01. 6DI6 See parameter 10.01. 7DI6,5 See parameter 10.01. 8KEYPAD See parameter 10.01. 9COMM.CW See parameter 10.01. 10DI7 See parameter 10.01. 11DI7,8 See parameter 10.01. 12DI7P,8P See parameter 10.01. 13DI7P,8P,9 See parameter 10.01. 14DI7P,8P,9P See parameter 10.01. 15PARAM 10.05 Source selected by 10.05. 16DI1 F, DI2 R See parameter 10.01. 17

10.03 REF DIRECTION Enables the control of rotation direction of the motor, or fixes the direction.FORWARD Fixed to forward 1REVERSE Fixed to reverse 2REQUEST Direction of rotation control allowed 3

10.04 EXT 1 STRT PTR Defines the source or constant for value PAR 10.04 of parameter 10.01.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

-

10.05 EXT 2 STRT PTR Defines the source or constant for value PAR 10.05 of parameter 10.02.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

10.06 JOG SPEED SELECT Defines the signal that activates jogging function. The operation of the jogging is explained in the chapter Program features.

NOT SEL Not selected.DI3 Digital input DI3. 0 = Jogging is inactive. 1 = Jogging is active.DI4 See DI3.DI5 See DI3.DI6 See DI3.DI7 See DI3.DI8 See DI3.DI9 See DI3.DI10 See DI3.DI11 See DI3.

Index Name/Selection Description FbEq

Page 240: VSDS Manual-ABB

Actual signals and parameters

102

DI12 See DI3.10.07 NET CONTROL When active, fieldbus overrides the selection of parameter 10.01. Fieldbus

Control Word (except bit 11) is enabled when EXT1 is selected as the active control location.Note: Only visible with the Generic Drive communication profile selected (98.07).Note: The setting is not saved in the permanent memory (will reset to zero when power is switched off).

0 Inactive1 Active

10.08 NET REFERENCE When active, fieldbus overrides the selection of parameter 11.03. Fieldbus reference REF1 is enabled when EXT1 is selected as the active control location.Note: Only visible with the Generic Drive communication profile selected (98.07).Note: The setting is not saved in the permanent memory (will reset to zero when power is switched off).

0 Inactive1 Active

11 REFERENCE SELECT

Panel reference type, external control location selection and external reference sources and limits

11.01 KEYPAD REF SEL Selects the type of the reference given from panel.REF1 (rpm) Speed reference in rpm. (Frequency reference (Hz) if parameter 99.04 is

SCALAR.)1

REF2 (%) %-reference. The use of REF2 vary depending on the application macro. For example, if the Torque Control macro is selected, REF2 is the torque reference.

2

11.02 EXT1/EXT2 SELECT Defines the source from which the drive reads the signal that selects between the two external control locations, EXT1 or EXT2.

DI1 Digital input DI1. 0 = EXT1, 1 = EXT2. 1DI2 See selection DI1. 2DI3 See selection DI1. 3DI4 See selection DI1. 4DI5 See selection DI1. 5DI6 See selection DI1. 6EXT1 EXT1 active. The control signal sources are defined by parameter 10.01 and

11.03.7

EXT2 EXT2 active. The control signal sources are defined by parameter 10.02 and 11.06.

8

COMM.CW Fieldbus Control Word, bit 11. 9DI7 See selection DI1. 10DI8 See selection DI1. 11DI9 See selection DI1. 12DI10 See selection DI1. 13DI11 See selection DI1. 14DI12 See selection DI1. 15

Index Name/Selection Description FbEq

Page 241: VSDS Manual-ABB

Actual signals and parameters

103

PARAM 11.09 Source selected by parameter 11.09. 1611.03 EXT REF1 SELECT Selects the signal source for external reference REF1

KEYPAD Control panel. The first line on the display shows the reference value. 1AI1 Analogue input AI1.

Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. (The selection AI1 ignores the negative signal range.)

2

AI2 Analogue input AI2. 3AI3 Analogue input AI3. 4AI1/JOYST Unipolar analogue input AI1 as joystick. The minimum input signal runs the

motor at the maximum reference in the reverse direction, the maximum input at the maximum reference in the forward direction. Note: Parameter 10.03 must have the value REQUEST.

WARNING! Minimum reference for joystick must be higher than 0.5 V. Set parameter 13.01 to 2 V or to a value higher than 0.5 V and analogue signal loss detection parameter 30.01 to FAULT. The drive

will stop in case the control signal is lost.

Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. The selection AI1/JOYST ignores the negative signal range.

5

AI2/JOYST See AI1/JOYST. 6AI1+AI3 Summation of analogue input AI1 and AI3 7AI2+AI3 Summation of analogue input AI2 and AI3 8AI1-AI3 Subtraction of analogue input AI1 and AI3 9AI2-AI3 Subtraction of analogue input AI2 and AI3 10AI1*AI3 Multiplication of analogue input AI1 and AI3 11AI2*AI3 Multiplication of analogue input AI2 and AI3 12MIN(AI1,AI3) Minimum of analogue input AI1 and AI3 13MIN(AI2,AI3) Minimum of analogue input AI2 and AI3 14MAX(AI1,AI3) Maximum of analogue input AI1 and AI3 15MAX(AI2,AI3) Maximum of analogue input AI2 and AI3 16

Index Name/Selection Description FbEq

0

1062

AI1

Speed Reference (REF1)

11.04

-11.04

-11.05

11.05

Par. 13.01 = 2 V, Par 13.02 = 10 V

Page 242: VSDS Manual-ABB

Actual signals and parameters

104

DI3U,4D(R) Digital input 3: Reference increase. Digital input DI4: Reference decrease. Stop command or power switch off resets the reference to zero. Parameter 22.04 defines the rate of the reference change.

17

DI3U,4D Digital input 3: Reference increase. Digital input DI4: Reference decrease. The program stores the active speed reference (not reset by a stop command or power switch-off). Parameter 22.04 defines the rate of the reference change.

18

DI5U,6D See DI3U,4D. 19COMM. REF Fieldbus reference REF1 20COM.REF1+AI1 Summation of fieldbus reference REF1 and analogue input AI1 21COM.REF1*AI1 Multiplication of fieldbus reference REF1 and analogue input AI1 22FAST COMM As with the selection COMM. REF, except the following differences:

- shorter communication cycle time when transferring the reference to the core motor control program (6 ms -> 2 ms)- the direction cannot be controlled through interfaces defined by parameters 10.01 or 10.02, nor with the control panel- parameter group 25 CRITICAL SPEEDS is not effectiveNote: If any of the following selections is true, the selection is not effective. Instead, the operation is according to COMM. REF.- parameter 99.02 is PID- parameter 99.04 is SCALAR- parameter 40.14 has value PROPORTIONAL or DIRECT

23

COM.REF1+AI5 See selection COM.REF1+AI1 (AI5 used instead of AI1). 24COM.REF1*AI5 See selection COM.REF1*AI1 (AI5 used instead of AI1). 25AI5 Analogue input AI5 26AI6 Analogue input AI6 27AI5/JOYST See AI1/JOYST. 28AI6/JOYST See AI1/JOYST. 29AI5+AI6 Summation of analogue input AI5 and AI6. 30AI5-AI6 Subtraction of analogue input AI5 and AI6. 31AI5*AI6 Multiplication of analogue input AI5 and AI6. 32MIN(AI5,AI6) Lower of analogue input AI5 and AI6. 33MAX(AI5,AI6) Higher of analogue input AI5 and AI6. 34DI11U,12D(R) See DI3U,4D(R). 35DI11U,12D See DI3U,4D. 36PARAM 11.10 Source selected by 11.10. 37

Index Name/Selection Description FbEq

Page 243: VSDS Manual-ABB

Actual signals and parameters

105

AI1 BIPOLAR Bipolar analogue input AI1 (-10 … 10 V). The figure below illustrates the use of the input as the speed reference.

38

11.04 EXT REF1 MINIMUM Defines the minimum value for external reference REF1 (absolute value).Corresponds to the minimum setting of the source signal used.

0 … 18000 rpm Setting range in rpm. (Hz if parameter 99.04 is SCALAR.)Example: Analogue input AI1 is selected as the reference source (value of parameter 11.03 is AI1). The reference minimum and maximum correspond the AI minimum and maximum settings as follows:

Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See the chapter Fieldbus control for more information.

1 … 18000

11.05 EXT REF1 MAXIMUM Defines the maximum value for external reference REF1 (absolute value).Corresponds to the maximum setting of the used source signal.

Index Name/Selection Description FbEq

Spee

d R

efer

ence

minAI1 = 13.01 MINIMUM AI1maxAI1 = 13.02 MAXIMUM AI1scaled maxREF1 = 13.03 SCALE AI1 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

scaled

minREF1

-minAI1 minAI1 maxAI1-maxAI1

-minREF1

-scaled

Analogue Input Signal

Operation Range

maxREF1

maxREF1

10.03 DIRECTION =FORWARD orREQUEST

10.03 DIRECTION =REVERSE orREQUEST

AI1 Range

EXT REF1 Range

1 parameter 13.012 parameter 13.021’ parameter 11.042’ parameter 11.05

1 2

1’

2’

Page 244: VSDS Manual-ABB

Actual signals and parameters

106

0 … 18000 rpm Setting range. (Hz if value of parameter 99.04 is SCALAR.)See parameter 11.04.

1 … 18000

11.06 EXT REF2 SELECT Selects the signal source for external reference REF2. REF2 is a- speed reference in percent of the Absolute Maximum Speed if parameter 99.02 = FACTORY, HAND/AUTO or SEQ CTRL.- torque reference in percent of the motor nominal torque if parameter 99.02 = TORQUE.- process reference in percent of the maximum process quantity if parameter 99.02 = PID CTRL.- frequency reference in percent of the Absolute Maximum Frequency if parameter 99.04 = SCALAR.

KEYPAD See parameter 11.03. 1AI1 See parameter 11.03.

Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. The selection AI1 ignores the negative signal range.

2

AI2 See parameter 11.03. 3AI3 See parameter 11.03. 4AI1/JOYST See parameter 11.03. 5AI2/JOYST See parameter 11.03. 6AI1+AI3 See parameter 11.03. 7AI2+AI3 See parameter 11.03. 8AI1-AI3 See parameter 11.03. 9AI2-AI3 See parameter 11.03. 10AI1*AI3 See parameter 11.03. 11AI2*AI3 See parameter 11.03. 12MIN(AI1,AI3) See parameter 11.03. 13MIN(AI2,AI3) See parameter 11.03. 14MAX(AI1,AI3) See parameter 11.03. 15MAX(AI2,AI3) See parameter 11.03. 16DI3U,4D(R) See parameter 11.03. 17DI3U,4D See parameter 11.03. 18DI5U,6D See parameter 11.03. 19COMM. REF See parameter 11.03. 20COM.REF2+AI1 See parameter 11.03. 21COM.REF2*AI1 See parameter 11.03. 22FAST COMM See parameter 11.03. 23COM.REF2+AI5 See parameter 11.03. 24COM.REF2*AI5 See parameter 11.03. 25AI5 See parameter 11.03. 26AI6 See parameter 11.03. 27AI5/JOYST See parameter 11.03. 28AI6/JOYST See parameter 11.03. 29AI5+AI6 See parameter 11.03. 30AI5-AI6 See parameter 11.03. 31

Index Name/Selection Description FbEq

Page 245: VSDS Manual-ABB

Actual signals and parameters

107

AI5*AI6 See parameter 11.03. 32MIN(AI5,AI6) See parameter 11.03. 33MAX(AI5,AI6) See parameter 11.03. 34DI11U,12D(R) See parameter 11.03. 35DI11U,12D See parameter 11.03. 36PARAM 11.11 Source selected by 11.11. 37AI1 BIPOLAR See parameter 11.03. 38

11.07 EXT REF2 MINIMUM Defines the minimum value for external reference REF2 (absolute value).Corresponds to the minimum setting of the source signal used.

0 … 100% Setting range in percent. Correspondence to the source signal limits:- Source is an analogue input: See example for parameter 11.04. - Source is a serial link: See the chapter Fieldbus control.

0 … 10000

11.08 EXT REF2 MAXIMUM Defines the maximum value for external reference REF2 (absolute value). Corresponds to the maximum setting of the source signal used.

0 … 600% Setting range. Correspondence to the source signal limits:- Source is an analogue input: See parameter 11.04. - Source is a serial link: See the chapter Fieldbus control.

0 … 6000

11.09 EXT 1/2 SEL PTR Defines the source or constant for value PAR 11.09 of parameter 11.02.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

11.10 EXT 1 REF PTR Defines the source or constant for value PAR 11.10 of parameter 11.03.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

11.11 EXT 2 REF PTR Defines the source or constant for value PAR 11.11 of parameter 11.06.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

12 CONSTANT SPEEDS Constant speed selection and values. An active constant speed overrides the drive speed reference.Note: If parameter 99.04 is SCALAR, only speeds 1 to 5 and speed 15 are in use.

12.01 CONST SPEED SEL Activates the constant speeds or selects the activation signal. NOT SEL No constant speeds in use 1DI1(SPEED1) Speed defined by parameter 12.02 is activated through digital input DI1.

1 = active, 0 = inactive.2

DI2(SPEED2) Speed defined by parameter 12.03 is activated through digital input DI2. 1 = active, 0 = inactive.

3

DI3(SPEED3) Speed defined by parameter 12.04 is activated through digital input DI3. 1 = active, 0 = inactive.

4

DI4(SPEED4) Speed defined by parameter 12.05 is activated through digital input DI4. 1 = active, 0 = inactive.

5

DI5(SPEED5) Speed defined by parameter 12.06 is activated through digital input DI5. 1 = active, 0 = inactive.

6

Index Name/Selection Description FbEq

Page 246: VSDS Manual-ABB

Actual signals and parameters

108

DI6(SPEED6) Speed defined by parameter 12.07 is activated through digital input DI6. 1 = active, 0 = inactive.

7

DI1,2 Constant speed selection through digital input DI1 and DI2. 8

DI3,4 See selection DI1,2. 9DI5,6 See selection DI1,2. 10DI1,2,3 Constant speed selection through digital input DI1, DI2 and DI3. 11

DI3,4,5 See selection DI1,2,3. 12DI4,5,6 See selection DI1,2,3. 13DI3,4,5,6 Constant speed selection through digital input DI3, 4, 5 and 6 14

DI7(SPEED1) Speed defined by parameter 12.02 is activated through digital input DI7. 1 = active, 0 = inactive.

15

DI8(SPEED2) Speed defined by parameter 12.03 is activated through digital input DI8. 1 = active, 0 = inactive.

16

DI9(SPEED3) Speed defined by parameter 12.04 is activated through digital input DI9. 1 = active, 0 = inactive.

17

Index Name/Selection Description FbEq

DI1 DI2 Constant speed in use0 0 No constant speed1 0 Speed defined by parameter 12.020 1 Speed defined by parameter 12.031 1 Speed defined by parameter 12.04

DI1 DI2 DI3 Constant speed in use0 0 0 No constant speed1 0 0 Speed defined by parameter 12.020 1 0 Speed defined by parameter 12.031 1 0 Speed defined by parameter 12.040 0 1 Speed defined by parameter 12.051 0 1 Speed defined by parameter 12.060 1 1 Speed defined by parameter 12.071 1 1 Speed defined by parameter 12.08

DI1 DI2 DI3 DI4 Constant speed in use0 0 0 0 No constant speed1 0 0 0 Speed defined by parameter 12.020 1 0 0 Speed defined by parameter 12.031 1 0 0 Speed defined by parameter 12.040 0 1 0 Speed defined by parameter 12.051 0 1 0 Speed defined by parameter 12.060 1 1 0 Speed defined by parameter 12.071 1 1 0 Speed defined by parameter 12.080 0 0 1 Speed defined by parameter 12.091 0 0 1 Speed defined by parameter 12.100 1 0 1 Speed defined by parameter 12.111 1 0 1 Speed defined by parameter 12.120 0 1 1 Speed defined by parameter 12.131 0 1 1 Speed defined by parameter 12.140 1 1 1 Speed defined by parameter 12.151 1 1 1 Speed defined by parameter 12.16

Page 247: VSDS Manual-ABB

Actual signals and parameters

109

DI10(SPEED4) Speed defined by parameter 12.05 is activated through digital input DI10. 1 = active, 0 = inactive.

18

DI11(SPEED5) Speed defined by parameter 12.06 is activated through digital input DI11. 1 = active, 0 = inactive.

19

DI12 (SPEED6) Speed defined by parameter 12.07 is activated through digital input DI12. 1 = active, 0 = inactive.

20

DI7,8 See selection DI1,2. 21DI9,10 See selection DI1,2. 22DI11,12 See selection DI1,2. 23

12.02 CONST SPEED 1 Defines speed 1. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.03 CONST SPEED 2 Defines speed 2. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.04 CONST SPEED 3 Defines speed 3. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.05 CONST SPEED 4 Defines speed 4. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.06 CONST SPEED 5 Defines speed 5. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.07 CONST SPEED 6 Defines speed 6. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.08 CONST SPEED 7 Defines speed 7. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.09 CONST SPEED 8 Defines speed 8. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.10 CONST SPEED 9 Defines speed 9. An absolute value. Does not include the direction information.0 … 18000 rpm Setting range 0 … 18000

12.11 CONST SPEED 10 Defines speed 10. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 1800012.12 CONST SPEED 11 Defines speed 11. An absolute value. Does not include the direction

information.0 … 18000 rpm Setting range 0 … 18000

12.13 CONST SPEED 12 Defines speed 12. An absolute value. Does not include the direction information.Note: If inching is in use, the parameter defines the inching 1 speed. The sign is taken into account. See the chapter Fieldbus control.

-18000 … 18000 rpm Setting range. -18000 … 18000

12.14 CONST SPEED 13 Defines speed 13. An absolute value. Does not include the direction information.Note: If inching is in use, the parameter defines the inching 2 speed. The sign is taken into account. See the chapter Fieldbus control.

-18000 … 18000 rpm Setting range -18000 … 18000

Index Name/Selection Description FbEq

Page 248: VSDS Manual-ABB

Actual signals and parameters

110

12.15 CONST SPEED 14 Defines speed 14. An absolute value. Does not include the direction information.Note: If the jogging function is in use, the parameter defines the jogging speed. The sign is not taken into account. See the chapter Program features.

0 … 18000 rpm Setting range 0 … 1800012.16 CONST SPEED 15 Defines speed 15 or Fault speed. The program considers the sign when used

as a fault speed by parameter 30.01 and 30.02.-18000 … 18000 rpm Setting range -18000 …

18000

13 ANALOGUE INPUTS The analogue input signal processing

13.01 MINIMUM AI1 Defines the minimum value for analogue input AI1. When used as a reference, the value corresponds to the reference minimum setting.Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.04.

0 V Zero volts. Note: The program cannot detect a loss of analogue input signal. 12 V Two volts 2TUNED VALUE The value measured by the tuning function. See the selection TUNE. 3TUNE The value measurement triggering. Procedure:

- Connect the minimum signal to input. - Set the parameter to TUNE.Note: The readable range in tuning is 0 … 10 V.

4

13.02 MAXIMUM AI1 Defines the maximum value for analogue input AI1. When used as a reference, the value corresponds to the reference maximum setting. Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.05.

10 V Ten volts (DC). 1TUNED VALUE The value measured by the tuning function. See the selection TUNE. 2TUNE Triggering of the tuning function. Procedure:

- Connect the maximum signal to input. - Set the parameter to TUNE.Note: The readable range in tuning is 0 … 10 V.

3

Index Name/Selection Description FbEq

Page 249: VSDS Manual-ABB

Actual signals and parameters

111

13.03 SCALE AI1 Scales analogue input AI1.Example: The effect on speed reference REF1 when: - REF1 source selection (Parameter 11.03) = AI1+AI3- REF1 maximum value setting (Parameter 11.05) = 1500 rpm- Actual AI1 value = 4 V (40% of the full scale value)- Actual AI3 value = 12 mA (60% of the full scale value)- AI1 scaling = 100%, AI3 scaling = 10%

0 … 1000% Scaling range 0 … 3276713.04 FILTER AI1 Defines the filter time constant for analogue input AI1.

Note: The signal is also filtered due to the signal interface hardware (10 ms time constant). This cannot be changed by any parameter.

0.00 … 10.00 s Filter time constant 0 … 100013.05 INVERT AI1 Activates/deactivates the inversion of analogue input AI1.

NO No inversion 0YES Inversion active. The maximum value of the analogue input signal corresponds

to the minimum reference and vice versa.65535

13.06 MINIMUM AI2 See parameter 13.01. 0 mA See parameter 13.01. 14 mA See parameter 13.01. 2TUNED VALUE See parameter 13.01. 3TUNE See parameter 13.01. 4

13.07 MAXIMUM AI2 See parameter 13.02. 20 mA See parameter 13.02. 1TUNED VALUE See parameter 13.02. 2

Index Name/Selection Description FbEq

60%

40%

150 rpm 1500 rpm 10 V

0 V 0 mA

20 mA 1500 rpm

600 rpm

90 rpm

690 rpm

0 rpm

AI1 AI3 AI1 + AI3

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Page 250: VSDS Manual-ABB

Actual signals and parameters

112

TUNE See parameter 13.02. 313.08 SCALE AI2 See parameter 13.03.

0 … 1000% See parameter 13.03. 0 … 3276713.09 FILTER AI2 See parameter 13.04.

0.00 … 10.00 s See parameter 13.04. 0 … 100013.10 INVERT AI2 See parameter 13.05.

NO See parameter 13.05. 0YES See parameter 13.05. 65535

13.11 MINIMUM AI3 See parameter 13.01. 0 mA See parameter 13.01. 14 mA See parameter 13.01. 2TUNED VALUE See parameter 13.01. 3TUNE See parameter 13.01. 4

13.12 MAXIMUM AI3 See parameter 13.02. 20 mA See parameter 13.02. 1TUNED VALUE See parameter 13.02. 2TUNE See parameter 13.02. 3

13.13 SCALE AI3 See parameter 13.03.0 … 1000% See parameter 13.03. 0 … 32767

13.14 FILTER AI3 See parameter 13.04.0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.15 INVERT AI3 See parameter 13.05.NO See parameter 13.05. 0YES See parameter 13.05. 65535

13.16 MINIMUM AI5 See parameter 13.01.0 mA See parameter 13.01. 14 mA See parameter 13.01. 2TUNED VALUE See parameter 13.01. 3TUNE See parameter 13.01. 4

13.17 MAXIMUM AI5 See parameter 13.02.20 mA See parameter 13.02. 1TUNED VALUE See parameter 13.02. 2

TUNE See parameter 13.02. 3

13.18 SCALE AI5 See parameter 13.03.0 … 1000% See parameter 13.03. 0 … 32767

13.19 FILTER AI5 See parameter 13.04.0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.20 INVERT AI5 See parameter 13.05.NO See parameter 13.05. 0YES See parameter 13.05. 65535

Index Name/Selection Description FbEq

Page 251: VSDS Manual-ABB

Actual signals and parameters

113

13.21 MINIMUM AI6 See parameter 13.01. 0 mA See parameter 13.01. 14 mA See parameter 13.01. 2TUNED VALUE See parameter 13.01. 3TUNE See parameter 13.01. 4

13.22 MAXIMUM AI6 See parameter 13.02. 20 mA See parameter 13.02. 1TUNED VALUE See parameter 13.02. 2TUNE See parameter 13.02. 3

13.23 SCALE AI6 See parameter 13.03.0 … 1000% See parameter 13.03. 0 … 32767

13.24 FILTER AI6 See parameter 13.04.0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.25 INVERT AI6 See parameter 13.05.NO See parameter 13.05. 0YES See parameter 13.05. 65535

14 RELAY OUTPUTS Status information indicated through the relay outputs, and the relay operating delays

14.01 RELAY RO1 OUTPUT Selects a drive status indicated through relay output RO1. The relay energises when the status meets the setting.

NOT USED Not used. 1READY Ready to function: Run Enable signal on, no fault. 2RUNNING Running: Start signal on, Run Enable signal on, no active fault. 3FAULT Fault 4FAULT(-1) Inverted fault. Relay is de-energised on a fault trip. 5FAULT(RST) Fault. Automatic reset after the autoreset delay. See parameter group 31

AUTOMATIC RESET.6

STALL WARN Warning by the stall protection function. See parameter 30.10. 7STALL FLT Fault trip by the stall protection function. See parameter 30.10. 8MOT TEMP WRN Warning trip of the motor temperature supervision function. See parameter

30.04.9

MOT TEMP FLT Fault trip of the motor temperature supervision function. See parameter 30.04. 10ACS TEMP WRN Warning by the drive temperature supervision function: 115 °C (239 °F). 11ACS TEMP FLT Fault trip by the drive temperature supervision function: 125 °C (257 °F). 12FAULT/WARN Fault or warning active 13WARNING Warning active 14REVERSED Motor rotates in reverse direction. 15EXT CTRL Drive is under external control. 16REF 2 SEL External reference REF 2 is in use. 17CONST SPEED A constant speed is in use. See parameter group 12 CONSTANT SPEEDS. 18DC OVERVOLT The intermediate circuit DC voltage has exceeded the overvoltage limit. 19DC UNDERVOLT The intermediate circuit DC voltage has fallen below the undervoltage limit. 20SPEED 1 LIM Motor speed at supervision limit 1. See parameters 32.01 and 32.02. 21

Index Name/Selection Description FbEq

Page 252: VSDS Manual-ABB

Actual signals and parameters

114

SPEED 2 LIM Motor speed at supervision limit 2. See parameters 32.03 and 32.04. 22CURRENT LIM Motor current at the supervision limit. See parameters 32.05 and 32.06. 23REF 1 LIM External reference REF1 at the supervision limit. See parameters 32.11 and

32.12.24

REF 2 LIM External reference REF2 at the supervision limit. See parameters 32.13 and 32.14.

25

TORQUE 1 LIM Motor torque at supervision limit 1. See parameters 32.07 and 32.08. 26TORQUE 2 LIM Motor torque at supervision limit 2. See parameters 32.09 and 32.10. 27STARTED The drive has received the start command. 28LOSS OF REF The drive has no reference. 29AT SPEED The actual value has reached the reference value. In speed control, the speed

error is less or equal to 10% of the nominal motor speed.30

ACT 1 LIM Process PID controller variable ACT1 at the supervision limit. See parameters 32.15 and 32.16.

31

ACT 2 LIM Process PID controller variable ACT2 at the supervision limit. See parameters 32.17 and 32.18.

32

COMM.REF3(13) The relay is controlled by fieldbus reference REF3. See the chapter Fieldbus control.

33

PARAM 14.16 Source selected by parameter 14.16. 34BRAKE CTRL On/Off control of a mechanical brake. See parameter group 42 BRAKE

CONTROL.35

BC SHORT CIR Drive tripps on a brake chopper fault. See the chapter Fault tracing. 3614.02 RELAY RO2 OUTPUT Selects the drive status to be indicated through relay output RO2. The relay

energises when the status meets the setting.NOT USED See parameter 14.01. 1READY See parameter 14.01. 2RUNNING See parameter 14.01. 3FAULT See parameter 14.01. 4FAULT(-1) See parameter 14.01. 5FAULT(RST) See parameter 14.01. 6STALL WARN See parameter 14.01. 7STALL FLT See parameter 14.01. 8MOT TEMP WRN See parameter 14.01. 9MOT TEMP FLT See parameter 14.01. 10ACS TEMP WRN See parameter 14.01. 11ACS TEMP FLT See parameter 14.01. 12FAULT/WARN See parameter 14.01. 13WARNING See parameter 14.01. 14REVERSED See parameter 14.01. 15EXT CTRL See parameter 14.01. 16REF 2 SEL See parameter 14.01. 17CONST SPEED See parameter 14.01. 18DC OVERVOLT See parameter 14.01. 19DC UNDERVOLT See parameter 14.01. 20

Index Name/Selection Description FbEq

Page 253: VSDS Manual-ABB

Actual signals and parameters

115

SPEED 1 LIM See parameter 14.01. 21SPEED 2 LIM See parameter 14.01. 22CURRENT LIM See parameter 14.01. 23REF 1 LIM See parameter 14.01. 24REF 2 LIM See parameter 14.01. 25TORQUE 1 LIM See parameter 14.01. 26TORQUE 2 LIM See parameter 14.01. 27STARTED See parameter 14.01. 28LOSS OF REF See parameter 14.01. 29AT SPEED See parameter 14.01. 30ACT 1 LIM See parameter 14.01. 31ACT 2 LIM See parameter 14.01. 32COMM. REF3(14) See parameter 14.01. 33PARAM 14.17 Source selected by parameter 14.17. 34BRAKE CTRL See parameter 14.01. 35BC SHORT CIR See parameter 14.01. 36

14.03 RELAY RO3 OUTPUT Selects the drive status to be indicated through relay output RO3. The relay energises when the status meets the setting.

NOT USED See parameter 14.01. 1READY See parameter 14.01. 2RUNNING See parameter 14.01. 3FAULT See parameter 14.01. 4FAULT(-1) See parameter 14.01. 5FAULT(RST) See parameter 14.01. 6STALL WARN See parameter 14.01. 7STALL FLT See parameter 14.01. 8MOT TEMP WRN See parameter 14.01. 9MOT TEMP FLT See parameter 14.01. 10ACS TEMP WRN See parameter 14.01. 11ACS TEMP FLT See parameter 14.01. 12FAULT/WARN See parameter 14.01. 13WARNING See parameter 14.01. 14REVERSED See parameter 14.01. 15EXT CTRL See parameter 14.01. 16REF 2 SEL See parameter 14.01. 17CONST SPEED See parameter 14.01. 18DC OVERVOLT See parameter 14.01. 19DC UNDERVOLT See parameter 14.01. 20SPEED 1 LIM See parameter 14.01. 21SPEED 2 LIM See parameter 14.01. 22CURRENT LIM See parameter 14.01. 23REF 1 LIM See parameter 14.01. 24

Index Name/Selection Description FbEq

Page 254: VSDS Manual-ABB

Actual signals and parameters

116

REF 2 LIM See parameter 14.01. 25TORQUE 1 LIM See parameter 14.01. 26TORQUE 2 LIM See parameter 14.01. 27STARTED See parameter 14.01. 28LOSS OF REF See parameter 14.01. 29AT SPEED See parameter 14.01. 30MAGN READY The motor is magnetised and ready to give nominal torque (nominal

magnetising of the motor has been reached).31

USER 2 SEL User Macro 2 is in use. 32COMM. REF3(15) See parameter 14.01. 33PARAM 14.18 Source selected by parameter 14.18. 34BRAKE CTRL See parameter 14.01. 35BC SHORT CIR See parameter 14.01. 36

14.04 RO1 TON DELAY Defines the operation delay for the relay RO1.0.0 … 3600.0 s Setting range. The figure below illustrates the operation (on) and release (off)

delays for relay output RO1.0 … 36000

14.05 RO1 TOFF DELAY Defines the release delay for relay output RO1.0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.06 RO2 TON DELAY Defines the operation delay for relay output RO2.0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.07 RO2 TOFF DELAY Defines the release delay for relay output RO2.0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.08 RO3 TON DELAY Defines the operation delay for relay output RO3.0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.09 RO3 TOFF DELAY Defines the release delay of relay output RO3.0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.10 DIO MOD1 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 1 (optional, see parameter 98.03).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5

Index Name/Selection Description FbEq

1

0

1

0

timetOn tOff tOn tOff

tOn 14.04tOff 14.05

Drive status

RO1 status

Page 255: VSDS Manual-ABB

Actual signals and parameters

117

AT SPEED See parameter 14.01. 6PARAM 14.19 Source selected by parameter 14.19. 7

14.11 DIO MOD1 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module 1 (optional, see parameter 98.03).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5AT SPEED See parameter 14.01. 6PARAM 14.20 Source selected by parameter 14.20. 7

14.12 DIO MOD2 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 2 (optional, see parameter 98.04).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5AT SPEED See parameter 14.01. 6PARAM 14.21 Source selected by parameter 14.21. 7

14.13 DIO MOD2 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module 2 (optional, see parameter 98.04).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5AT SPEED See parameter 14.01. 6PARAM 14.22 Source selected by parameter 14.22. 7

14.14 DIO MOD3 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 3 (optional, see parameter 98.05).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5AT SPEED See parameter 14.01. 6PARAM 14.23 Source selected by parameter 14.23. 7

14.15 DIO MOD3 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module no. 3 (optional, see parameter 98.05).

READY See parameter 14.01. 1RUNNING See parameter 14.01. 2FAULT See parameter 14.01. 3

Index Name/Selection Description FbEq

Page 256: VSDS Manual-ABB

Actual signals and parameters

118

WARNING See parameter 14.01. 4REF 2 SEL See parameter 14.01. 5AT SPEED See parameter 14.01. 6PARAM 14.24 Source selected by parameter 14.24. 7

14.16 RO PTR1 Defines the source or constant for value PAR 14.16 of parameter 14.01.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.17 RO PTR2 Defines the source or constant for value PAR 14.17 of parameter 14.02.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.18 RO PTR3 Defines the source or constant for value PAR 14.18 of parameter 14.03.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.19 RO PTR4 Defines the source or constant for value PAR 14.19 of parameter 14.10.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.20 RO PTR5 Defines the source or constant for value PAR 14.20 of parameter 14.11.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.21 RO PTR6 Defines the source or constant for value PAR 14.21 of parameter 14.12.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.22 RO PTR7 Defines the source or constant for value PAR 14.22 of parameter 14.13.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.23 RO PTR8 Defines the source or constant for value PAR 14.23 of parameter 14.14.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

14.24 RO PTR9 Defines the source or constant for value PAR 14.24 of parameter 14.15.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

15 ANALOGUE OUTPUTS

Selection of the actual signals to be indicated through the analogue outputs. Output signal processing.

15.01 ANALOGUE OUTPUT1

Connects a drive signal to analogue output AO1.

NOT USED Not in use 1

Index Name/Selection Description FbEq

Page 257: VSDS Manual-ABB

Actual signals and parameters

119

P SPEED Value of a user-defined process quantity derived from the motor speed. See parameter group 34 PROCESS VARIABLE for scaling and unit selection (%; m/s; rpm). The updating interval is 100 ms.

2

SPEED Motor speed. 20 mA = motor nominal speed. The updating interval is 24 ms. 3FREQUENCY Output frequency. 20 mA = motor nominal frequency. The updating interval is

24 ms.4

CURRENT Output current. 20 mA = motor nominal current. The updating interval is 24 ms. 5TORQUE Motor torque. 20 mA = 100% of motor nominal rating. The updating interval is

24 ms.6

POWER Motor power. 20 mA = 100% of motor nominal rating. The updating interval is 100 ms.

7

DC BUS VOLT DC bus voltage. 20 mA = 100% of the reference value. The reference value is 540 VDC. ( = 1.35 · 400 V) for 380 ... 415 VAC supply voltage rating and 675 VDC ( = 1.35 · 500 V) for 380 ... 500 VAC supply. The updating interval is 24 ms.

8

OUTPUT VOLT Motor voltage. 20 mA = motor rated voltage. The updating interval is 100 ms. 9APPL OUTPUT The reference which is given as an output from the application. For example, if

the PID Control macro is in use, this is the output of the process PID controller. The updating interval is 24 ms.

10

REFERENCE Active reference that the drive is currently following. 20 mA = 100 % of the active reference. The updating interval is 24 ms.

11

CONTROL DEV The difference between the reference and the actual value of the process PID controller. 0/4 mA = -100%, 10/12 mA = 0%, 20 mA = 100%. The updating interval is 24 ms.

12

ACTUAL 1 Value of variable ACT1 used in the process PID control. 20 mA = value of parameter 40.10. The updating interval is 24 ms.

13

ACTUAL 2 Value of variable ACT2 used in the process PID control. 20 mA = value of parameter 40.12. The updating interval is 24 ms.

14

COMM.REF4 The value is read from fieldbus reference REF4. See Fieldbus control. 15M1 TEMP MEAS Analogue output is a current source in a motor temperature measuring circuit.

Depending on the sensor type, the output is 9.1 mA (Pt 100) or 1.6 mA (PTC). For more information, see parameter 35.01. Note: The settings of parameters 15.02 to 15.05 are not effective.

16

PARAM 15.11 Source selected by 15.11 1715.02 INVERT AO1 Inverts the analogue output AO1 signal. The analogue signal is at the minimum

level when the indicated drive signal is at its maximum level and vice versa.NO Inversion off 0YES Inversion on 65535

15.03 MINIMUM AO1 Defines the minimum value of the analogue output signal AO1. 0 mA Zero mA 14 mA Four mA 2

15.04 FILTER AO1 Defines the filtering time constant for analogue output AO1.

Index Name/Selection Description FbEq

Page 258: VSDS Manual-ABB

Actual signals and parameters

120

0.00 … 10.00 s Filter time constant

Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters.

0 … 1000

15.05 SCALE AO1 Scales the analogue output AO1 signal. 10 … 1000% Scaling factor. If the value is 100%, the reference value of the drive signal

corresponds to 20 mA.Example: The nominal motor current is 7.5 A and the measured maximum current at maximum load 5 A. The motor current 0 to 5 A needs to be read as 0 to 20 mA analogue signal through AO1. The required settings are:1. AO1 is set to CURRENT by parameter 15.01. 2. AO1 minimum is set to 0 mA by parameter 15.03. 3. The measured maximum motor current is scaled to correspond to 20 mA analogue output signal by setting the scaling factor (k) to 150%. The value is defined as follows: The reference value of the output signal CURRENT is the motor nominal current i.e. 7.5 A (see parameter 15.01). To make the measured maximum motor current correspond to 20 mA, it should be scaled equal to the reference value before it is converted to an analogue output signal. Equation: k · 5 A = 7.5 A => k = 1.5 = 150%

100 … 10000

15.06 ANALOGUE OUTPUT2

See parameter 15.01.

NOT USED See parameter 15.01. 1P SPEED See parameter 15.01. 2SPEED See parameter 15.01. 3FREQUENCY See parameter 15.01. 4CURRENT See parameter 15.01. 5TORQUE See parameter 15.01. 6POWER See parameter 15.01. 7DC BUS VOLT See parameter 15.01. 8OUTPUT VOLT See parameter 15.01. 9APPL OUTPUT See parameter 15.01. 10REFERENCE See parameter 15.01. 11CONTROL DEV See parameter 15.01. 12ACTUAL 1 See parameter 15.01. 13ACTUAL 2 See parameter 15.01. 14COMM.REF5 The value is read from fieldbus reference REF5. See Fieldbus control. 15PARAM 15.12 Source selected by 15.12 16

15.07 INVERT AO2 See parameter 15.02.

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Page 259: VSDS Manual-ABB

Actual signals and parameters

121

NO See parameter 15.02. 0YES See parameter 15.02. 65535

15.08 MINIMUM AO2 See parameter 15.03.0 mA See parameter 15.03. 14 mA See parameter 15.03. 2

15.09 FILTER AO2 See parameter 15.04.0.00 … 10.00 s See parameter 15.04. 0 … 1000

15.10 SCALE AO2 See parameter 15.05.10 … 1000% See parameter 15.05. 100 …

1000015.11 AO1 PTR Defines the source or constant for value PAR 15.11 of parameter 15.01. 1000=1 mA

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

15.12 AO2 PTR Defines the source or constant for value PAR 15.12 of parameter 15.06. 1000 = 1 mA

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

16 SYSTEM CTRL INPUTS

Run Enable, parameter lock etc.

16.01 RUN ENABLE Sets the Run Enable signal on, or selects a source for the external Run Enable signal. If Run Enable signal is switched off, the drive will not start or stops if it is running. The stop mode is set by parameter 21.07.

YES Run Enable signal is on. 1DI1 External signal required through digital input DI1. 1 = Run Enable. 2DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7COMM.CW External signal required through the Fieldbus Control Word (bit 3). 8DI7 See selection DI1. 9DI8 See selection DI1. 10DI9 See selection DI1. 11DI10 See selection DI1. 12DI11 See selection DI1. 13DI12 See selection DI1. 14PARAM 16.08 Source selected by parameter 16.08. 15

16.02 PARAMETER LOCK Selects the state of the parameter lock. The lock prevents parameter changing.OPEN The lock is open. Parameter values can be changed. 0LOCKED Locked. Parameter values cannot be changed from the control panel. The lock

can be opened by entering the valid code to parameter 16.03.65535

16.03 PASS CODE Selects the pass code for the parameter lock (see parameter 16.02).

Index Name/Selection Description FbEq

Page 260: VSDS Manual-ABB

Actual signals and parameters

122

0 … 30000 Setting 358 opens the lock. The value reverts back to 0 automatically. 0 … 3000016.04 FAULT RESET SEL Selects the source for the fault reset signal. The signal resets the drive after a

fault trip if the cause of the fault no longer exists.NOT SEL Fault reset only from the control panel keypad (RESET key). 1DI1 Reset through digital input DI1 or by control panel:

- If the drive is in external control mode: Reset by a rising edge of DI1.- If the drive is in local control mode: Reset by the RESET key of the control panel.

2

DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7COMM.CW Reset through the fieldbus Control Word (bit 7), or by the RESET key of the

control panel.8

ON STOP Reset along with the stop signal received through a digital input, or by the RESET key of the control panel.

9

DI7 See selection DI1. 10DI8 See selection DI1. 11DI9 See selection DI1. 12DI10 See selection DI1. 13DI11 See selection DI1. 14DI12 See selection DI1. 15

16.05 USER MACRO IO CHG

Enables the change of the User Macro through a digital input. See parameter 99.02. The change is only allowed when the drive is stopped. During the change, the drive will not start.Note: Always save the User Macro by parameter 99.02 after changing any parameter settings, or reperforming the motor identification. The last settings saved by the user are loaded into use whenever the power is switched off and on again or the macro is changed. Any unsaved changes will be lost.Note: The value of this parameter is not included in the User Macro. A setting once made remains despite the User Macro change. Note: Selection of User Macro 2 can be supervised via relay output RO3. See parameter 14.03 for more information.

NOT SEL User macro change is not possible through a digital input. 1DI1 Falling edge of digital input DI1: User Macro 1 is loaded into use. Rising edge

of digital input DI1: User Macro 2 is loaded into use. 2

DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7DI7 See selection DI1. 8DI8 See selection DI1. 9DI9 See selection DI1. 10

Index Name/Selection Description FbEq

Page 261: VSDS Manual-ABB

Actual signals and parameters

123

DI10 See selection DI1. 11DI11 See selection DI1. 12DI12 See selection DI1. 13

16.06 LOCAL LOCK Disables entering local control mode (LOC/REM key of the panel).WARNING! Before activating, ensure that the control panel is not needed for stopping the drive!

OFF Local control allowed. 0ON Local control disabled. 65535

16.07 PARAMETER SAVE Saves the valid parameter values to the permanent memory. Note: A new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection.

DONE Saving completed 0SAVE.. Saving in progress 1

16.08 RUN ENA PTR Defines the source or constant for value PAR 16.08 of parameter 16.01-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

16.09 CTRL BOARD SUPPLY

Defines the source of the control board power supply. Note: If an external supply is used but this parameter has value INTERNAL, the drive trips to a fault at power switch off.

INTERNAL 24V Internal (default).EXTERNAL 24V External. The control board is powered from an external supply.

20 LIMITS Drive operation limits.

20.01 MINIMUM SPEED Defines the allowed minimum speed. The limit cannot be set if parameter 99.04 = SCALAR.

Note: The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

-18000 / (no. of pole pairs) … Par. 20.02 rpm

Minimum speed limit.Note: If the value is positive, the motor cannot be run in the reverse direction.

1 = 1 rpm

20.02 MAXIMUM SPEED Defines the allowed maximum speed. The value cannot be set if parameter 99.04 = SCALAR.

Note: The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

Par. 20.01 … 18000 / (no. of pole pairs) rpm

Maximum speed limit 1 = 1 rpm

20.03 MAXIMUM CURRENT Defines the allowed maximum motor current.0.0 … x.x A Current limit 0 … 100·x.x

20.04 TORQ MAX LIM1 Defines the maximum torque limit 1 for the drive.0.0 … 600.0% Value of limit in percent of motor nominal torque. 0 … 60000

Index Name/Selection Description FbEq

Page 262: VSDS Manual-ABB

Actual signals and parameters

124

20.05 OVERVOLTAGE CTRL

Activates or deactivates the overvoltage control of the intermediate DC link. Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque.Note: If a brake chopper and resistor are connected to the drive, the controller must be off (selection NO) to allow chopper operation.

OFF Overvoltage control deactivated. 0ON Overvoltage control activated. 65535

20.06 UNDERVOLTAGE CTRL

Activates or deactivates the undervoltage control of the intermediate DC link.If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to stop. This will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan.

OFF Undervoltage control deactivated. 0ON Undervoltage control activated. 65535

20.07 MINIMUM FREQ Defines the minimum limit for the drive output frequency. The limit can be set only parameter 99.04 = SCALAR.

-300.00 … 50 Hz Minimum frequency limit. Note: If the value is positive, the motor cannot be run in the reverse direction.

-30000 … 5000

20.08 MAXIMUM FREQ Defines the maximum limit for the drive output frequency. The limit can be set only if parameter 99.04 = SCALAR

-50 … 300.00 Hz Maximum frequency limit -5000 … 30000

20.11 P MOTORING LIM Defines the allowed maximum power fed by the inverter to the motor.0 … 600% Power limit in percent of the motor nominal power 0 … 60000

20.12 P GENERATING LIM Defines the allowed maximum power fed by the motor to the inverter.-600 … 0% Power limit in percent of the motor nominal power -60000 … 0

20.13 MIN TORQ SEL Selects the minimum torque limit for the drive.MIN LIM1 Value of parameter 20.15. 1DI1 Digital input DI1. 0: Value of parameter 20.15. 1: Value of parameter 20.16. 2DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7DI7 See selection DI1. 8DI8 See selection DI1. 9DI9 See selection DI1. 10DI10 See selection DI1. 11DI11 See selection DI1. 12DI12 See selection DI1. 13

Index Name/Selection Description FbEq

Page 263: VSDS Manual-ABB

Actual signals and parameters

125

AI1 Analogue input AI1. See parameter 20.20 on how the signal is converted to a torque limit.

14

AI2 See selection AI1. 15AI3 See selection AI1. 16AI5 See selection AI1. 17AI6 See selection AI1. 18PARAM 20.18 Limit given by 20.18 19NEG MAX TORQ Inverted maximum torque limit defined by parameter 20.14 20

20.14 MAX TORQ SEL Defines the maximum torque limit for the drive.MAX LIM1 Value of parameter 20.04. 1DI1 Digital input DI1. 0: Value of parameter 20.04. 1: Value of parameter 20.17. 2DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7DI7 See selection DI1. 8DI8 See selection DI1. 9DI9 See selection DI1. 10DI10 See selection DI1. 11DI11 See selection DI1. 12DI12 See selection DI1. 13AI1 Analogue input AI1. See parameter 20.20 on how the signal is converted to a

torque limit.14

AI2 See selection AI1. 15AI3 See selection AI1. 16AI5 See selection AI1. 17AI6 See selection AI1. 18PARAM 20.19 Limit given by 20.19 19

20.15 TORQ MIN LIM1 Defines the minimum torque limit 1 for the drive.-600.0 … 0.0% Value of limit in percent of motor nominal torque -60000 … 0

20.16 TORQ MIN LIM2 Defines the minimum torque limit 2 for the drive.-600.0 … 0.0% Value of limit in percent of motor nominal torque -60000 … 0

20.17 TORQ MAX LIM2 Defines the maximum torque limit 2 for the drive.0.0 … 600.0% Value of limit in percent of motor nominal torque 0 … 60000

20.18 TORQ MIN PTR Defines the source or constant for value PAR 20.18 of parameter 20.13 -255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. 100 = 1%

20.19 TORQ MAX PTR Defines the source or constant for value PAR 20.19 of parameter 20.14 -255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference. FbEq for the torque value is 100 = 1%.

100 = 1%

Index Name/Selection Description FbEq

Page 264: VSDS Manual-ABB

Actual signals and parameters

126

20.20 MIN AI SCALE Defines how an analogue signal (mA or V) is converted to a torque minimum or maximum limit (%). The figure below illustrate the converting, when analogue input AI1 has been set the source for a torque limit by parameter 20.13 or 20.14.

0.0 … 600.0% %-value that correspond to the minimum setting of the analogue input20.21 MAX AI SCALE See parameter 20.20.

0.0 … 600.0% %-value that correspond to the maximum setting of the analogue input

21 START/STOP Start and stop modes of the motor.

21.01 START FUNCTION Selects the motor starting method.AUTO Automatic start guarantees optimal motor start in most cases. It includes the

flying start function (starting to a rotating machine) and the automatic restart function (stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. Note: If parameter 99.04 = SCALAR, no flying start or automatic restart is possible by default. The flying start feature needs to be activated separately by parameter 21.08.

1

DC MAGN DC magnetising should be selected if a high break-away torque is required. The drive pre-magnetises the motor before the start. The pre-magnetising time is determined automatically, being typically 200 ms to 2 s depending on the motor size. DC MAGN guarantees the highest possible break-away torque. Note: Starting to a rotating machine is not possible when DC magnetising is selected. Note: DC magnetising cannot be selected if parameter 99.04 = SCALAR.

2

CNST DC MAGN Constant DC magnetising should be selected instead of DC magnetising if constant pre-magnetising time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetising time is set long enough. The pre-magnetising time is defined by parameter 21.02.Note: Starting to a rotating machine is not possible when DC magnetising is selected. Note: DC magnetising cannot be selected if parameter 99.04 = SCALAR.

WARNING! The drive will start after the set magnetising time has passed although the motor magnetisation is not completed. Ensure always in applications where a full break-away torque is essential, that

the constant magnetising time is long enough to allow generation of full magnetisation and torque.

3

Index Name/Selection Description FbEq

20.20

20.21

13.01 13.02

13.01 Minimum setting for AI1

13.02 Maximum setting for AI1

20.20 Minimum torque

20.21 Maximum torque

Torque limit

Analogue signal

Page 265: VSDS Manual-ABB

Actual signals and parameters

127

21.02 CONST MAGN TIME Defines the magnetising time in the constant magnetising mode. See parameter 21.01. After the start command, the drive automatically pre-magnetises the motor the set time.

30.0 … 10000.0 ms Magnetising time. To ensure full magnetising, set this value to the same value as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in the table below:

30 … 10000

21.03 STOP FUNCTION Selects the motor stop function.COAST Stop by cutting of the motor power supply. The motor coasts to a stop.

WARNING! If the mechanical brake control function is on, the application program uses ramp stop in spite of the selection COAST (see parameter group 42 BRAKE CONTROL).

1

RAMP Stop along a ramp. See parameter group 22 ACCEL/DECEL. 221.04 DC HOLD Activates/deactivates the DC hold function. DC Hold is not possible if

parameter 99.04 = SCALAR.When both the reference and the speed drop below the value of parameter 21.05, the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by parameter 21.06. When the reference speed exceeds parameter 21.05, normal drive operation continues.

Note: DC Hold has no effect if the start signal is switched off.Note: Injecting DC current into the motor causes the motor to heat up. In applications where long DC hold times are required, externally ventilated motors should be used. If the DC hold period is long, the DC hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor.

NO Inactive 0YES Active 65535

21.05 DC HOLD SPEED Defines the DC Hold speed. See parameter 21.04.0 … 3000 rpm Speed in rpm 0 … 3000

21.06 DC HOLD CURR Defines the DC hold current. See parameter 21.04.0 … 100% Current in percent of the motor nominal current 0 … 100

Index Name/Selection Description FbEq

Motor Rated Power Constant Magnetising Time

< 10 kW > 100 to 200 ms

10 to 200 kW > 200 to 1000 ms

200 to 1000 kW > 1000 to 2000 ms

DC HOLD SPEED

t

t

SPEEDmotor

Ref.

DC Hold

Page 266: VSDS Manual-ABB

Actual signals and parameters

128

21.07 RUN ENABLE FUNC Selects the stop mode applied when the Run Enable signal is switched off. The Run Enable signal is put into use by parameter 16.01.Note: The setting overrides the normal stop mode setting (parameter 21.03) when the Run Enable signal is switched off.

WARNING! The drive will restart after the Run Enable signal restores (if the start signal is on).

RAMP STOP The application program stops the drive along the deceleration ramp defined in group 22 ACCEL/DECEL.

1

COAST STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed.

WARNING! If the brake control function is on, the application program uses ramp stop in spite of the selection COAST STOP (see parameter group 42 BRAKE CONTROL).

2

OFF2 STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed. The drive will restart only when the Run Enable signal is on and the start signal is switched on (the program receives the rising edge of the start signal).

3

OFF3 STOP The application program stops the drive along the ramp defined by parameter 22.07. The drive will restart only when the Run Enable is on and the start signal is switched on (the program receives the rising edge of the start signal).

4

21.08 SCALAR FLY START Activates the flying start feature in the scalar control mode. See parameters 21.01 and 99.04.

OFF Inactive. 0ON Active. 65535

21.09 START INTRL FUNC Defines how the Start Interlock input on RMIO board affects the drive operation.

OFF2 STOP Drive running: 1 = Normal operation. 0 = Stop by coasting. Drive stopped: 1 = Start allowed. 0 = No start allowed.Restart after OFF2 STOP: Input is back to 1 and the drive receives rising edge of the Start signal.

1

OFF3 STOP Drive running: 1 = Normal operation. 0 = Stop by ramp. The ramp time is defined by parameter 22.07 EM STOP RAMP.Drive stopped: 1 = Normal start. 0 = No start allowed.Restart after OFF3 STOP: Start Interlock input = 1 and the drive receives rising edge of the Start signal.

2

Index Name/Selection Description FbEq

Page 267: VSDS Manual-ABB

Actual signals and parameters

129

21.10 ZERO SPEED DELAY Defines the delay for the zero speed delay function. The function is useful in applications where a smooth and quick restarting is essential. During the delay the drive knows accurately the rotor position.

No Zero Speed DelayThe drive receives a stop command and decelerates along a ramp. When the motor actual speed falls below an internal limit (called Zero Speed), the speed controller is switched off. The inverter modulation is stopped and the motor coasts to standstill.With Zero Speed DelayThe drive receives a stop command and decelerates along a ramp. When the actual motor speed falls below an internal limit (called Zero Speed), the zero speed delay function activates. During the delay the functions keeps the speed controller live: the inverter modulates, motor is magnetised and the drive is ready for a quick restart.

0.0 … 60.0 s Delay time

22 ACCEL/DECEL Acceleration and deceleration times.

22.01 ACC/DEC SEL Selects the active acceleration/deceleration time pair.ACC/DEC 1 Acceleration time 1 and deceleration time 1 are used. See parameters 22.02

and 22.03.1

ACC/DEC 2 Acceleration time 2 and deceleration time 2 are used. See parameters 22.04 and 22.05.

2

DI1 Acceleration/deceleration time pair selection through digital input DI1. 0 = Acceleration time 1 and deceleration time 1 are in use. 1 = Acceleration time 2 and deceleration time 2 are in use.

3

DI2 See selection DI1. 4DI3 See selection DI1. 5DI4 See selection DI1. 6DI5 See selection DI1. 7DI6 See selection DI1. 8DI7 See selection DI1. 9DI8 See selection DI1. 10DI9 See selection DI1. 11DI10 See selection DI1. 12DI11 See selection DI1. 13DI12 See selection DI1. 14PAR 22.08&09 Acceleration and deceleration times given by parameters 22.08 and 22.09 15

Index Name/Selection Description FbEq

Speed

Time

Zero Speed

Speed

Time

Zero Speed

Delay

No Zero Speed Delay With Zero Speed Delay

Speed controller switched off: Motor coasts to stop.

Speed controller remains live. Motor is decelerated to true 0 speed.

Page 268: VSDS Manual-ABB

Actual signals and parameters

130

22.02 ACCEL TIME 1 Defines the acceleration time 1 i.e. the time required for the speed to change from zero to the maximum speed. - If the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate.- If the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference signal.- If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive operating limits.

0.00 … 1800.00 s Acceleration time 0 … 1800022.03 DECEL TIME 1 Defines the deceleration time 1 i.e. the time required for the speed to change

from the maximum (see parameter 20.02) to zero.- If the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference signal.- If the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate.- If the deceleration time is set too short, the drive will automatically prolong the deceleration in order not to exceed drive operating limits. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on (parameter 20.05). Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with an electric braking option e.g. with a brake chopper and a brake resistor.

0.00 … 1800.00 s Deceleration time 0 … 1800022.04 ACCEL TIME 2 See parameter 22.02.

0.00 … 1800.00 s See parameter 22.02. 0 … 1800022.05 DECEL TIME 2 See parameter 22.03.

0.00 … 1800.00 s See parameter 22.03. 0 … 1800022.06 ACC/DEC RAMP

SHPESelects the shape of the acceleration/deceleration ramp.

0.00 … 1000.00 s 0.00 s: Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps.0.01 … 1000.00 s: S-curve ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S curve consists of symmetrical curves at both ends of the ramp and a linear part in between.

0 … 100000

Index Name/Selection Description FbEq

Linear ramp: Par. 20.06 = 0 s

S-curve ramp: Par. 20.06 > 0 s

A rule of thumbA suitable relation between the ramp shape time and the acceleration ramp time is 1/5.

Speed

time

Max

Par. 22.02 Par. 22.06

Page 269: VSDS Manual-ABB

Actual signals and parameters

131

22.07 EM STOP RAMP TIME

Defines the time inside which the drive is stopped if- the drive receives an emergency stop command or- the Run Enable signal is switched off and the Run Enable function has value OFF3 (see parameter 21.07). The emergency stop command can be given through a fieldbus or an Emergency Stop module (optional). Consult the local ABB representative for more information on the optional module and the related settings of the Standard Application Program.

0.00 … 2000.00 s Deceleration time 0 … 20000022.08 ACC PTR Defines the source or constant for value PAR 22.08&09 of parameter 22.01.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

100 = 1 s

22.09 DEC PTR Defines the source or constant for value PAR 22.08&09 of parameter 22.01-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

100 = 1 s

23 SPEED CTRL Speed controller variables. The parameters are not visible if parameter 99.04 = SCALAR.

23.01 GAIN Defines a relative gain for the speed controller. Great gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant.

0.0 … 250.0 Gain 0 … 25000

Index Name/Selection Description FbEq

Gain = Kp = 1TI = Integration time = 0TD= Derivation time = 0

Controller

Error Value

Controller Output

t

%

e = Error valueoutput = Kp · e

Page 270: VSDS Manual-ABB

Actual signals and parameters

132

23.02 INTEGRATION TIME Defines an integration time for the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short an integration time makes the control unstable. The figure below shows the speed controller output after an error step when the error remains constant.

0.01 … 999.97 s Integration time 10 … 999970

23.03 DERIVATION TIME Defines the derivation time for the speed controller. Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. The derivation makes the control more responsive for disturbances. Note: Changing this parameter is recommended only if a pulse encoder is used.The figure below shows the speed controller output after an error step when the error remains constant.

0.0 … 9999.8 ms Derivation time value. 1 = 1 ms

Index Name/Selection Description FbEq

TI

Controller Output

t

%

Gain = Kp = 1TI = Integration time > 0TD= Derivation time = 0

Kp · e e = Error value

Kp · e

TI

Kp · e

Error Value

Controller Output

t

%

Gain = Kp = 1TI = Integration time > 0TD= Derivation time > 0Ts= Sample time period = 2 ms∆e = Error value change between two samples

e = Error value

Kp · TD · ∆eTs Kp · e

Page 271: VSDS Manual-ABB

Actual signals and parameters

133

23.04 ACC COMPENSATION

Defines the derivation time for acceleration compensation. In order to compensate inertia during acceleration a derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described for parameter 23.03. Note: As a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. (The speed controller Autotune Run does this automatically, see parameter 23.06.)The figure below shows the speed responses when a high inertia load is accelerated along a ramp.

0.00 … 999.98 s Derivation time 0 … 999923.05 SLIP GAIN Defines the slip gain for the motor slip compensation control. 100% means full

slip compensation; 0% means no slip compensation. The default value is 100%. Other values can be used if a static speed error is detected despite of the full slip compensation.Example: 1000 rpm constant speed reference is given to the drive. Despite of the full slip compensation (SLIP GAIN = 100%), a manual tachometer measurement from the motor axis gives a speed value of 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. At the 106% gain value, no static speed error exists.

0.0 … 400.0% Slip gain value. 0 … 40023.06 AUTOTUNE RUN Start automatic tuning of the speed controller. Instructions:

- Run the motor at a constant speed of 20 to 40% of the rated speed.- Change the autotuning parameter 23.06 to YES.Note: The motor load must be connected to the motor.

NO No autotuning. 0YES Activates the speed controller autotuning. Automatically reverts to NO. 65535

24 TORQUE CTRL Torque control variables. Visible only if parameter 99.02 = T CNTRL and parameter 99.04 = DTC.

24.01 TORQ RAMP UP Defines the torque reference ramp up time.0.00 … 120.00 s Time for the reference to increase from zero to the nominal motor torque. 0 … 12000

24.02 TORQ RAMP DOWN Defines the torque reference ramp down time.0.00 … 120.00 s Time for the reference to decrease from the nominal motor torque to zero. 0 … 12000

Index Name/Selection Description FbEq

Speed referenceActual speed

No Acceleration Compensation Acceleration Compensation

tt

% %

Page 272: VSDS Manual-ABB

Actual signals and parameters

134

25 CRITICAL SPEEDS Speed bands within which the drive is not allowed to operate.

25.01 CRIT SPEED SELECT

Activates/deactivates the critical speeds function.Example: A fan has vibrations in the range of 540 to 690 rpm and 1380 to 1560 rpm. To make the drive to jump over the vibration speed ranges:- activate the critical speeds function, - set the critical speed ranges as in the figure below.

Note: If parameter 99.02 = PID CTRL, the critical speeds are not in use. OFF Inactive 0ON Active. 65535

25.02 CRIT SPEED 1 LOW Defines the minimum limit for critical speed range 1.0 … 18000 rpm Minimum limit. The value cannot be above the maximum (parameter 25.03).

Note: If parameter 99.04 = SCALAR, the unit is Hz.0 … 18000

25.03 CRIT SPEED 1 HIGH Defines the maximum limit for critical speed range 1.0 … 18000 rpm Maximum limit. The value cannot be below the minimum (parameter 25.02).

Note: If parameter 99.04 = SCALAR, the unit is Hz.0 … 18000

25.04 CRIT SPEED 2 LOW See parameter 25.02.0 … 18000 rpm See parameter 25.02. 0 … 18000

25.05 CRIT SPEED 2 HIGH See parameter 25.03.0 … 18000 rpm See parameter 25.03. 0 … 18000

25.06 CRIT SPEED 3 LOW See parameter 25.02.0 … 18000 rpm See parameter 25.02. 0 … 18000

25.07 CRIT SPEED 3 HIGH See parameter 25.03.0 … 18000 rpm See parameter 25.03. 0 … 18000

26 MOTOR CONTROL26.01 FLUX OPTIMIZATION Activates/deactivates the flux optimisation function.

Note: The function cannot be used if parameter 99.04 = SCALAR.NO Inactive 0YES Active 65535

26.02 FLUX BRAKING Activates/deactivates the flux braking function. Note: The function cannot be used if parameter 99.04 = SCALAR.

NO Inactive 0YES Active 65535

Index Name/Selection Description FbEq

Drive speed reference540

690

1380

1560

Motor speed1 Par. 25.02 = 540 rpm2 Par. 25.03 = 690 rpm3 Par. 25.04 = 1380 rpm4 Par. 25.05 = 1590 rpm

1 2 3 4 (rpm)

(rpm)

Page 273: VSDS Manual-ABB

Actual signals and parameters

135

26.03 IR-COMPENSATION Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with high break-away torque, but no DTC motor control cannot be applied. The figure below illustrates the IR compensation. Note: The function can be used only if parameter 99.04 is SCALAR.

0 … 30% Voltage boost at zero speed in percent of the motor nominal voltage 0 … 300026.05 HEX FIELD WEAKEN Selects whether motor flux is controlled along a circular or a hexagonal pattern

in the field weakening area of the frequency range (above 50/60 Hz).OFF The rotating flux vector follows a circular pattern. Optimal selection in most

applications: Minimal losses at constant load. Maximal instantaneous torque is not available in the field weakening range of the speed.

0

ON Motor flux follows a circular pattern below the field weakening point (typically 50 or 60 Hz) and a hexagonal pattern in the field weakening range. Optimal selection in the applications that require maximal instantaneous torque in the field weakening range of the speed. The losses at constant operation are higher than with the selection NO.

65535

26.06 FLUX REF PTR Selects the source for the flux reference, or sets the flux reference value.-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference. FbEq for the flux value is 100 = 1%. The range of the flux is 25 … 140%.

100 = 1%

27 BRAKE CHOPPER Control of the brake chopper.

27.01 BRAKE CHOPPER CTL

Activates the brake chopper control.

OFF Inactive 0ON Active. Note: Ensure the brake chopper and resistor are installed and the

overvoltage control is switched off (parameter 20.05).65535

27.02 BR OVERLOAD FUNC

Activates the overload protection of the brake resistor. The user-adjustable variables are parameters 27.03, 27.04 and 27.05.

NO Inactive 0WARNING Active. If the drive detects an overload, it generates a warning. 1FAULT Active. If the drive detects an overload, it trips on a fault. 2

27.03 BR RESISTANCE Defines the resistance value of the brake resistor. The value is used in the overload protection. See parameter 27.02.

0.00 … 100.00 ohm Resistance value 0 … 100

Index Name/Selection Description FbEq

U /UN(%)

f (Hz)Field weakening point

Relative output voltage. No IR compensation.

Relative output voltage. IR compensation set to 15%.

15%

100%

Page 274: VSDS Manual-ABB

Actual signals and parameters

136

27.04 BR THERM TCONST Defines the thermal time constant of the brake resistor. The value is used in the overload protection. See parameter 27.02.

0.000 … 10000.000 s Time constant.27.05 MAX CONT BR

POWERDefines the maximum continuous braking power which will raise the resistor temperature to the maximum allowed value. The value is used in the overload protection. See parameter 27.02.

0.00 …10000 kW Power27.06 BC CTRL MODE Selects the control mode of the braking chopper.

AS GENERATOR Chopper operation is allowed when the DC voltage exceeds the braking limit, the inverter bridge modulates and the motor generates power to the drive. The selection prevents the operation in case the intermediate circuit DC voltage rises due to abnormally high supply voltage level. Long time supply voltage rise would damage the chopper.

1

COMMON DC Chopper operation is allowed always when the DC voltage exceeds the braking limit. The selection is to be used in applications where several inverters are connected to the same intermediate circuit (DC bus).

WARNING! Excessive supply voltage will raise the intermediate circuit voltage above the operation limit of the chopper. If the voltage remains abnormally high for a long period, the braking chopper will be

overloaded and damaged.

2

30 FAULT FUNCTIONS Programmable protection functions

30.01 AI<MIN FUNCTION Selects how the drive reacts when an analogue input signal falls below the set minimum limit. Note: The analogue input minimum setting must be set to 0.5 V (1 mA) or above (see parameter group 13 ANALOGUE INPUTS).

FAULT The drive trips on a fault and the motor coasts to stop. 1NO Inactive 2CONST SP 15 The drive generates a warning AI < MIN FUNC (8110) and sets the speed to

the value defined by parameter 12.16. WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

3

LAST SPEED The drive generates a warning AI < MIN FUNC (8110) and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

4

30.02 PANEL LOSS Selects how the drive reacts to a control panel communication break.FAULT Drive trips on a fault and the motor stops as defined by parameter 21.03. 1CONST SP 15 The drive generates a warning and sets the speed to the speed defined by

parameter 12.16. WARNING! Make sure that it is safe to continue operation in case of a panel communication break.

2

Index Name/Selection Description FbEq

Page 275: VSDS Manual-ABB

Actual signals and parameters

137

LAST SPEED The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case of a panel communication break.

3

30.03 EXTERNAL FAULT Selects an interface for an external fault signal.NOT SEL Inactive 1DI1 External fault indication is given through digital input DI1. 0: Fault trip. Motor

coasts to stop. 1: No external fault.2

DI2 See selection DI1. 3DI3 See selection DI1. 4DI4 See selection DI1. 5DI5 See selection DI1. 6DI6 See selection DI1. 7DI7 See selection DI1. 8DI8 See selection DI1. 9DI9 See selection DI1. 10DI10 See selection DI1. 11DI11 See selection DI1. 12DI12 See selection DI1. 13

30.04 MOTOR THERM PROT

Selects how the drive reacts when the motor overtemperature is detected by the function defined by Parameter 30.05.Note: The parameter has no effect if the motor temperature measurement has been activated by parameter group 35 MOT TEMP MEAS.

FAULT The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value). The drive trips on a fault when the temperature exceeds the fault level (100% of the allowed maximum value).

1

WARNING The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value).

2

NO Inactive 330.05 MOT THERM P

MODESelects the thermal protection mode of the motor. When overtemperature is detected, the drive reacts as defined by parameter 30.04.

DTC The protection is based on the calculated motor thermal model. The following assumptions are used in the calculation:- The motor is at ambient temperature (30 °C) when the power is switched on. - The motor temperature increases if it operates in the region above the load curve and decreases if it operates below the curve.- The motor thermal time constant is an approximate value for a standard self-ventilated squirrel-cage motor.It is possible to finetune the model by parameter 30.07.Note: The model cannot be used with high power motors (parameter 99.06 is higher than 800 A).

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

1

Index Name/Selection Description FbEq

Page 276: VSDS Manual-ABB

Actual signals and parameters

138

USER MODE The protection is based on the user-defined motor thermal model and the following basic assumptions:- The motor is at ambient temperature (30 °C) when power is switched on.- The motor temperature increases if it operates in the region above the motor load curve and decreases if it operates below the curve.The user-defined thermal model uses the motor thermal time constant (parameter 30.06) and the motor load curve (parameters 30.07, 30.08 and 30.09). User tuning is typically needed only if the ambient temperature differs from the normal operating temperature specified for the motor.

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

2Index Name/Selection Description FbEq

Page 277: VSDS Manual-ABB

Actual signals and parameters

139

THERMISTOR Motor thermal protection is activated through digital input DI6. A motor thermistor, or a break contact of a thermistor relay, must be connected to digital input DI6. The drive reads the DI6 states as follows:

WARNING! According to IEC 664, the connection of the motor thermistor to the digital input requires double or reinforced insulation between motor live parts and the thermistor. Reinforced insulation

entails a clearance and creeping distance of 8 mm (400 / 500 VAC equipment). If the thermistor assembly does not fulfil the requirement, the other I/O terminals of the drive must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input.

WARNING! Digital input DI6 may be selected for another use. Change these settings before selecting THERMISTOR. In other words, ensure that digital input DI6 is not selected by any other

parameter.The figure below shows the alternative thermistor connections. At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

3Index Name/Selection Description FbEq

DI6 Status (Thermistor resistance) Temperature

1 (0 … 1.5 kohm) Normal

0 (4 kohm or higher) Overtemperature

MotorT 10 nF

MotorT

Thermistorrelay

RMIO board, X22

6 DI67 +24 VDC

Alternative 1

Alternative 2 RMIO board, X22

6 DI67 +24 VDC

Page 278: VSDS Manual-ABB

Actual signals and parameters

140

30.06 MOTOR THERM TIME

Defines the thermal time constant for the user-defined thermal model (see the selection USER MODE of parameter 30.05).

256.0 … 9999.8 s Time constant 256 … 999930.07 MOTOR LOAD

CURVEDefines the load curve together by parameters 30.08 and 30.09. The load curve is used in the user-defined thermal model (see the selection USER MODE of parameter 30.05).

50.0 … 150.0% Allowed continuous motor load in percent of the nominal motor current. 50 … 15030.08 ZERO SPEED LOAD Defines the load curve together with parameters 30.07 and 30.09.

25.0 … 150.0% Allowed continuous motor load at zero speed in percent of the nominal motor current

25 … 150

30.09 BREAK POINT Defines the load curve together with parameters 30.07 and 30.08. 1.0 … 300.0 Hz Drive output frequency at 100% load 100 …

3000030.10 STALL FUNCTION Selects how the drive reacts to a motor stall condition. The protection wakes

up if:- the motor torque is at the internal stall torque limit (not user-adjustable)- the output frequency is below the level set by parameter 30.11 and- the conditions above have been valid longer than the time set by parameter 30.12.

FAULT The drive trips on a fault. 1WARNING The drive generates a warning. The indication disappears in half of the time set

by parameter 30.12. 2

Index Name/Selection Description FbEq

Motor

100%

Temperature

63%

Motor thermal time constant

t

t

Load

100%

50

100

150

Drive output frequency

30.07

30.09

30.08

I/IN(%)

I = Motor currentIN = Nominal motor current

Page 279: VSDS Manual-ABB

Actual signals and parameters

141

NO Protection is inactive. 330.11 STALL FREQ HI Defines the frequency limit for the stall function. See parameter 30.10.

0.5 … 50.0 Hz Stall frequency 50 … 500030.12 STALL TIME Defines the time for the stall function. See parameter 30.10.

10.00 … 400.00 s Stall time 10 … 40030.13 UNDERLOAD FUNC Selects how the drive reacts to underload. The protection wakes up if:

- the motor torque falls below the curve selected by parameter 30.15,- output frequency is higher than 10% of the nominal motor frequency and- the above conditions have been valid longer than the time set by parameter 30.14.

NO Protection is inactive. 1WARNING The drive generates a warning. 2FAULT The drive trips on a fault. 3

30.14 UNDERLOAD TIME Time limit for the underload function. See parameter 30.13.0 … 600 s Underload time 0 … 600

30.15 UNDERLOAD CURVE

Selects the load curve for the underload function. See parameter 30.13.

1 … 5 Number of the load curve 1 … 530.16 MOTOR PHASE

LOSSActivates the motor phase loss supervision function.

NO Inactive 0FAULT Active. The drive trips on a fault. 65535

30.17 EARTH FAULT Selects how the drive reacts when an earth fault is detected in the motor or the motor cable.

WARNING The drive generates a warning. 0FAULT The drive trips on a fault. 65535

30.18 COMM FLT FUNC Selects how the drive reacts in a fieldbus communication break, i.e. when the drive fails to receive the Main Reference Data Set or the Auxiliary Reference Data Set. The time delays are given by parameters 30.19 and 30.21.

FAULT Protection is active. The drive trips on a fault and stops the motor as defined by parameter 21.03.

1

Index Name/Selection Description FbEq

100

80

60

40

20

02.4 * ƒN

3

2

1 5

4

TM/TN

70%

50%

30%

ƒN

(%)TM = Motor torqueTN= Nominal motor torqueƒN = Nominal motor frequency

Page 280: VSDS Manual-ABB

Actual signals and parameters

142

NO Protection is inactive. 2CONST SP 15 Protection is active. The drive generates a warning and sets the speed to the

value defined by parameter 12.16.WARNING! Make sure that it is safe to continue operation in case of a communication break.

3

LAST SPEED Protection is active. The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case of a communication break.

4

30.19 MAIN REF DS T-OUT Defines the time delay for the Main Reference Dataset supervision. See parameter 30.18.

0.1 … 60.0 s Time delay 10 … 600030.20 COMM FLT RO/AO Selects the operation of the fieldbus controlled relay output and analogue

output in a communication break. See groups 14 RELAY OUTPUTS and 15 ANALOGUE OUTPUTS and the chapter Fieldbus control. The delay for the supervision function is given by parameter 30.21.

ZERO Relay output is de-energised. Analogue output is set to zero. 0LAST VALUE The relay output keeps the last state before the communication loss. The

analogue output gives the last value before the communication loss.WARNING! After the communication recovers, the update of the relay and the analogue outputs starts immediately without fault message resetting.

65535

30.21 AUX DS T-OUT Defines the delay time for the Auxiliary Reference Dataset supervision. See parameter 30.18. The drive automatically activates the supervision 60 seconds after power switch-on if the value is other than zero. Note: The delay also applies for the function defined by parameter 30.20.

0.0 … 60.0 s Time delay. 0.0 s = The function is inactive. 0 … 600030.22 IO CONFIG FUNC Selects how the drive reacts in case an optional input or output channel has

been selected as a signal interface, but the communication to the appropriate analogue or digital I/O extension module has not been set up accordingly in parameter group 98 OPTION MODULES. Example: The supervision function wakes up if parameter 16.01 is set to DI7, but 98.03 is set to NO.

NO Inactive. 1WARNING Active. The drive generates a warning. 2

31 AUTOMATIC RESET Automatic fault reset. Automatic resets are possible only for certain fault types and when the automatic reset function is activated for that fault type.The automatic reset function is not operational if the drive is in local control (L visible on the first row of the panel display).

31.01 NUMBER OF TRIALS Defines the number of automatic fault resets the drive performs within the time defined by parameter 31.02.

0 … 5 Number of the automatic resets 031.02 TRIAL TIME Defines the time for the automatic fault reset function. See parameter 31.01.

1.0 … 180.0 s Allowed resetting time 100 … 18000

Index Name/Selection Description FbEq

Page 281: VSDS Manual-ABB

Actual signals and parameters

143

31.03 DELAY TIME Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.01.

0.0 … 3.0 s Resetting delay 0 … 30031.04 OVERCURRENT Activates/deactivates the automatic reset for the overcurrent fault.

NO Inactive 0YES Active 65535

31.05 OVERVOLTAGE Activates/deactivates the automatic reset for the intermediate link overvoltage fault.

NO Inactive 0YES Active 65535

31.06 UNDERVOLTAGE Activates/deactivates the automatic reset for the intermediate link undervoltage fault.

NO Inactive 0YES Active 65535

31.07 AI SIGNAL<MIN Activates/deactivates the automatic reset for the fault AI SIGNAL<MIN (analogue input signal under the allowed minimum level).

NO Inactive 0YES Active.

WARNING! The drive may restart even after a long stop if the analogue input signal is restored. Ensure that the use of this feature will not cause danger.

65535

32 SUPERVISION Supervision limits. A relay output can be used to indicate when the value is above/below the limit.

32.01 SPEED1 FUNCTION Activates/deactivates the speed supervision function and selects the type of the supervision limit.

NO Supervision is not used. 1LOW LIMIT Supervision wakes up if the value is below the limit. 2HIGH LIMIT Supervision wakes up if the value is above the limit. 3ABS LOW LIMIT Supervision wakes up if the value is below the set limit. The limit is supervised

in both rotating directions. The figure below illustrates the principle.4

32.02 SPEED1 LIMIT Defines the speed supervision limit. See parameter 32.01.- 18000 … 18000 rpm Value of the limit - 18000 …

1800032.03 SPEED2 FUNCTION See parameter 32.01.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3ABS LOW LIMIT See parameter 32.01. 4

32.04 SPEED2 LIMIT See parameter 32.01.

Index Name/Selection Description FbEq

ABS LOW LIMIT

-ABS LOW LIMIT

speed/rpm

0

Page 282: VSDS Manual-ABB

Actual signals and parameters

144

- 18000 … 18000 rpm See parameter 32.01. - 18000 … 18000

32.05 CURRENT FUNCTION

Activates/deactivates the motor current supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.06 CURRENT LIMIT Defines the limit for the motor current supervision (see parameter 32.05).0 … 1000 A Value of the limit 0 … 1000

32.07 TORQUE 1 FUNCTION

Activates/deactivates the motor torque supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.08 TORQUE 1 LIMIT Defines the limit for the motor torque supervision (see parameter 32.07).-600 … 600% Value of the limit in percent of the motor nominal torque -6000 …

600032.09 TORQUE 2

FUNCTIONActivates/deactivates the motor torque supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.10 TORQUE 2 LIMIT Defines the limit for the motor torque supervision (see parameter 32.09).-600 … 600% Value of the limit in percent of motor nominal torque -6000 …

600032.11 REF1 FUNCTION Activates/deactivates the external reference REF1 supervision function and

selects the type of the supervision limit.NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.12 REF1 LIMIT Defines the limit for REF1 supervision (see parameter 32.11).0 … 18000 rpm Value of the limit 0 … 18000

32.13 REF2 FUNCTION Activates/deactivates external reference REF2 supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.14 REF2 LIMIT Defines the limit for REF2 supervision (see parameter 32.13).0 … 600% Value of the limit 0 … 6000

32.15 ACT1 FUNCTION Activates/deactivates the supervision function for variable ACT1 of the process PID controller and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

Index Name/Selection Description FbEq

Page 283: VSDS Manual-ABB

Actual signals and parameters

145

32.16 ACT1 LIMIT Defines the limit for ACT1 supervision (see parameter 32.15).0 … 200% Value of the limit 0 … 2000

32.17 ACT2 FUNCTION Activates/deactivates the supervision function for variable ACT2 of the process PID controller and selects the type of the supervision limit.

NO See parameter 32.01. 1LOW LIMIT See parameter 32.01. 2HIGH LIMIT See parameter 32.01. 3

32.18 ACT2 LIMIT Defines the limit for ACT2 supervision (see parameter 32.17).0 … 200% Value of the limit 0 … 2000

33 INFORMATION Program versions, test date

33.01 SOFTWARE VERSION

Displays the type and the version of the firmware package in the drive.

Decoding key:

33.02 APPL SW VERSION Displays the type and the version of the application program.Decoding key:

33.03 TEST DATE Displays the test date.Date value in format DDMMYY (day, month, year)

Index Name/Selection Description FbEq

ASxxxxyxProduct SeriesA = ACS800ProductS = ACS800 StandardFirmware Version7xyx = Version 7.xyx

ASAxxxyxProduct SeriesA = ACS800ProductS = ACS800 StandardFirmware TypeA = Application ProgramFirmware Version7xyx = Version 7.xyx

Page 284: VSDS Manual-ABB

Actual signals and parameters

146

34 PROCESS VARIABLE

- user variable and unit- filtering for the actual signals speed and torque- reset of the run time counter

34.01 SCALE Scales the selected drive variable into a desired user-defined variable, which is stored as an actual signal 01.01. The block diagram below illustrates the use of the parameters that define actual signal 01.01.

0.00 … 100000.00 Scaling factor 0 … 10000034.02 P VAR UNIT Selects the unit for the process variable. See parameter 34.01.

NO No unit is selected. 1rpm revolutions per minute 2% percent 3m/s metres per second 4A ampere 5V volt 6Hz hertz 7s second 8h hour 9kh kilohour 10C celsius 11lft labels per foot 12mA milliampere 13mV millivolt 14kW kilowatt 15W watt 16kWh kilowatt hour 17F fahrenheit 18hp horsepower 19MWh megawatt hour 20m3h cubic metres per hour 21

Index Name/Selection Description FbEq

01.0134.01

NO

FPMUnit for actual signal 01.01

34.03

Select

34.02

Select

PARAMETER

00.00

99.99

TABLE

• • •

Mul.

Page 285: VSDS Manual-ABB

Actual signals and parameters

147

l/s litres per second 22bar bar 23kPa kilopascal 24GPM gallons per minute 25PSI pounds per square inch 26CFM cubic feet per minute 27ft foot 28MGD millions of gallons per day 29iHg inches of mercury 30FPM feet per minute 31

34.03 SELECT P VAR Selects the drive variable scaled into a desired process variable. See parameter 34.01.

0 … 9999 Parameter index 0 … 999934.04 MOTOR SP FILT TIM Defines a filter time constant for the actual signal speed (01.02), the speed

value used in the speed supervision (parameters 32.01 and 32.03) and the speed value read through an analogue output.

0 … 20000 ms Filter time constant 0 … 20000

34.05 TORQ ACT FILT TIM Defines a filter time for the actual signal torque (actual signal 01.05). Affects also on the torque supervision (parameters 32.07 and 32.09) and the torque read through an analogue output.

0 … 20000 ms Filter time constant 0 … 20000

34.06 RESET RUN TIME Resets the motor running time counter (actual signal 01.43).NO No reset. 0YES Reset. The counter restarts from zero. 65535

35 MOT TEMP MEAS Motor temperature measurement. For the function description see the chapter Program features.

35.01 MOT 1 TEMP AI1 SEL Activates the motor 1 temperature measurement function and selects the sensor type.

NOT IN USE The function is inactive. 1

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Page 286: VSDS Manual-ABB

Actual signals and parameters

148

1xPT100 The function is active. The temperature is measured with one Pt 100 sensor. Analogue output AO1 feeds constant current through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through analogue input AI1 and converts it to degrees centigrade.

2

2XPT100 The function is active. Temperature is measured using two Pt 100 sensors. See selection 1xPT100.

3

3XPT100 The function is active. Temperature is measured using three Pt 100 sensors. See selection 1xPT100.

4

1..3 PTC The function is active. The temperature is supervised using one to three PTC sensors. Analogue output AO1 feeds constant current through the sensor(s). The resistance of the sensor increases sharply as the motor temperature rises over the PTC reference temperature (Tref), as does the voltage over the resistor. The temperature measurement function reads the voltage through analogue input AI1 and converts it into ohms. The figure below shows typical PTC sensor resistance values as a function of the motor operating temperature.

5

35.02 MOT 1 TEMP ALM L Defines the alarm limit for motor 1 temperature measurement. The alarm indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1..3 PTC.

-10 … 5000

35.03 MOT 1 TEMP FLT L Defines the fault trip limit for motor 1 temperature measurement. The fault indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1..3 PTC.

-10 … 5000

35.04 MOT 2 TEMP AI2 SEL Activates the motor 2 temperature measurement function and selects the sensor type. Two motors can be protected only by using an optional analogue extension module. Parameter 98.12 needs to be activated.Note: If 98.12 is activated, the analogue I/O extension is also used for motor 1 temperature measurement (the standard I/O terminals are not in use).

NOT IN USE See 35.01 11xPT100 See 35.01 22XPT100 See 35.01 33XPT100 See 35.01 41..3 PTC See 35.01 5

Index Name/Selection Description FbEq

100

550

1330

4000

Ohm

T

Temperature ResistanceNormal 0 … 1.5 kohmExcessive > 4 kohm

Page 287: VSDS Manual-ABB

Actual signals and parameters

149

35.05 MOT 2 TEMP ALM L Defines the alarm limit for the motor 2 temperature measurement function. The alarm indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

See 35.02 -10 … 5000

35.06 MOT 2 TEMP FLT L Defines the fault trip limit for the motor 2 temperature measurement function. The fault indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

See 35.03 -10 … 5000

35.07 MOT MOD COMPENSAT

Selects whether measured motor 1 temperature is used in the motor model compensation.

NO The function is inactive. 1YES The temperature is used in the motor model compensation.

Note: Selection is possible only when Pt 100 sensor(s) are used.2

40 PID CONTROL - process PID control (99.02 = PID CTRL)- speed or torque reference trimming (99.02 is not PID CTRL)- sleep function for the process PID control (99.02 = PID CTRL)For more information, see the chapter Program features.

40.01 PID GAIN Defines the gain of the process PID controller.0.1 … 100.0 Gain value. The table below lists a few examples of the gain settings and the

resulting speed changes when- a 10% or 50% error value is connected to the controller (error = process reference - process actual value).- motor maximum speed is 1500 rpm (Parameter 20.02)

10 … 10000

40.02 PID INTEG TIME Defines the integration time for the process PID controller.

0.02 … 320.00 s Integration time 2 … 3200040.03 PID DERIV TIME Defines the derivation time of the process PID controller. The derivative

component at the controller output is calculated on basis of two consecutive error values (EK-1 and EK) according to the following formula: PID DERIV TIME · (EK - EK-1)/TS, in which TS = 12 ms sample time.E = Error = Process reference - process actual value

Index Name/Selection Description FbEq

PID Gain Speed Change: 10% Error

Speed Change: 50% Error

0.5 75 rpm 375 rpm1.0 150 rpm 750 rpm3.0 450 rpm 1500 rpm (limited)

Error/Controller output

Titime

OI

G · I

G · I

I = controller input (error)O = controller outputG = gaint = timeTi = integration time

Page 288: VSDS Manual-ABB

Actual signals and parameters

150

0.00 … 10.00 s Derivation time. 0 … 100040.04 PID DERIV FILTER Defines the time constant of the 1-pole filter used to smooth the derivative

component of the process PID controller.0.04 … 10.00 s Filter time constant. 4 … 1000

40.05 ERROR VALUE INV Inverts the error at the process PID controller input (error = process reference - process actual value).

NO No inversion 0YES Inversion 65535

40.06 ACTUAL VALUE SEL Selects the process actual value for the process PID controller: The sources for the variable ACT1 and ACT2 are further defined by parameters 40.07 and 40.08.

ACT1 ACT1 1ACT1-ACT2 Subtraction of ACT1 and ACT 2. 2ACT1+ACT2 Addition of ACT1 and ACT2 3ACT1*ACT2 Multiplication of ACT1 and ACT2 4ACT1/ACT2 Division of ACT1 and ACT2 5MIN(A1,A2) Selects the smaller of ACT1 and ACT2 6MAX(A1,A2) Selects the higher of ACT1 and ACT2 7sqrt(A1-A2) Square root of the subtraction of ACT1 and ACT2 8sqA1+sqA2 Addition of the square root of ACT1 and the square root of ACT2 9

40.07 ACTUAL1 INPUT SEL Selects the source for the variable ACT1. See parameter 40.06.AI1 Analogue input AI1 1AI2 Analogue input AI2 2AI3 Analogue input AI3 3AI5 Analogue input AI5 4AI6 Analogue input AI6 5PARAM 40.25 Source selected by parameter 40.25. 6

40.08 ACTUAL2 INPUT SEL Selects the source for the variable ACT2. See parameter 40.06.AI1 Analogue input AI1 1AI2 Analogue input AI2 2AI3 Analogue input AI3 3AI5 Analogue input AI5 4AI6 Analogue input AI6 5

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Page 289: VSDS Manual-ABB

Actual signals and parameters

151

40.09 ACT1 MINIMUM Defines the minimum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.07. The minimum and maximum (40.10) settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PID controller.

-1000 … 1000% Minimum value in percent of the set analogue input range. The equation below instructs how to calculate the value when analogue input AI1 is used as a variable ACT1.

-10000 … 10000

40.10 ACT1 MAXIMUM Defines the maximum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.07. The minimum (40.09) and maximum settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PID controller.

-1000 … 1000% Maximum value in percent of the set analogue input signal range. The equation below instructs how to calculate the value when analogue input AI1 is used as a variable ACT1.

-10000 … 10000

40.11 ACT2 MINIMUM See parameter 40.09.-1000 … 1000% See parameter 40.09. -10000 …

1000040.12 ACT2 MAXIMUM See parameter 40.10.

-1000 … 1000% See parameter 40.10. -10000 … 10000

40.13 PID INTEGRATION Activates the integration of the process PID controller.OFF Inactive 1ON Active 2

Index Name/Selection Description FbEq

ACT1 MINIMUM =

AI1min The voltage value received from the measuring device when the measured process actual value is at the desired minimum level.

13.01 AI1 minimum (parameter setting)13.02 AI1 maximum (parameter setting)

AI1min - 13.0113.02 - 13.01

· 100%

ACT1 MAXIMUM =

AI1max The voltage value received from the measuring device when the measured process actual value is at the desired maximum level.

13.01 AI1 minimum (parameter setting)13.02 AI1 maximum (parameter setting)

AI1max - 13.0113.02 - 13.01

· 100%

Page 290: VSDS Manual-ABB

Actual signals and parameters

152

40.14 TRIM MODE Activates the trim function and selects between the direct and proportional trimming. Using the trim it is possible to combine a corrective factor to the drive reference. Example: A speed-controlled conveyor line where the line tension also needs to be considered: The speed reference is slightly adjusted (trimmed) depending on the value of the measured line tension.Not visible when parameter 99.02 = PID CTRL.

OFF The trim function is deactivated. 1PROPORTIONAL The trim function is active. The trimming factor is relative to the external %-

reference (REF2). See parameter 11.06.2

DIRECT The trim function is active. The trimming factor is relative to a fixed maximum limit used in the reference control loop (maximum speed, frequency or torque).

3

40.15 TRIM REF SEL Selects the signal source for the trim reference. Not visible when parameter 99.02 = PID CTRL.

AI1 Analogue input AI1 1AI2 Analogue input AI2 2AI3 Analogue input AI3 3AI5 Analogue input AI5 4AI6 Analogue input AI5 5PAR 40.16 Value of parameter 40.16 is used as the trim reference. 6

40.16 TRIM REFERENCE Defines the trim reference value when parameter 40.15 has the value PAR 40.16 selected. Not visible when parameter 99.02 = PID CTRL.

-100.0 … 100.0% Trim reference - 10000 … 10000

40.17 TRIM RANGE ADJUST

Defines the multiplier for the PID controller output used as the trimming factor. Not visible when parameter 99.02 = PID CTRL.

-100.0 … 100.0% Multiplying factor - 10000 … 10000

40.18 TRIM SELECTION Selects whether the trimming is used for correcting the speed or torque reference. Visible only when parameter 99.02 = T CTRL.

SPEED TRIM Speed reference trimming 1

Index Name/Selection Description FbEq

Trim

refe

renc

e

-minAI5 minAI5 maxAI5-maxAI5

Analogue Input Signal

sclAI5

-sclAI5

Example: AI5 as a trim reference

minAI5 = parameter 13.16maxAI5 = parameter 13.17sclAI5 = parameter 13.18AI5 be used only with an optional I/O extension module.

Page 291: VSDS Manual-ABB

Actual signals and parameters

153

TORQUE TRIM Torque reference trimming 240.19 ACTUAL FILT TIME Defines the time constant for the filter through which the actual signals are

connected to the process PID controller.0.04 … 10.00 s Filter time constant. 4 … 1000

40.20 SLEEP SELECTION Activates the sleep function and selects the source for the activation input. Visible only when parameter 99.02 = PID CTRL.

OFF Inactive 1INTERNAL Activated and deactivated automatically as defined by parameters 40.21 and

40.23.2

DI1 The function is activated/deactivated through digital input DI1. Activation: Digital input DI1 = 1. Deactivation: DI1 = 0.The internal sleep criteria set by parameters 40.21 and 40.23 are not effective. The sleep start and stop delays are effective (parameter 40.22 and 40.24).

3

DI2 See selection DI1. 4DI3 See selection DI1. 5DI4 See selection DI1. 6DI5 See selection DI1. 7DI6 See selection DI1. 8DI7 See selection DI1. 9DI8 See selection DI1. 10DI9 See selection DI1. 11DI10 See selection DI1. 12DI11 See selection DI1. 13DI12 See selection DI1. 14

40.21 SLEEP LEVEL Defines the start limit for the sleep function. If the motor speed is below a set level (40.21) longer than the sleep delay (40.22), the drive shifts to the sleeping mode: the motor is stopped and the control panel shows the warning message “SLEEP MODE”. Visible only when parameter 99.02 = PID CTRL.

0.0 … 7200.0 rpm Sleep start level 0 … 720040.22 SLEEP DELAY Defines the delay for the sleep start function. See parameter 40.21. When the

motor speed falls below the sleep level, the counter starts. When the motor speed exceeds the sleep level, the counter resets.Visible only when parameter 99.02 = PID CTRL.

0.0 … 3600.0 s Sleep start delay 0 … 36000

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Page 292: VSDS Manual-ABB

Actual signals and parameters

154

40.23 WAKE UP LEVEL Defines the wake up limit for the sleep function. The drive wakes up if the process actual value is below a set level (40.23) longer than the wake-up delay (40.24). Visible only when parameter 99.02 = PID CTRL.

0.0 … 100.0% The wake-up level in percent of the used process reference value. 0 … 1000040.24 WAKE UP DELAY Defines the wake-up delay for the sleep function. See parameter 40.23. When

the process actual value falls below the wake-up level, the wake-up counter starts. When the process actual value exceeds the wake-up level, the counter resets.Visible only when parameter 99.02 = PID CTRL.

0.0 … 3600.0 s Wake-up delay 0 …3600040.25 ACTUAL1 PTR Defines the source or constant for value PAR 40.25 of parameter 40.07.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

100 = 1%

40.26 PID MINIMUM Defines the minimum limit for the PID controller output. Using the minimum and maximum limits, it is possible to restrict the operation to a certain speed range.Example: The process PID control is restricted to the forward rotation direction of the motor by setting the PID minimum limit to 0% and the maximum to 100%.

-100 … 100% Limit in percent of the Absolute Maximum Speed of the motor.40.27 PID MAXIMUM Defines the maximum limit for the PID controller output. Using the minimum

and maximum limits, it is possible to restrict the operation to a certain speed range. See parameter 40.26.

-100 … 100% Limit in percent of the Absolute Maximum Speed of the motor.

42 BRAKE CONTROL Control of a mechanical brake. The function operates on a 100 ms time level. For the function description, see the chapter Program features.

42.01 BRAKE CTRL Activates the brake control function.OFF Inactive 1ON Active 2

42.02 BRAKE ACKNOWLEDGE

Activates the external brake on/off supervision and selects the source for the signal. The use of the external on/off supervision signal is optional.

OFF Inactive 1DI5 Active. Digital input DI5 is the signal source. DI5 = 1: The brake is open.

DI5 = 0: the brake is closed.2

DI6 See DI5. 3DI11 See DI5. 4DI12 See DI5. 5

42.03 BRAKE OPEN DELAY

Defines the brake open delay ( = the delay between the internal open brake command and the release of the motor speed control). The delay counter starts when the drive has magnetised the motor and risen the motor torque to the level required at the brake release (parameters 42.07 and 42.08). Simultaneously with the counter start, the brake function energises the relay output controlling the brake and the brake starts opening.

0.0 … 5.0 s Delay time. Set the delay the same as the mechanical opening delay of the brake specified the brake manufacturer.

0 … 500

Index Name/Selection Description FbEq

Page 293: VSDS Manual-ABB

Actual signals and parameters

155

42.04 BRAKE CLOSE DELAY

Defines the brake close delay. The delay counter starts when the motor actual speed has fallen below the set level (parameter 42.05) after the drive has received the stop command. Simultaneously with the counter start, the brake control function de-energises the relay output controlling the brake and the brake starts closing. During the delay, the brake function keeps the motor live preventing the motor speed from falling below zero.

0.0 … 60.0 s Delay time. Set the delay time to the same value as the mechanical make-up time of the brake (= operating delay when closing) specified by the brake manufacturer.

0 … 6000

42.05 ABS BRAKE CLS SPD

Defines the brake close speed. See parameter 42.04.

0 … 1000 rpm Speed (an absolute value) 0 …10000042.06 BRAKE FAULT FUNC Defines how the drive reacts in case the status of the optional external brake

acknowledgement signal does not meet the status presumed by the brake control function.

FAULT The drive trips on a fault: fault indication and drive stops the motor. 1WARNING The drive generates a warning. 2

42.07 START TORQ REF SEL

Selects the source for the motor starting torque reference applied at the brake release. The value is read in percent of the motor nominal torque.

NO No source selected. This is the default value. 1AI1 Analogue input AI1 2AI2 Analogue input AI2 3AI3 Analogue input AI3 4AI5 Analogue input AI5 5AI6 Analogue input AI6 6PAR 42.08 Defined by parameter 42.08. 7MEMORY The motor torque stored at the previous brake close command. 8

42.08 START TORQ REF Defines the motor starting torque at brake release if parameter 42.07 has value PAR 40.28.

-300 … 300% Torque value in percent of the motor nominal torque -30000 … 30000

42.09 EXTEND RUN T Defines an extended run time for the brake control function at stop. During the delay, the motor is kept magnetised and ready for an immediate restart.

Index Name/Selection Description FbEq

Page 294: VSDS Manual-ABB

Actual signals and parameters

156

0.0 … 60.0 s 0.0 s = Normal stop routine of the brake control function: The motor magnetisation is switched off after the brake close delay has passed.0.1 … 60.0 s = Extended stop routine of the brake control function: The motor magnetisation is switched off after the brake close delay and the extended run time have passed. During the extended run time, a zero torque reference is applied, and the motor is ready for a immediate restart.

42.10 LOW REF BRK HOLD Activates a brake hold function and defines the hold delay for it. The function stabilises the operation of the brake control application when the motor operates near zero speed and there is no measured speed feedback available (pulse encoder).

0.0 … 60.0 s 0.0 s = inactive. 0.1 s … 60.0 s = active. When the absolute value of the motor speed reference falls below the brake close speed:- The brake hold delay counter starts.- The brake is closed according to normal stop routine of the brake control function.During the delay, the function keeps the brake closed despite of the speed reference value and the value of start command. When the set delay has passed, the normal operation resumes.

50 ENCODER MODULE Encoder connection. Visible only when a pulse encoder module (optional) is installed and activated by parameter 98.01.The settings will remain the same even though the application macro is changed.

50.01 PULSE NR States the number of encoder pulses per one revolution.0 … 29999 ppr Pulse number in pulses per round (ppr) 0 … 29999

50.02 SPEED MEAS MODE Defines how the encoder pulses are calculated. A -- B DIR Channel A: positive edges calculated for speed. Channel B: direction. 0A --- Channel A: positive and negative edges calculated for speed. Channel B: not

used.1

A --- B DIR Channel A: positive and negative edges are calculated for speed. Channel B: direction.

2

A --- B --- All edges of the signals are calculated. 3

Index Name/Selection Description FbEq

Motor magnetised

Start/Stop

t2 3

1 = brake close speed2 = brake close delay

Actual speed

3 = extended run time1

Page 295: VSDS Manual-ABB

Actual signals and parameters

157

50.03 ENCODER FAULT Defines the operation of the drive if a failure is detected in communication between the pulse encoder and the pulse encoder interface module, or between the module and the drive. Encoder supervision function activates if either of the following conditions is valid:-The difference between estimated and measured speed is greater than 20% of the motor nominal speed. - No pulses are received from the encoder within the defined time (see parameter 50.04) and the motor torque is at the allowed maximum value.

WARNING The drive generates a warning indication. 1FAULT The drive trips on a fault, gives a fault indication and stops the motor. 65535

50.04 ENCODER DELAY Defines the time delay for the encoder supervision function (See parameter 50.03).

0 … 50000 ms Time delay 0 … 5000050.05 ENCODER DDCS

CHANNELDefines the fibre optic channel of the control board from which the drive program reads the signals coming from the pulse encoder interface module. The setting is valid only if the module is connected to the drive via the DDCS link (i.e. not to the option slot of the drive).

CHANNEL 1 Signals via channel 1 (CH1). The pulse encoder interface module must be connected to CH1 instead of CH2 in applications where CH2 is reserved by a Master station (e.g. a Master/Follower application). See also parameter 70.03.

1

CHANNEL 2 Signals via channel 2 (CH2). Can be used in most cases. 250.06 SPEED FB SEL Defines the speed feedback value used in control.

INTERNAL Calculated speed estimate 0ENCODER Actual speed measured with an encoder 65535

51 COMM MOD DATA The parameters are visible and need to be adjusted, only when a fieldbus adapter module (optional) is installed and activated by parameter 98.02. For details on the parameters, refer to the manual of the fieldbus module and the chapter Fieldbus control. These parameter settings will remain the same even though the macro is changed.

52 STANDARD MODBUS

The settings for the Standard Modbus Link. See the chapter Fieldbus control.

52.01 STATION NUMBER Defines the address of the device. Two units with the same address are not allowed on-line.

1 … 247 Address52.02 BAUDRATE Defines the transfer rate of the link.

600 600 bit/s 11200 1200 bit/s 22400 2400 bit/s 34800 4800 bit/s 49600 9600 bit/s 519200 19200 bit/s 6

52.03 PARITY Defines the use of parity and stop bit(s). The same setting must be used in all on-line stations.

NONE1STOPBIT No parity bit, one stop bit 1NONE2STOPBIT No parity bit, two stop bits 2

Index Name/Selection Description FbEq

Page 296: VSDS Manual-ABB

Actual signals and parameters

158

ODD Odd parity indication bit, one stopbit 3EVEN Even parity indication bit, one stopbit 4

60 MASTER/FOLLOWER

Master/Follower application. For more information, see the chapter Program features and a separate Master/Follower Application Guide (3AFE 64590430 [English]).

60.01 MASTER LINK MODE Defines the role of the drive on the Master/Follower link.NOT IN USE The Master/Follower link is not active. 1MASTER Master drive 2FOLLOWER Follower drive 3STANDBY Follower drive which reads the control signals through a fieldbus interface, not

from the Master/Follower link as usual.4

60.02 TORQUE SELECTOR Selects the reference used in motor torque control. Typically, the value needs to be changed only in the Follower station(s). The parameter is visible only when parameter 99.02 = T CTRL.External control location 2 (EXT2) must be active to enable torque selector.

SPEED The follower speed controller output is used as a reference for motor torque control. The drive is speed-controlled. SPEED can be used both in the Follower and in the Master if - the motor shafts of the Master and Follower are connected flexibly. (A slight speed difference between the Master and the Follower is possible/allowed.) - drooping is used (see parameter 60.06).

1

TORQUE The drive is torque-controlled. The selection is used in the Follower(s) when the motor shafts of the Master and Follower are coupled solidly to each other by gearing, a chain or other means of mechanical power transmission and no speed difference between the drives is allowed or possible.Note: If TORQUE is selected, the drive does not restrict the speed variation as long as the speed is within the limits defined by parameters 20.01 and 20.02. More definite speed supervision is often needed. In those cases, the selection ADD should be used instead of TORQUE.

2

MINIMUM The torque selector compares the direct torque reference and the speed controller output, and the smaller of them is used as the reference for the motor torque control. MINIMUM is selected in special cases only.

3

MAXIMUM The torque selector compares the direct torque reference and the speed controller output and the greater of them is used as the reference for the motor torque control. MAXIMUM is selected in special cases only.

4

ADD The torque selector adds the speed controller output to the direct torque reference. The drive is torque-controlled in the normal operating range. The selection ADD, together with the window control, forms a speed supervision function for a torque-controlled Follower drive. See parameter 60.03.

5

ZERO This selection forces the output of the torque selector to zero. 660.03 WINDOW SEL ON Activates the Window control function. The Window control, together with

selection ADD at parameter 60.02, forms a speed supervision function for a torque-controlled drive. The parameter is visible only when parameter 99.02 is T CTRL. External control location 2 (EXT2) must be active to enable window control.

NO Inactive 0

Index Name/Selection Description FbEq

Page 297: VSDS Manual-ABB

Actual signals and parameters

159

YES Window control is active. Selection YES is used only when parameter 60.02 has value ADD. Window control supervises the speed error value (Speed Reference - Actual Speed). In the normal operating range, window control keeps the speed controller input at zero. The speed controller is evoked only if: - the speed error exceeds the value of parameter 60.04 or - the absolute value of the negative speed error exceeds the value of parameter 60.05. When the speed error moves outside the window, the exceeding part of the error value is connected to the speed controller. The speed controller produces a reference term relative to the input and gain of the speed controller (parameter 23.01) which the torque selector adds to the torque reference. The result is used as the internal torque reference for the drive. Example: In a load loss condition, the internal torque reference of the drive is decreased to prevent an excessive rise of the motor speed. If window control were inactivated, the motor speed would rise until a speed limit of the drive were reached.

65535

60.04 WINDOW WIDTH POS

Defines the supervision window width above the speed reference. See parameter 60.03. The parameter is visible only when parameter 99.02 is T CTRL.

0 … 1500 rpm Positive window width 0… 2000060.05 WINDOW WIDTH

NEGDefines the supervision window width below the speed reference. See parameter 60.03. The parameter is visible only when parameter 99.02 is T CTRL.

0 … 1500 rpm Negative window width 0… 20000

Index Name/Selection Description FbEq

Page 298: VSDS Manual-ABB

Actual signals and parameters

160

60.06 DROOP RATE Defines the droop rate. The parameter value needs to be changed only if both the Master and the Follower are speed-controlled: - External control location 1 (EXT1) is selected (see parameter 11.02 or - External control location 2 (EXT2) is selected (see parameter 11.02) and parameter 60.02 is set to SPEED. The droop rate needs to be set both for the Master and the Follower. The correct droop rate for a process must be found out case by case in practice.The drooping prevents a conflict between the Master and the Follower by allowing a slight speed difference between them. The drooping slightly decreases the drive speed as the drive load increases. The actual speed decrease at a certain operating point depends on the droop rate setting and the drive load ( = torque reference / speed controller output). At 100% speed controller output, drooping is at its nominal level, i.e. equal to the value of the DROOP RATE. The drooping effect decreases linearly to zero along with the decreasing load.

0 … 100% Droop rate in percent of the motor nominal speed 0 … 100060.07 MASTER SIGNAL 2 Selects the signal that is sent by the Master to the Follower(s) as Reference 1

(speed reference).0000 … 9999 Parameter index 0000 …

999960.08 MASTER SIGNAL 3 Selects the signal that is sent by the Master to the Follower(s) as Reference 2

(torque reference).0000 … 9999 Parameter index 0000 …

9999

70 DDCS CONTROL Settings for the fibre optic channels 0, 1 and 3.

70.01 CHANNEL 0 ADDR Defines the node address for channel 0. No two nodes on-line may have the same address. The setting needs to be changed when a master station is connected to channel 0 and it does not automatically change the address of the slave. Examples of such masters are an ABB Advant Controller or another drive.

1 … 125 Address. 1 … 12570.02 CHANNEL 3 ADDR Node address for channel 3. No two nodes on-line may have the same

address. Typically the setting needs to be changed when the drive is connected in a ring which consists of several drives and a PC with the DriveWindow® program running.

1 … 254 Address. 1 … 254

Index Name/Selection Description FbEq

Motor Speed% of nominal

Drooping

No Drooping

Speed Controller100%

} Par. 60.06 DROOP RATE

Output / %

Speed Decrease = Speed Controller Output · Drooping · Max. Speed

Example: Speed Controller output is 50%, DROOP RATE is 1%, maximum speed of the drive is 1500 rpm. Speed decrease = 0.50 · 0.01 · 1500 rpm = 7.5 rpm

Drive load

100%

Page 299: VSDS Manual-ABB

Actual signals and parameters

161

70.03 CH1 BAUDRATE The communication speed of channel 1. Typically the setting needs to be changed only if the pulse encoder interface module is connected to channel 1 instead of channel 2. Then the speed must be changed to 4 Mbits. See also parameter 50.05.

8 Mbits 8 megabits per second 04 Mbits 4 megabits per second 12 Mbits 2 megabits per second 21 Mbits 1 megabits per second 3

70.04 CH0 DDCS HW CONN

Selects the topology of the channel 0 link.

RING Devices are connected in ring topology. 0STAR Devices are connected in a star topology. 65535

83 ADAPT PROG CTRL Control of the Adaptive Program execution. For more information, see the Adaptive Program Application Guide (code: 3AFE 64527274 [English]).

83.01 ADAPT PROG CMD Selects the operation mode for the Adaptive Program.STOP Stop. The program cannot be edited.RUN Run. The program cannot be edited.EDIT Stop to edit mode. Program can be edited.

83.02 EDIT COMMAND Selects the command for the block placed in the location defined by parameter 83.03. The program must be in editing mode (see parameter 83.01).

NO Home value. The value automatically restores to NO after an editing command has been executed.

PUSH Shifts the block in location defined by parameter 83.03 and the following blocks one location up. A new block can be placed in the emptied location by programming the Block Parameter Set as usual.Example: A new block needs to be placed in between the current block number four (parameters 84.20 … 84.25) and five (parameters 84.25 … 84.29).In order to do this:- Shift the program to the editing mode by parameter 83.01.- Select location number five as the desired location for the new block by parameter 83.03.- Shift the block in location number 5 and the following blocks one location forward by parameter 83.02.(selection PUSH )- Program the emptied location number 5 by parameters 84.25 to 84.29 as usual.

DELETE Deletes the block in location defined by parameter 83.03 and shifts the following blocks one step down.

Index Name/Selection Description FbEq

Page 300: VSDS Manual-ABB

Actual signals and parameters

162

PROTECT Activation of the Adaptive Program protection. Activate as follows:- Ensure the Adaptive Program operation mode is START or STOP (parameter 83.01).- Set the passcode (parameter 83.05).- Change parameter 83.02 to PROTECT.When activated:- All parameters in group 84 excluding the block output parameters are hidden (read protected).- It is not possible to switch the program to the editing mode (parameter 83.01).- Parameter 83.05 is set to 0.

UNPROTECT Inactivation of the Adaptive Program protection. Inactivate as follows:- Ensure the Adaptive Program operation mode is START or STOP (parameter 83.01).- Set the passcode (parameter 83.05).- Change parameter 83.02 to UNPROTECT.Note: If the passcode is lost, it is possible to reset the protection also by changing the application macro setting (parameter 99.02).

83.03 EDIT BLOCK Defines the block location number for the command selected by parameter 83.02.

1 … 15 Block location number.83.04 TIMELEVEL SEL Selects the execution cycle time for the Adaptive Program. The setting is valid

for all blocks.12 ms 12 milliseconds100 ms 100 milliseconds1000 ms 1000 milliseconds

83.05 PASSCODE Sets the passcode for the Adaptive Program protection. The passcode is needed at activation and inactivation of the protection. See parameter 83.02.

0 … Passcode. The setting restores to 0 after the protection is activated/inactivated. Note: When activating, write down the passcode and store it in a safe place.

84 ADAPTIVE PROGRAM

- selections of the function blocks and their input connections.- diagnosticsFor more information, see the Adaptive Program Application Guide (code: 3AFE 64527274 [English]).

84.01 STATUS Shows the value of the Adaptive Program status word. The table below shows the alternative bit states and the corresponding values on the panel display.

84.02 FAULTED PAR Points out the faulted parameter in the Adaptive Program.

Index Name/Selection Description FbEq

Bit Display Meaning0 1 Stopped1 2 Running2 4 Faulted3 8 Editing4 10 Checking5 20 Pushing6 40 Popping8 100 Initialising

Page 301: VSDS Manual-ABB

Actual signals and parameters

163

84.05 BLOCK1 Selects the function block for Block Parameter Set 1. See the Adaptive Program Application Guide (code: 3AFE 64527274 [English]).

ABSADDANDCOMPAREEVENTFILTERMAXMINMULDIVNOORPIPI-BALSRSWITCH-BSWITCH-ITOFFTONTRIGGXOR

84.06 INPUT1 Selects the source for input I1 of Block Parameter Set 1. -255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.Example: The state of digital input DI2 is connected to Input 1 as follows:- Set the source selection parameter (84.06) to +.01.17.01. (The application program stores the state of digital input DI2 to bit 1 of actual signal 01.17.)- If you need an inverted value, switch the sign of the pointer value (-01.17.01.).

-

84.07 INPUT2 See parameter 84.06.-255.255.31 … +255.255.31 / C.-32768 … C.32767

See parameter 84.06. -

84.08 INPUT3 See parameter 84.06.-255.255.31 … +255.255.31 / C.-32768 … C.32767

See parameter 84.06. -

84.09 OUTPUT Stores and displays the output of Block Parameter Set 1.… …84.79 OUTPUT Stores the output of Block Parameter Set 15.

Index Name/Selection Description FbEq

Page 302: VSDS Manual-ABB

Actual signals and parameters

164

85 USER CONSTANTS Storage of the Adaptive Program constants and messages. For more information, see the Adaptive Program Application Guide (code: 3AFE 64527274 [English]).

85.01 CONSTANT1 Sets a constant for the Adaptive Program. -8388608 to 8388607 Integer value.

85.02 CONSTANT2 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.03 CONSTANT3 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.04 CONSTANT4 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.05 CONSTANT5 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.06 CONSTANT6 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.07 CONSTANT7 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.08 CONSTANT8 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.09 CONSTANT9 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.10 CONSTANT10 Sets a constant for the Adaptive Program.-8388608 to 8388607 Integer value.

85.11 STRING1 Stores a message to be used in the Adaptive Program (EVENT block).MESSAGE1 Message

85.12 STRING2 Stores a message to be used in the Adaptive Program (EVENT block).MESSAGE2 Message

85.13 STRING3 Stores a message to be used in the Adaptive Program (EVENT block).MESSAGE3 Message

85.14 STRING4 Stores a message to be used in the Adaptive Program (EVENT block).MESSAGE4 Message

85.15 STRING5 Stores a message to be used in the Adaptive Program (EVENT block).MESSAGE5 Message

90 D SET REC ADDR - Addresses into which the received fieldbus data sets are written.- Numbers of the main and auxiliary data sets.The parameters are visible only when a fieldbus communication is activated by parameter 98.02. For more information, see the chapter Fieldbus control.

90.01 AUX DS REF3 Selects the address into which the value of fieldbus reference REF3 is written.0 … 8999 Parameter index

90.02 AUX DS REF4 Selects the address into which the value of fieldbus reference REF4 is written.0 … 8999 Parameter index

90.03 AUX DS REF5 Selects the address into which the value of fieldbus reference REF5 is written.0 … 8999 Parameter index

Index Name/Selection Description FbEq

Page 303: VSDS Manual-ABB

Actual signals and parameters

165

90.04 MAIN DS SOURCE Defines the data set from which the drive reads the Control Word, Reference REF1 and Reference REF2.

1 … 255 Data set number90.05 AUX DS SOURCE Defines the data set from which the drive reads References REF3, REF4 and

REF5.1 … 255 Data set number

92 D SET TR ADDR Main and Auxiliary Data Sets which the drive sends to the fieldbus master station. The parameters are visible only when a fieldbus communication is activated by parameter 98.02. For more information, see the chapter Fieldbus control.

92.01 MAIN DS STATUS WORD

Stores the address from which the Main Status Word is read from. Fixed value, not visible.

302 (fixed) Parameter index92.02 MAIN DS ACT1 Selects the address from which the Actual Signal 1 is read to the Main Data

Set.0 … 9999 Parameter index

92.03 MAIN DS ACT2 Selects the address from which the Actual Signal 2 is read to the Main Data Set.

0 … 9999 Parameter index92.04 AUX DS ACT3 Selects the address from which the Actual Signal 3 is read to the Auxiliary Data

Set.0 … 9999 Parameter index

92.05 AUX DS ACT4 Selects the address from which the Actual Signal 4 is read to the Auxiliary Data Set.

0 … 9999 Parameter index92.06 AUX DS ACT5 Selects the address from which the Actual Signal 5 is read to the Auxiliary Data

Set.0 … 9999 Parameter index

96 EXTERNAL AO Output signal selection and processing for the analogue extension module (optional).The parameters are visible only when the module is installed and activated by parameter 98.06.

96.01 EXT AO1 Selects the signal connected to analogue output AO1 of the analogue I/O extension module.

NOT USED See parameter 15.01. 1P SPEED See parameter 15.01. 2SPEED See parameter 15.01. 3FREQUENCY See parameter 15.01. 4CURRENT See parameter 15.01. 5TORQUE See parameter 15.01. 6POWER See parameter 15.01. 7DC BUS VOLT See parameter 15.01. 8OUTPUT VOLT See parameter 15.01. 9APPL OUTPUT See parameter 15.01. 10REFERENCE See parameter 15.01. 11

Index Name/Selection Description FbEq

Page 304: VSDS Manual-ABB

Actual signals and parameters

166

CONTROL DEV See parameter 15.01. 12ACTUAL 1 See parameter 15.01. 13ACTUAL 2 See parameter 15.01. 14COM.REF4 See parameter 15.01. 15PARAM 96.11 Source selected by parameter 96.11. 16

96.02 INVERT EXT AO1 Activates the inversion of analogue output AO1 of the analogue I/O extension module.

NO Inactive 0YES Active. The analogue signal is at a minimum level when the drive signal

indicated is at its maximum and vice versa.65535

96.03 MINIMUM EXT AO1 Defines the minimum value for the analogue output AO1 of the analogue I/O extension module. Note: Actually, the setting 10 mA or 12 mA does not set the AO1 minimum but fixes 10/12 mA to actual signal value zero.Example: Motor speed is read through the analogue output. - The motor nominal speed is 1000 rpm (parameter 99.08). - 96.02 is NO. - 96.05 is 100%. The analogue output value as a function of the speed is shown below.

0 mA 0 mA 14 mA 4 mA 210 mA 10 mA 312 mA 12 mA 4

96.04 FILTER EXT AO1 Defines the filtering time constant for analogue output AO1 of the analogue I/O extension module. See parameter 15.04.

0.00 … 10.00 s Filtering time constant 0 … 100096.05 SCALE EXT AO1 Defines the scaling factor for analogue output AO1 of the analogue I/O

extension module. See parameter 15.05.10 … 1000% Scaling factor 100 …

1000096.06 EXT AO2 Selects the signal connected to analogue output AO2 of the analogue I/O

extension module.NOT USED See parameter 15.01. 1

Index Name/Selection Description FbEq

-1000

Analogue output

1000

mA

20

0-500 500Speed/rpm

1012

4

1

2

3

4

0 mA

4 mA

10 mA

12 mA

Analogue outputsignal minimum

1

2

3

4

1

2

Page 305: VSDS Manual-ABB

Actual signals and parameters

167

P SPEED See parameter 15.01. 2SPEED See parameter 15.01. 3FREQUENCY See parameter 15.01. 4CURRENT See parameter 15.01. 5TORQUE See parameter 15.01. 6POWER See parameter 15.01. 7DC BUS VOLT See parameter 15.01. 8OUTPUT VOLT See parameter 15.01. 9APPL OUTPUT See parameter 15.01. 10REFERENCE See parameter 15.01. 11CONTROL DEV See parameter 15.01. 12ACTUAL 1 See parameter 15.01. 13ACTUAL 2 See parameter 15.01. 14COM.REF5 See parameter 15.01. 15PARAM 96.12 Source selected by parameter 96.12. 16

96.07 INVERT EXT AO2 Activates the inversion of analogue output AO2 of the analogue I/O extension module. The analogue signal is at its minimum level when the drive signal indicated is at its maximum and vice versa.

NO Inactive 0YES Active 65535

96.08 MINIMUM EXT AO2 Defines the minimum value for analogue output AO2 of the analogue I/O extension module. See parameter 96.03.

0 mA 0 mA 14 mA 4 mA 210 mA 10 mA 312 mA 12 mA 4

96.09 FILTER EXT AO2 Defines the filtering time constant for analogue output AO2 of the analogue I/O extension module. See parameter 15.04.

0.00 … 10.00 s Filtering time constant 0 … 100096.10 SCALE EXT AO2 Defines the scaling factor for analogue output AO2 of the analogue I/O

extension module. See parameter 15.05.10 … 1000% Scaling factor 100 …

1000096.11 EXT AO1 PTR Defines the source or constant for value PAR 96.11 of parameter 96.01. 1000 =

1 mA-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

96.12 EXT AO2 PTR Defines the source or constant for value PAR 96.12 of parameter 96.06. 1000 = 1 mA

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Index Name/Selection Description FbEq

Page 306: VSDS Manual-ABB

Actual signals and parameters

168

98 OPTION MODULES Activation of the option modules.The parameter settings will remain the same even though the application macro is changed (parameter 99.02).

98.01 ENCODER MODULE Activates the communication to the optional pulse encoder module. See also parameter group 50 ENCODER MODULE.

NTAC Communication active. Module type: NTAC module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 16. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

0

NO Inactive 1RTAC-SLOT1 Communication active. Module type: RTAC. Connection interface: Option

slot 1 of the drive.2

RTAC-SLOT2 Communication active. Module type: RTAC. Connection interface: Option slot 2 of the drive.

3

RTAC-DDCS Communication active. Module type: RTAC. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 16. For directions, see User’s Manual for RDIO Module (Code: 3AFE 64485733 [English]).

4

98.02 COMM. MODULE LINK

Activates the external serial communication and selects the interface. See the chapter Fieldbus control.

NO No communication 1FIELDBUS The drive communicates via a fieldbus adapter module in option slot 1 of the

drive, or via CH0 on the RDCO board. See also parameter group 51 COMM MOD DATA.

2

ADVANT The drive communicates with an ABB Advant OCS system via CH0 on the RDCO board (optional). See also parameter group 70 DDCS CONTROL.

3

STD MODBUS The drive communicates with a Modbus controller via the Modbus Adapter Module (RMBA) in option slot 1 of the drive. See also parameter 52 STANDARD MODBUS.

4

CUSTOMISED The drive communicates via a customer specified link. The control sources are defined by parameters 90.04 and 90.05.

5

98.03 DI/O EXT MODULE 1 Activates the communication to the digital I/O extension module 1 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.09 for the use of the inputs in the drive application program.Module outputs: See parameters 14.10 and 14.11 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 2. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

1

NO Inactive 2RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1

of the drive.3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

Index Name/Selection Description FbEq

Page 307: VSDS Manual-ABB

Actual signals and parameters

169

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 2. For directions, see User’s Manual for RDIO Module (Code: 3AFE 64485733 [English]).

5

98.04 DI/O EXT MODULE 2 Activates the communication to the digital I/O extension module 2 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.10 for the use of the inputs in the drive application program.Module outputs: See parameters 14.12 and 14.13 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 3. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

1

NO Inactive 2RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1

of the drive.3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 3. For directions, see User’s Manual for RDIO Module (Code: 3AFE 64485733 [English]).

5

98.05 DI/O EXT MODULE 3 Activates the communication to the digital I/O extension module 3 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.11 for the use of the inputs in the drive application program.Module outputs: See parameters 14.14 and 14.15 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 4. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

1

NO Inactive 2RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1

of the drive.3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 4. For directions, see User’s Manual for RDIO Module (Code: 3AFE 64485733 [English]).

5

Index Name/Selection Description FbEq

Page 308: VSDS Manual-ABB

Actual signals and parameters

170

98.06 AI/O EXT MODULE Activates the communication to the analogue I/O extension module (optional), and defines the type and connection interface of the module. Module inputs: - Values AI5 and AI6 in the drive application program are connected to module inputs 1 and 2.- See parameters 98.13 and 98.14 for the signal type definitions.Module outputs: - See parameters 96.01 and 96.06 for selecting the drive signals that are indicated through module outputs 1 and 2.

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 5. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

1

NO Communication inactive 2RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1

of the drive.3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive.

4

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 5. For directions, see User’s Manual for RAIO Module (Code: 3AFE 64484567 [English]).

5

98.07 COMM PROFILE Defines the profile on which the communication with the fieldbus or another drive is based. Visible only when fieldbus communication is activated by parameter 98.02.

ABB DRIVES ABB Drives profile. GENERIC Generic drive profile. Typically used with the fieldbus modules that have the

type designation of form Rxxx (installed in the option slot of the drive).CSA 2.8/3.0 Communication profile used by application program versions 2.8 and 3.0.

98.09 DI/O EXT1 DI FUNC Defines the naming of the inputs of digital I/O extension module 1 in the drive application program. See parameter 98.03.

DI7,8 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI7 and DI8.

1

REPL DI1,2 DI1 and DI2 of the module replace the standard input channels DI1 and DI2. The inputs are named DI1 and DI2.

2

DI7,8,9 DI1, DI2 and DI3 of the module extend the number of input channels. The module inputs are named DI7, DI8 and DI9.

3

REPL DI1,2,3 DI1, DI2 and DI3 of the module replace the standard input channels DI1, DI2 and DI3. The inputs are named DI1, DI2 and DI3.

4

98.10 DI/O EXT2 DI FUNC Defines the naming of the inputs of digital I/O extension module 2 in the drive application program. See parameter 98.04.

DI9,10 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI9 and DI10.

1

REPL DI3,4 DI1 and DI2 of the module replace the standard input channels DI3 and DI4. The inputs are named DI3 and DI4.

2

Index Name/Selection Description FbEq

Page 309: VSDS Manual-ABB

Actual signals and parameters

171

DI10,11,12 DI1, DI2 and DI3 of the module extend the number of input channels. The module inputs are named DI10, DI11 and DI12.

3

REPL DI4,5,6 DI1, DI2 and DI3 of the module replace the standard input channels DI1, DI2 and DI3. The inputs are named DI4, DI5 and DI6.

4

98.11 DI/O EXT3 DI FUNC Defines the naming of the inputs of digital I/O extension module 3 in the drive application program. See parameter 98.05.

DI11,12 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI11 and DI12.

1

REPL DI5,6 DI1 and DI2 of the module replace the standard input channels DI5 and DI6. The inputs are named DI5 and DI6.

2

98.12 AI/O MOTOR TEMP Activates the communication to the analogue I/O extension module and reserves the module for the use of the motor temperature measurement function. The parameter also defines the type and connection interface of the module. For more information on the temperature measurement function, see parameter group 35 MOT TEMP MEAS.The use of the analogue inputs (AI) and outputs (AO) of the module is shown in the table below.

Before setting the drive parameters, ensure the module hardware settings are appropriate for the motor temperature measurement:1. The module node number is 9.2. The input signal type selections are the following: - for one Pt 100 sensor measurement, set the range to 0 … 2 V. - for two to three Pt 100 sensors or one to three PTC sensors, set the range to 0 … 10 V. 3. The operation mode selection is unipolar.

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Make the module hardware settings described above. For instructions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY 58919730 [English]).

1

NO Inactive 2

Index Name/Selection Description FbEq

Motor 1 temperature measurementAO1 Feeds a constant current to motor 1 temperature sensor. The current

value depends on the setting of parameter 35.01:- AO1 is 9.1 mA with selection 1xPT100 - AO1 is 1.6 mA with selection 1..3 PTC

AI1 Measures voltage over motor 1 temperature sensor.Motor 2 temperature measurementAO2 Feeds a constant current to motor 2 temperature sensor. The current

value depends on the setting of parameter 35.04:- AO2 is 9.1 mA with selection 1xPT100, - AO2 is 1.6 mA with selection 1..3 PTC

AI2 Measures voltage over motor 2 temperature sensor.

Page 310: VSDS Manual-ABB

Actual signals and parameters

172

RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.Note: Make the module hardware settings described above. The node number is not required. For directions, see User’s Manual for RAIO Module (Code: 3AFE 64484567 [English]).

3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive. Note: Make the module hardware settings described above. The node number is not required. For directions, see User’s Manual for RAIO Module (Code: 3AFE 64484567 [English]).

4

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Set the module node number to 9. For directions, see User’s Manual for RAIO Module (Code: 3AFE 64484567 [English]).

5

98.13 AI/O EXT AI1 FUNC Defines the signal type for input 1 of the analogue I/O extension module (AI5 in the drive application program). The setting must match the signal connected to the module.Note: The communication must be activated by parameter 98.06.

UNIPOLAR AI5 Unipolar 1BIPOLAR AI5 Bipolar 2

98.14 AI/O EXT AI2 FUNC Defines the signal type for input 2 of the analogue I/O extension module (AI6 in the drive application program). The setting must match the signal connected to the module.Note: The communication must be activated by parameter 98.06.

UNIPOLAR AI6 Unipolar 1BIPOLAR AI6 Bipolar 2

99 START-UP DATA Language selection. Definition of motor set-up data.

99.01 LANGUAGE Selects the display language.ENGLISH British English 0ENGLISH AM American English. If selected, the unit of power used is HP instead of kW. 1DEUTSCH German 2ITALIANO Italian 3ESPANOL Spanish 4PORTUGUES Portuguese 5NEDERLANDS Dutch 6FRANCAIS French 7DANSK Danish 8SUOMI Finnish 9SVENSKA Swedish 10CESKY Czech 11POLSKI Polish 12PO-RUSSKI Russian 13

Index Name/Selection Description FbEq

Page 311: VSDS Manual-ABB

Actual signals and parameters

173

99.02 APPLICATION MACRO

Selects the application macro. See the chapter Application macros for more information.Note: When you change the default parameter values of a macro, the new settings become valid immediately and stay valid even if the power of the drive is switched off and on. However, backup of the default parameter settings (factory settings) of each standard macro is still available. See parameter 99.03.

FACTORY Factory for basic applications 1HAND/AUTO Two control devices are connected to the drive:

- device 1 communicates through the interface defined by external control location EXT1.- device 2 communicates through the interface defined by external control location EXT2.- EXT1 or EXT2 is active at a time. Switching through a digital input.

2

PID-CTRL PID control. For application in which the drive controls a process value. E.g. pressure control by the drive running the pressure boost pump. Measured pressure and the pressure reference are connected to the drive.

3

T-CTRL Torque Control macro 4SEQ CTRL Sequential Control macro. For applications that are frequently run through a

pre-defined speed pattern (constant speeds and acceleration and deceleration ramps).

5

USER 1 LOAD User 1 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

6

USER 1 SAVE Save User 1 macro. Stores the current parameter settings and the motor model.Note: There are parameters that are not included in the macros. See parameter 99.03.

7

USER 2 LOAD User 2 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

8

USER 2 SAVE Save User 2 macro. Stores the current parameter settings and the motor model.Note: There are parameters that are not included in the macros. See parameter 99.03.

9

99.03 APPLIC RESTORE Restores the original settings of the active application macro (99.02).- If a standard macro (Factory, ... , Sequential Control) is active, the parameter values are restored to the default settings (factory settings). Exceptions: parameter settings in parameter group 99 remain unchanged. The motor model remains unchanged. - If User Macro 1 or 2 is active, the parameter values are restored to the last saved values. In addition, the last saved motor model are restored. Exceptions: Settings of parameters 16.05 and 99.02 remain unchanged. Note: The parameter settings and the motor model are restored according to the same principles when a macro is changed to another.

NO No action 0YES Restoring 65535

99.04 MOTOR CTRL MODE Selects the motor control mode.DTC Direct Torque Control mode is suitable for most applications. 0

Index Name/Selection Description FbEq

Page 312: VSDS Manual-ABB

Actual signals and parameters

174

SCALAR Scalar control is suitable in special cases where the DTC cannot be applied. The scalar control mode is recommended:- for multimotor drives with variable number of motors - when the nominal current of the motor is less than 1/6 of the nominal output current of the drive (inverter)- the drive is used for test purposes with no motor connected. Note: The outstanding motor control accuracy of the DTC cannot be achieved in scalar control. The differences between the scalar and DTC control modes are pointed out in this manual in relevant parameter lists. There are some standard features that are disabled in the scalar control mode: Motor Identification Run (group 99 START-UP DATA), Speed Limits (group 20 LIMITS), Torque Limit (group 20 LIMITS), DC Hold (group 21 START/STOP), DC Magnetizing (group 21 START/STOP), Speed Controller Tuning (group 23 SPEED CTRL), Torque Control (group 24 TORQUE CTRL), Flux Optimization (group 26 MOTOR CONTROL), Flux Braking (group 26 MOTOR CONTROL), Underload Function (group 30 FAULT FUNCTIONS), Motor Phase Loss Protection (group 30 FAULT FUNCTIONS), Motor Stall Protection (group 30 FAULT FUNCTIONS).

65535

99.05 MOTOR NOM VOLTAGE

Defines the nominal motor voltage. Must be equal to the value on the motor rating plate.

1/2 … 2 · UN Voltage. Allowed range is 1/2 … 2 · UN of the drive.Note: The stress on the motor insulations is always dependent on the drive supply voltage. This also applies to the case where the motor voltage rating is lower than the rating of the drive and the supply of the drive.

1 = 1 V

99.06 MOTOR NOM CURRENT

Defines the nominal motor current. Must be equal to the value on the motor rating plate.Note: Correct motor run requires that the magnetizing current of the motor does not exceed 90 percent of the nominal current of the inverter.

0 … 2 · I2hd Allowed range: approx. 1/6 … 2 · I2hd of ACS800 (parameter 99.04 = DTC). Allowed range: approx. 0 … 2 · I2hd of ACS800 (parameter 99.04 = SCALAR).

1 = 0.1 A

99.07 MOTOR NOM FREQ Defines the nominal motor frequency.8 … 300 Hz Nominal frequency (50 or 60 Hz typically) 800 …

3000099.08 MOTOR NOM SPEED Defines the nominal motor speed. Must be equal to the value on the motor

rating plate. The motor synchronous speed or another approximate value must not be given instead!Note: If the value of parameter 99.08 is changed, the speed limits in parameter group 20 LIMITS change automatically as well.

1 … 18000 rpm Nominal motor speed 1 … 1800099.09 MOTOR NOM

POWERDefines the nominal motor power. Set exactly as on the motor rating plate.

0 … 9000 kW Nominal motor power 0 … 90000

Index Name/Selection Description FbEq

Page 313: VSDS Manual-ABB

Actual signals and parameters

175

99.10 MOTOR ID RUN MODE

Selects the type of the motor identification. During the identification, the drive will identify the characteristics of the motor for optimum motor control. The ID Run Procedure is described in the chapter Start-up; and control through the I/O.Note: The ID Run (STANDARD or REDUCED) should be selected if: - The operation point is near zero speed, and/or- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.Note: The ID Run (STANDARD or REDUCED) cannot be performed if parameter 99.04 = SCALAR.

ID MAGN No ID Run. The motor model is calculated at first start by magnetising the motor for 20 to 60 s at zero speed. This can be selected in most applications.

1

STANDARD Standard ID Run. Guarantees the best possible control accuracy. The ID Run takes about one minute.Note: The motor must be de-coupled from the driven equipment.Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

2

REDUCED Reduced ID Run. Should be selected instead of the Standard ID Run: - if mechanical losses are higher than 20% (i.e. the motor cannot be de-coupled from the driven equipment) - if flux reduction is not allowed while the motor is running (i.e. in case of a motor with an integrated brake supplied from the motor terminals).Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

3

99.11 DEVICE NAME Defines the name for the drive or application. The name is visible on the control panel display in the Drive Selection Mode. Note: The name can be typed only by using a drive PC tool.

Index Name/Selection Description FbEq

Page 314: VSDS Manual-ABB

Actual signals and parameters

176

Page 315: VSDS Manual-ABB

Fault tracing

177

Fault tracing

Chapter overviewThe chapter lists all warning and fault messages including the possible cause and corrective actions.

Safety

WARNING! Only qualified electricians are allowed to maintain the drive. The Safety Instructions on the first pages of the appropriate hardware manual must be read before you start working with the drive.

Warning and fault indicationsA warning or fault message on the panel display indicates abnormal drive status. Most warning and fault causes can be identified and corrected using this information. If not, an ABB representative should be contacted.

If the drive is operated with the control panel detached, the red LED in the panel mounting platform indicates the fault condition. (Note: Some drive types are not fitted with the LEDs as standard).

The four digit code number in brackets after the message is for the fieldbus communication (see the chapter Fieldbus control).

How to resetThe drive can be reset either by pressing the keypad RESET key, by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the motor can be restarted.

Fault historyWhen a fault is detected, it is stored in the Fault History. The latest faults and warnings are stored together with the time stamp at which the event was detected. See the chapter Control panel for more information.

Page 316: VSDS Manual-ABB

Fault tracing

178

Warning messages generated by the driveWARNING CAUSE WHAT TO DO

ACS 800 TEMP (4210)

The drive temperature is excessive. Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

AI < MIN FUNC (8110)(programmableFault Function 30.01)

An analogue control signal is below minimum allowed value. This can be caused by incorrect signal level or a failure in the control wiring.

Check for proper analogue control signal levels.Check the control wiring.Check Fault Function parameters.

BACKUP USED A PC-stored backup of drive parameters is downloaded into use.

Wait until download is completed.

BRAKE ACKN (ff74)

Unexpected state of brake acknowledge signal.

See parameter group 42 BRAKE CONTROL.Check connection of brake acknowledgement signal.

BR OVERHEAT (7112)

Brake resistor overload. Stop drive. Let resistor cool down. Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.

CALIBRA DONE Calibration of output current transformers completed.

Continue normal operation.

CALIBRA REQ Calibration of output current transformers required. Displayed at start if drive is in scalar control (parameter 99.04) and scalar flystart feature is on (parameter 21.08).

Calibration starts automatically. Wait for a while.

CHOKE OTEMP (ff82)

Excessive temperature of drive output filter. Supervision is in use in step-up drives.

Stop drive. Let it cool down. Check ambient temperature. Check filter fan rotates in correct direction and air flows freely.

COMM MODULE (7510)(programmableFault Function)

Cyclical communication between the drive and the master is lost.

Check the status of fieldbus communication. See the chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 (for fieldbus adapter)- group 52 (for Standard Modbus Link)Check cable connections. Check if the bus master is not configured, or does not send/receive messages.

EARTH FAULT (2330)(programmable Fault Function 30.17)

Drive has detected load unbalance typically due to earth fault in motor or motor cable.

Check motor.Check motor cable.Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Page 317: VSDS Manual-ABB

Fault tracing

179

ENCODER A<>B (7302)

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange the connection of pulse encoder phases A and B.

ENCODER ERR (7301)

Communication fault between the pulse encoder and the pulse encoder interface module and between the module and the drive.

Check the pulse encoder and its wiring, the pulse encoder interface module and its wiring, parameter group 50 settings.

ID DONE The drive has performed the motor identification magnetisation and is ready for operation. This warning belongs to the normal start-up procedure.

Continue drive operation.

ID MAGN Motor identification magnetisation is on. This warning belongs to the normal start-up procedure.

Wait until the drive indicates that motor identification is completed.

ID MAGN REQ Motor identification is required. This warning belongs to the normal start-up procedure. The drive expects the user to select how the motor identification should be performed: By Identification Magnetisation or by ID Run.

Start the Identification Magnetisation by pressing the Start key, or select the ID Run and start (see parameter 99.10).

ID N CHANGED The ID number of the drive has been changed from 1.

Change the ID number back to 1. See the chapter Control panel.

ID RUN SEL Motor Identification Run is selected, and the drive is ready to start the ID Run. This warning belongs to the ID Run procedure.

Press Start key to start the Identification Run.

IO CONFIG An input or output of an optional I/O extension or fieldbus module has been selected as a signal interface in the application program but the communication to the appropriate I/O extension module has not been set accordingly.

Check fault function description (parameter 30.22) and parameter group 98 OPTION MODULES. Correct settings where necessary.

MACRO CHANGE Macro is restoring or User macro is being saved.

Wait until the drive has finished the task.

MOTOR STALL (7121)(programmableFault Function 30.10)

The motor is operating in the stall region. This can be caused by excessive load or insufficient motor power.

Check motor load and the ratings of the drive.Check Fault Function parameters.

MOTOR STARTS Motor Identification Run starts. This warning belongs to the ID Run procedure.

Wait until the drive indicates that motor identification is completed.

MOTOR TEMP (4310)(programmableFault Function 30.04 … 30.09)

The motor temperature is excessive. This can be caused by excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings, load and cooling.Check start-up data.Check Fault Function parameters.

WARNING CAUSE WHAT TO DO

Page 318: VSDS Manual-ABB

Fault tracing

180

MOTOR 1 TEMP (4312)

Measured motor temperature has exceeded the alarm limit set by parameter 35.02.

Check the value of the alarm limit.Check that the actual number of the sensors corresponds to the parameter set value. Let the motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

MOTOR 2 TEMP (4313)

Measured motor temperature has exceeded the alarm limit set by parameter 35.05.

Check the value of the alarm limit.Check that the actual number of the sensors corresponds to the parameter set value. Let the motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

PANEL LOSS (5300)(programmableFault Function 30.02)

A control panel selected as the active control location for the drive has ceased communicating.

Check the panel connection (see the hardware manual).Check control panel connector.Replace control panel in the mounting platform.Check Fault Function parameters.

POINTER ERROR Source selection (pointer) parameter points to not existing parameter index.

Check source selection (pointer) parameter settings.

REPLACE FAN Running time of the inverter cooling fan has exceeded its estimated life time.

Change the fan. Reset fan run time counter 01.44.

SHORT CIRC (2340) *)

Short-circuit in the motor cable(s) or motor. Check motor and motor cable.Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Output bridge of the converter unit is faulty. Consult ABB representative.

SLEEP MODE The sleep function has entered the sleeping mode.

See parameter group 40 PID CONTROL.

SYNCRO SPEED The value of the motor nominal speed set to parameter 99.08 is not correct: The value is too near the synchronous speed of the motor. Tolerance is 0.1%.

Check nominal speed from motor rating plate and set parameter 99.08 exactly accordingly.

THERMISTOR (4311)(programmableFault Function 30.04 … 30.05)

The motor temperature is excessive. Motor thermal protection mode selection is THERMISTOR.

Check motor ratings and load.Check start-up data.Check thermistor connections to digital input DI6.

T MEAS ALM Motor temperature measurement is out of the acceptable range.

Check connections of the motor temperature measurement circuit. See parameter group 35 MOT TEMP MEAS for circuit diagram.

UNDERLOAD (ff6a)(programmable Fault Function 30.13)

Motor load is too low. This can be caused by a release mechanism in the driven equipment.

Check for a problem in the driven equipment.Check Fault Function parameters.

WARNING CAUSE WHAT TO DO

Page 319: VSDS Manual-ABB

Fault tracing

181

Warning messages generated by the control panelWARNING CAUSE WHAT TO DO

DOWNLOADING FAILED

Download function of the panel has failed. No data has been copied from panel to drive.

Make sure the panel is in local mode. Retry (there might be interference on the link).Contact ABB representative.

DRIVE INCOMPATIBLE DOWNLOADING NOT POSSIBLE

Program versions in the panel and drive do not match. It is not possible to copy data from panel to the drive.

Check program versions (see parameter group 33 INFORMATION).

DRIVE IS RUNNING DOWNLOADING NOT POSSIBLE

Downloading is not possible while the motor is running.

Stop motor. Perform downloading.

NO COMMUNICATION (X)

Cabling problem or a hardware malfunction on the Panel Link.

Check Panel Link connections.Press RESET key. The panel reset may take up to half a minute, please wait.

(4) = Panel type not compatible with version of the drive application program.

Check panel type and version of the drive application program. The panel type is printed on the cover of the panel. The application program version is stored in parameter 33.02.

NO FREE ID NUMBERS ID NUMBER SETTING NOT POSSIBLE

The Panel Link already includes 31 stations. Disconnect another station from the link to free an ID number.

NOT UPLOADED DOWNLOADING NOT POSSIBLE

No upload function has been performed. Perform the upload function before downloading. See the chapter Control panel.

UPLOADING FAILED

Upload function of the panel has failed. No data has been copied from the drive to the panel.

Retry (there might be interference on the link).Contact ABB representative.

WRITE ACCESS DENIED PARAMETER SETTING NOT POSSIBLE

Certain parameters do not allow changes while motor is running. If tried, no change is accepted, and a warning is displayed.

Stop motor, then change parameter value.

Parameter lock is on. Open the parameter lock (see parameter 16.02).

Page 320: VSDS Manual-ABB

Fault tracing

182

Fault messages generated by the driveFAULT CAUSE WHAT TO DO

ACS 800 TEMP (4210)

Excessive internal temperature. Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

AI < MIN FUNC (8110)(programmableFault Function 30.01)

Analogue control signal is below minimum allowed value due to incorrect signal level or failure in the control wiring.

Check for proper analogue control signal levels.Check control wiring.Check Fault Function parameters.

BACKUP ERROR Failure when restoring PC-stored backup of drive parameters.

Retry. Check connections. Check that parameters are compatible with drive.

BC OVERHEAT (7114)

Brake chopper overload. Stop drive. Let chopper cool down. Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.Check that the supply AC voltage of the drive is not excessive.

BC SHORT CIR (7113)

Short circuit in brake chopper IGBT(s). Replace brake chopper. Ensure brake resistor is connected and not damaged.

BRAKE ACKN (ff74)

Unexpected state of the brake acknowledge signal.

See parameter group 42 BRAKE CONTROL.Check connection of the brake acknowledgement signal.

BR BROKEN (7110)

Brake resistor is not connected or it is damaged. The resistance rating of the brake resistor is too high.

Check the resistor and the resistor connection.Check that the resistance rating meets the specification. See the drive hardware manual.

BR OVERHEAT (7112)

Overload of the brake resistor. Stop drive. Let the resistor cool down. Check parameter settings of the resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets the allowed limits.Check that the supply AC voltage of the drive is not excessive.

BR WIRING (7111) Wrong connection of brake resistor. Check resistor connection. Ensure brake resistor is not damaged.

Page 321: VSDS Manual-ABB

Fault tracing

183

COMM MODULE (7510)(programmableFault Function)

Cyclical communication with drive and master station is lost.

Check status of fieldbus communication. See the chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 (for fieldbus adapter), or- group 52 (for Standard Modbus Link)Check cable connections. Check if master can communicate.

CURR MEAS (2211)

Current transformer failure in output current measurement circuit.

Check current transformer connections to Main Circuit Interface Board, INT.

DC HIGH RUSH (FF80)

Drive supply voltage is excessive. When supply voltage is over 124% of the voltage rating of the unit (415, 500 or 690 V), motor speed rushes to trip level (40% of the nominal speed).

Check supply voltage level, rated voltage of the drive and allowed voltage range of the drive.

DC OVERVOLT (3210)

Excessive intermediate circuit DC voltage. DC overvoltage trip limit is 1.3 · U1max, where U1max is the maximum value of the mains voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. Actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 728 VDC for 400 V units and 877 VDC for 500 V units.

Check that the overvoltage controller is on (Parameter 20.05).Check mains for static or transient overvoltage.Check brake chopper and resistor (if used).Check deceleration time.Use coast-to-stop function (if applicable).Retrofit the frequency converter with a brake chopper and a brake resistor.

DC UNDERVOLT (3220)

Intermediate circuit DC voltage is not sufficient due to missing mains phase, a blown fuse or a rectifier bridge internal fault.

DC undervoltage trip limit is 0.65 · U1min, where U1min is the minimum value of the mains voltage range. For 400 V and 500 V units, U1min is 380 V. Actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 334 VDC.

Check mains supply and fuses.

EARTH FAULT (2330)(programmable Fault Function 30.17

Drive has detected load unbalance typically due to earth fault in motor or motor cable.

Check motor.Check motor cable.Check there are no power factor correction capacitors or surge absorbers in the motor cable.

ENCODER A<>B (7302)

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange the connection of pulse encoder phases A and B.

ENCODER ERR (7301)

Communication fault between pulse encoder and pulse encoder interface module or between module and drive.

Check pulse encoder and its wiring, module and its wiring and parameter group 50 settings.

FAULT CAUSE WHAT TO DO

Page 322: VSDS Manual-ABB

Fault tracing

184

EXTERNAL FLT (9000)(programmableFault Function 30.03)

Fault in one of the external devices. (This information is configured through one of the programmable digital inputs.)

Check external devices for faults.Check parameter 30.03 EXTERNAL FAULT.

FAN OVERTEMP (ff83)

Excessive temperature of drive output filter fan. Supervision is in use in step-up drives.

Stop drive. Let it cool down. Check ambient temperature. Check fan rotates in correct direction and air flows freely.

ID RUN FAIL Motor ID Run is not completed successfully. Check maximum speed (Parameter 20.02). It should be at least 80% of the nominal speed of the motor (Parameter 99.08).

IN CHOKE TEMP (ff81)

Excessive input choke temperature. Stop drive. Let it cool down. Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

I/O COMM ERR (7000)

Communication error on the control board, channel CH1.Electromagnetic interference.

Check connections of fibre optic cables on channel CH1.Check all I/O modules (if present) connected to channel CH1.Check for proper earthing of the equipment. Check for highly emissive components nearby.

LINE CONV (ff51) Fault on the line side converter. Shift panel from motor-side converter control board to line-side converter control board. See line side converter manual for fault description.

MOTOR PHASE (ff56)(programmable Fault Function 30.16)

One of the motor phases is lost due to fault in the motor, motor cable, thermal relay (if used) or internal fault.

Check motor and motor cable.Check thermal relay (if used).Check Fault Function parameters. Disable this protection.

MOTOR STALL (7121)(programmableFault Function 30.10 … 30.12)

Motor is operating in the stall region due to e.g. excessive load or insufficient motor power.

Check motor load and the drive ratings.Check Fault Function parameters.

MOTOR TEMP (4310)(programmableFault Function 30.04 … 30.09)

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings and load.Check start-up data.Check Fault Function parameters.

MOTOR 1 TEMP (4312)

Measured motor temperature has exceeded the fault limit set by parameter 35.03.

Check value of fault limit. Let the motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

MOTOR 2 TEMP (4313)

Measured motor temperature has exceeded fault limit set by parameter 35.06.

Check value of fault limit. Let the motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

FAULT CAUSE WHAT TO DO

Page 323: VSDS Manual-ABB

Fault tracing

185

NO MOT DATA (ff52)

Motor data is not given or motor data does not match with inverter data.

Check motor data given by parameters 99.04 … 99.09.

OVERCURRENT (2310) *)

Output current exceeds the trip limit. Check motor load.Check acceleration time.Check motor and motor cable (including phasing).Check there are no power factor correction capacitors or surge absorbers in the motor cable.Check encoder cable (including phasing).

OVERFREQ (7123) Motor is turning faster than the highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in the load when using torque reference.

Trip level is 40 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active). The operating range limits are set by parameters 20.01 and 20.02 (DTC mode active) or 20.07 and 20.08 (Scalar Control active).

Check minimum/maximum speed settings.Check adequacy of motor braking torque.Check applicability of torque control.Check need for a brake chopper and resistor(s).

PANEL LOSS (5300)(programmableFault Function 30.02)

A control panel or Drives Window selected as active control location for the drive has ceased communicating.

Check panel connection (see appropriate hardware manual).Check control panel connector.Replace control panel in the mounting platform.Check Fault Function parameters.Check DrivesWindow connection.

PPCC LINK (5210) *)

Fibre optic link to the INT board is faulty. Check fibre optic cables.

RUN DISABLE No Run enable signal received. Check the setting of parameter 16.01. Switch on the signal or check the wiring of the selected source.

SC (INU 1)SC (INU 2)SC (INU 3)SC (INU 4)*)

Short circuit in inverter unit of several parallel inverter modules. The number refers to the faulty inverter module number.

Check motor and motor cable.Check power semiconductors (IGBT power plates) of inverter module. (INU 1 stands for inverter module 1 etc.).

INT board fibre optic connection fault in inverter unit consisting of several parallel inverter modules. The number refers to the inverter module number.

Check connection from inverter module Main Circuit Interface Board, INT to PPCC Branching Unit, PBU. (Inverter module 1 is connected to PBU CH1 etc.)

SLOT OVERLAP Two option modules have the same connection interface selection.

Check connection interface selections in group 98 OPTION MODULES.

START INTERLOCK

No Start Interlock signal received. Check the circuit connected to the Start Interlock input on the RMIO board.

FAULT CAUSE WHAT TO DO

Page 324: VSDS Manual-ABB

Fault tracing

186

*) More detailed information on the high power units with parallel inverters is given in fault word 03.12.

SUPPLY PHASE (3130)

Intermediate circuit DC voltage is oscillating due to missing mains phase, a blown fuse or a rectifier bridge internal fault.A trip occurs when the DC voltage ripple is 13 per cent of the DC voltage.

Check mains fuses.Check for mains supply imbalance.

THERMAL MODE Motor thermal protection mode is set to DTC for a high-power motor.

See parameter 30.05.

THERMISTOR (4311)(programmableFault Function 30.04 … 30.05)

Excessive motor temperature (detected by the motor thermal protection function, which has selection THERMISTOR active) .

Check motor ratings and load.Check start-up data.Check thermistor connections.Check thermistor cabling.

UNDERLOAD (ff6a)(programmable Fault Function 30.13 … 30.15)

Motor load is too low due to e.g. release mechanism in the driven equipment.

Check for a problem in the driven equipment.Check Fault Function parameters.

USER MACRO No User Macro saved or the file is defective. Create User Macro.

FAULT CAUSE WHAT TO DO

Page 325: VSDS Manual-ABB

Fieldbus control

187

Fieldbus control

Chapter overviewThe chapter describes how the drive can be controlled by external devices over a communication network.

System overviewThe drive can be connected to an external control system – usually a fieldbus controller – via an adapter module mounted in expansion slot 1 of the drive or via a fieldbus adapter connected to channel CH0 of an RDCO (DDCS Communication Option) module. (For connection to an Advant Fieldbus 100 system, an external AF 100 interface is used.)

Figure 1 Fieldbus control.

Fieldbus

Otherdevices

FieldbusController

Slot 1 or 2

Control Word (CW)References

Data Flow

Status Word (SW)Actual Values

Parameter R/W Requests/Responses

CH0(DDCS)

ACS800

Slot 1

RDCO Comm.Module

RM

IO B

oard

RMBA-01 AdapterStd. Modbus Link

Fieldbus Adapter

Process I/O (Cyclic)

Service Messages (Acyclic)

Rxxx

Fieldbus AdapterNxxx

or

AF 100 Interface(eg. AC 80)

(* Either an Rxxx or Nxxx, and an RMBA-01 adapter can be connected simultaneously.

(* (* (*

Page 326: VSDS Manual-ABB

Fieldbus control

188

The drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources, e.g. digital and analogue inputs.

Setting up communication through a fieldbus adapter moduleNote: For instructions on setting up an RMBA-01 module, see Setting up communication through the Standard Modbus Link below.

Before configuring the drive for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the Hardware Manual of the drive, and the module manual.

The communication between the drive and the fieldbus adapter module is then activated by setting parameter 98.02. After the communication is initialised, the configuration parameters of the module become available in the drive at parameter group 51.

Table 1 Communication set-up parameters for fieldbus adapter connection.

Parameter Alternative settings

Setting for fieldbus control

Function/Information

COMMUNICATION INITIALISATION

98.02 NO; FIELDBUS; ADVANT; STD MODBUS; CUSTOMISED

FIELDBUS Initialises communication between drive and fieldbus adapter module. Activates module set-up parameters (Group 51).

98.07 ABB DRIVES; GENERIC; CSA 2.8/3.0

ABB DRIVES, GENERIC or CSA 2.8/3.0

Selects the communication profile used by the drive. See section Communication Profiles below.

ADAPTER MODULE CONFIGURATION

51.01 MODULE TYPE – – Displays the type of the fieldbus adapter module.

51.02 (FIELDBUS PARAMETER 2)

These parameters are adapter module-specific. For more information, see the module manual. Note that not all of these parameters are necessarily visible.

• • •

51.26 (FIELDBUS PARAMETER 26)

51.27 FBA PAR REFRESH*

(0) DONE; (1) REFRESH

– Validates any changed fieldbus parameter settings. After refreshing, the value reverts automatically to DONE.

51.28 FILE CPI FW REV*

xyz (binary coded decimal)

– Displays the CPI firmware revision of the fieldbus adapter configuration file stored in the memory of the drive. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

Page 327: VSDS Manual-ABB

Fieldbus control

189

After the parameters in group 51 have been set, the drive control parameters (shown in Table 4) must be checked and adjusted where necessary.

The new settings will take effect when the drive is next powered up, or when parameter 51.27 is activated.

51.29 FILE CONFIG ID*

xyz (binary coded decimal)

– Displays the fieldbus adapter module configuration file identification stored in the memory of the drive. This information is drive application program-dependent.

51.30 FILE CONFIG REV*

xyz (binary coded decimal)

– Displays the fieldbus adapter module configuration file revision stored in the memory of the drive. x = major revision number; y = minor revision number; z = correction number. Example: 1 = revision 0.01.

51.31 FBA STATUS (0) IDLE; (1) EXEC. INIT; (2) TIME OUT; (3) CONFIG ERROR; (4) OFF-LINE; (5) ON-LINE; (6) RESET

– Displays the status of the adapter module.IDLE = Adapter not configured.EXEC. INIT = Adapter initialising.TIME OUT = A timeout has occurred in the communication between the adapter and the drive.CONFIG ERROR = Adapter configuration error. The major or minor revision code of the CPI firmware revision stored in the adapter differs from that stated in the configuration file in the memory of the drive.OFF-LINE = Adapter is off-line.ON-LINE = Adapter is on-line.RESET = Adapter performing a hardware reset.

51.32 FBA CPI FW REV

– – Displays the CPI program revision of the module. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

51.33 FBA APPL FW REV

– – Displays the application program revision of the module. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

*Parameters 51.27 to 51.33 are only visible with a type Rxxx fieldbus adapter installed.

Parameter Alternative settings

Setting for fieldbus control

Function/Information

Page 328: VSDS Manual-ABB

Fieldbus control

190

Setting up communication through the Standard Modbus LinkAn RMBA-01 Modbus Adapter installed in slot 1 or 2 of the drive forms an interface called the Standard Modbus Link. The Standard Modbus Link can be used for external control of the drive by a Modbus controller (RTU protocol only).

It is possible to switch the control between the Standard Modbus Link and another fieldbus adapter, in which case the RMBA-01 is installed in slot 2, the fieldbus adapter in slot 1 (or connected to CH0 of the optional RDCO-0x board).

Communication set-up

The communication through the Standard Modbus Link is initialised by setting parameter 98.02 to STD MODBUS. Then, the communication parameters in group 52 must be adjusted. See the table below.

Table 2 Communication set-up parameters for the Standard Modbus Link.

After the parameters in group 52 have been set, the drive control parameters (shown in Table 4) should be checked and adjusted where necessary.

Parameter Alternative Settings

Setting for Control through the Standard Modbus Link

Function/Information

COMMUNICATION INITIALISATION

98.02 NO; FIELDBUS; ADVANT; STD MODBUS; CUSTOMISED

STD MODBUS Initialises communication between drive (Standard Modbus Link) and Modbus-protocol controller. Activates communication parameters in group 52.

98.07 ABB DRIVES; GENERIC; CSA 2.8/3.0

ABB DRIVES Selects the communication profile used by the drive. See section Communication profiles below.

COMMUNICATION PARAMETERS

52.01 1 to 247 – Specifies the station number of the drive on the Standard Modbus Link.

52.02 600; 1200; 2400; 4800; 9600; 19200

– Communication speed for the Standard Modbus Link.

52.03 ODD; EVEN; NONE1STOPBIT; NONE2STOPBIT

– Parity setting for the Standard Modbus Link.

Page 329: VSDS Manual-ABB

Fieldbus control

191

Modbus addressing

In the Modbus controller memory, the Control Word, the Status Word, the references, and the actual values are mapped as follows:

More information on Modbus communication is available from the Modicon website http:\\www.modicon.com.

Data from fieldbus controller to drive Data from drive to fieldbus controller

Address Contents Address Contents

40001 Control Word 40004 Status Word

40002 Reference 1 40005 Actual 1

40003 Reference 2 40006 Actual 2

40007 Reference 3 40010 Actual 3

40008 Reference 4 40011 Actual 4

40009 Reference 5 40012 Actual 5

Page 330: VSDS Manual-ABB

Fieldbus control

192

Setting up an Advant Fieldbus 100 (AF 100) connectionThe connection of a drive to an AF (Advant Fieldbus) 100 bus is similar to other fieldbusses, with the exception that one of the AF 100 interfaces listed below is substituted for the fieldbus adapter. The AF 100 interface is connected to channel CH0 on the RDCO board inside the drive using fibre optic cables.

The following is a list of suitable AF 100 interfaces:

• CI810A Fieldbus Communication Interface (FCI) TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required

• Advant Controller 70 (AC 70) TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required

• Advant Controller 80 (AC 80) Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required DriveBus connection: Connectible to RMIO-01/02 Board with RDCO-01 Communication Option.

One of the above interfaces may already be present on the AF 100 bus. If not, an Advant Fieldbus 100 Adapter kit (NAFA-01) is separately available, containing the CI810A Fieldbus Communication Interface, TB810 and TB811 Optical ModuleBus Port Interfaces, and a TC505 Trunk Tap. (More information on these components is available from the S800 I/O User’s Guide, 3BSE 008 878 [ABB Industrial Systems, Västerås, Sweden]).

Optical component types

The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical components, while the TB810 has 10 MBd components. All optical components on a fibre optic link must be of the same type since 5 MBd components do not match 10 MBd components. The choice between TB810 and TB811 depends on the equipment it is connected to.

The TB811 (5 MBd) should be used when connecting to a drive with the following equipment:

• RMIO-01/02 Board with RDCO-02 Communication Option

• RMIO-01/02 Board with RDCO-03 Communication Option.

The TB810 (10 MBd) should be used when connecting to the following equipment:

• RMIO-01/02 Board with RDCO-01 Communication Option

• NDBU-85/95 DDCS Branching Units.

Page 331: VSDS Manual-ABB

Fieldbus control

193

Communication Set-up

The communication between the drive and the AF 100 interface is activated by setting parameter 98.02 to ADVANT.

Table 3 Communication set-up parameters for AF 100 connection.

After the communication activation parameters have been set, the AF 100 interface must be programmed according to its documentation, and the drive control parameters (shown in Table 4) checked and adjusted where necessary.

In an Optical ModuleBus connection, the channel 0 address (parameter 70.01) is calculated from the value of the POSITION terminal in the appropriate database element (for the AC 80, DRISTD) as follows:

1. Multiply the hundreds of the value of POSITION by 16.

2. Add the tens and ones of the value of POSITION to the result.

For example, if the POSITION terminal of the DRISTD database element has the value of 110 (the tenth drive on the Optical ModuleBus ring), parameter 70.01 must be set to 16 × 1 + 10 = 26.

In an AC 80 DriveBus connection, the drives are addressed 1 to 12. The drive address (set with parameter 70.01) is related to the value of the DRNR terminal of ACSRX PC element.

Parameter Alternative Settings Setting for Control through CH0

Function/Information

COMMUNICATION INITIALISATION

98.02 NO; FIELDBUS; ADVANT; STD MODBUS, CUSTOMISED

ADVANT Initialises communication between drive (fibre optic channel CH0) and AF 100 interface. The transmission speed is 4 Mbit/s.

98.07 ABB DRIVES; GENERIC; CSA 2.8/3.0

ABB DRIVES Selects the communication profile used by the drive. See section Communication profiles below.

Page 332: VSDS Manual-ABB

Fieldbus control

194

Drive control parametersAfter the fieldbus communication has been set up, the drive control parameters listed in Table 4 below should be checked and adjusted where necessary.

The Setting for fieldbus control column gives the value to use when the fieldbus interface is the desired source or destination for that particular signal. The Function/Information column gives a description of the parameter.

The fieldbus signal routes and message composition are explained later under The fieldbus control interface.

Table 4 Drive control parameters to be checked and adjusted for fieldbus control.

Parameter Setting for fieldbus control

Function/Information

CONTROL COMMAND SOURCE SELECTION

10.01 COMM.CW Enables the fieldbus Control Word (except bit 11) when EXT1 is selected as the active control location. See also par. 10.07.

10.02 COMM.CW Enables the fieldbus Control Word (except bit 11) when EXT2 is selected as the active control location.

10.03 FORWARD, REVERSE or REQUEST

Enables rotation direction control as defined by parameters 10.01 and 10.02. The direction control is explained later under Reference handling.

10.07 0 or 1 Setting the value to 1 overrides the setting of par. 10.01 so that the fieldbus Control Word (except bit 11) is enabled when EXT1 is selected as the active control location.Note 1: Only visible with the Generic Drive communication profile selected (see par. 98.07).Note 2: Setting not saved into permanent memory.

10.08 0 or 1 Setting the value to 1 overrides the setting of par. 11.03 so that Fieldbus reference REF1 is used when EXT1 is selected as the active control location.Note 1: Only visible with the Generic Drive communication profile selected (see par. 98.07).Note 2: Setting not saved into permanent memory.

11.02 COMM.CW Enables EXT1/EXT2 selection by fieldbus Control Word bit 11 EXT CTRL LOC.

11.03 COMM.REF1, FAST COMM, COM.REF1+AI1, COM.REF1+AI5, COM.REF1*AI1 or COM.REF1*AI5

Fieldbus reference REF1 is used when EXT1 is selected as the active control location. See section References below for information on the alternative settings.

Page 333: VSDS Manual-ABB

Fieldbus control

195

11.06 COMM.REF2, FAST COMM, COM.REF2+AI1, COM.REF2+AI5, COM.REF2*AI1 or COM.REF2*AI5

Fieldbus reference REF2 is used when EXT2 is selected as the active control location. See section References below for information on the alternative settings.

OUTPUT SIGNAL SOURCE SELECTION

14.01 COM.REF3 Enables Relay output RO1 control by fieldbus reference REF3 bit 13.

14.02 COM.REF3 Enables Relay output RO2 control by fieldbus reference REF3 bit 14.

14.03 COM.REF3 Enables Relay output RO3 control by fieldbus reference REF3 bit 15.

15.01 COMM.REF4 Directs the contents of fieldbus reference REF4 to Analogue output AO1. Scaling: 20000 = 20 mA

15.06 COMM.REF5 Directs the contents of fieldbus reference REF5 to Analogue output AO2. Scaling: 20000 = 20 mA.

SYSTEM CONTROL INPUTS

16.01 COMM.CW Enables the control of the Run Enable signal through fieldbus Control Word bit 3.Note: Must be set to YES when the Generic Drive communication profile is selected (see par. 98.07).

16.04 COMM.CW Enables fault reset through fieldbus Control Word bit 7.

16.07 DONE; SAVE Saves parameter value changes (including those made through fieldbus control) to permanent memory.

COMMUNICATION FAULT FUNCTIONS

30.18 FAULT; NO; CONST SP15; LAST SPEED

Determines drive action in case fieldbus communication is lost.Note: The communication loss detection is based on monitoring of received Main and Auxiliary data sets (whose sources are selected with parameters 90.04 and 90.05 respectively).

30.19 0.1 … 60.0 s Defines the time between Main Reference data set loss detection and the action selected with parameter 30.18.

30.20 ZERO; LAST VALUE Determines the state in which Relay outputs RO1 to RO3 and Analogue outputs AO1 and AO2 are left upon loss of the Auxiliary Reference data set.

Parameter Setting for fieldbus control

Function/Information

Page 334: VSDS Manual-ABB

Fieldbus control

196

30.21 0.0 … 60.0 s Defines the time between Auxiliary Reference data set loss detection and the action selected with parameter 30.18.Note: This supervision function is disabled if this parameter, or parameters 90.01, 90.02 and 90.03 are set to 0.

FIELDBUS REFERENCE TARGET SELECTION (Not visible when 98.02 is set to NO.)

90.01 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF3 is written.Format: xxyy, where xx = parameter group (10 to 89), yy = parameter Index. E.g. 3001 = parameter 30.01.

90.02 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF4 is written.Format: see parameter 90.01.

90.03 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF5 is written.Format: see parameter 90.01.

90.04 1 (Fieldbus Control) or 81 (Standard Modbus Control)

If 98.02 is set to CUSTOMISED, this parameter selects the source from which the drive reads the Main Reference data set (comprising the fieldbus Control Word, fieldbus reference REF1, and fieldbus reference REF2).

90.05 3 (Fieldbus Control) or 83 (Standard Modbus Control)

If 98.02 is set to CUSTOMISED, this parameter selects the source from which the drive reads the Auxiliary Reference data set (comprising fieldbus references REF3, REF4 and REF5).

ACTUAL SIGNAL SELECTION FOR FIELDBUS (Not visible when 98.02 is set to NO.)

92.01 302 (Fixed) The Status Word is transmitted to as the first word of the Main Actual Signal data set.

92.02 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the second word (ACT1) of the Main Actual Signal data set.Format: (x)xyy, where (x)x = actual signal group or parameter group, yy = actual signal or parameter index. E.g. 103 = actual signal 1.03 FREQUENCY; 2202 = parameter 22.02 ACCEL TIME 1.Note: With the Generic Drive communication profile active (par. 98.07 = GENERIC), this parameter is fixed to 102 (actual signal 1.02 SPEED – in DTC motor control mode) or 103 (1.03 FREQUENCY – in Scalar mode).

92.03 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the third word (ACT2) of the Main Actual Signal data set.Format: see parameter 92.02.

Parameter Setting for fieldbus control

Function/Information

Page 335: VSDS Manual-ABB

Fieldbus control

197

92.04 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the first word (ACT3) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

92.05 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the second word (ACT4) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

92.06 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the third word (ACT5) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

Parameter Setting for fieldbus control

Function/Information

Page 336: VSDS Manual-ABB

Fieldbus control

198

The fieldbus control interfaceThe communication between a fieldbus system and the drive employs data sets. One data set (abbreviated DS) consists of three 16-bit words called data words (DW). The ACS 800 Standard Application Program supports the use of four data sets, two in each direction.

The two data sets for controlling the drive are referred to as the Main Reference data set and the Auxiliary Reference data set. The sources from which the drive reads the Main and Auxiliary Reference data sets are defined by parameters 90.04 and 90.05 respectively. The contents of the Main Reference data set are fixed. The contents of the Auxiliary Reference data set can be selected using parameters 90.01, 90.02 and 90.03.

The two data sets containing actual information on the drive are referred to as the Main Actual Signal data set and the Auxiliary Actual Signal data set. The contents of both data sets are partly selectable with the parameters at group 92.

*The index number is required when data word allocation to process data is defined via the fieldbus parameters at group 51. This function is dependent on the type of the fieldbus adapter.

**With the Generic Drive communication profile active, Actual 1 is fixed to actual signal 01.02 SPEED (in DTC motor control mode) or 01.03 FREQUENCY (in Scalar mode).

The update time for the Main Reference and Main Actual Signal data sets is 6 milliseconds; for the Auxiliary Reference and Auxiliary Actual Signal data sets, it is 100 milliseconds.

Data from fieldbus controller to drive Data from drive to fieldbus controller

Word Contents Selector Word Contents Selector

*Index Main Reference data set DS1 *Index Main Actual Signal data set DS2

1 1st word Control Word (Fixed) 4 1st word Status Word (Fixed)

2 2nd word Reference 1 (Fixed) 5 2nd word Actual 1 **Par. 92.02

3 3rd word Reference 2 (Fixed) 6 3rd word Actual 2 Par. 92.03

*Index Auxiliary Reference data set DS3 *Index Aux. Actual Signal data set DS4

7 1st word Reference 3 Par. 90.01 10 1st word Actual 3 Par. 92.04

8 2nd word Reference 4 Par. 90.02 11 2nd word Actual 4 Par. 92.05

9 3rd word Reference 5 Par. 90.03 12 3rd word Actual 5 Par. 92.06

Page 337: VSDS Manual-ABB

Fieldbus control

199

The Control Word and the Status WordThe Control Word (CW) is the principal means of controlling the drive from a fieldbus system. It is effective when the active control location (EXT1 or EXT2, see parameters 10.01 and 10.02) is set to COMM.CW, or if par. 10.07 is set to 1 (with Generic Drive communication profile only).

The Control Word is sent by the fieldbus controller to the drive. The drive switches between its states according to the bit-coded instructions of the Control Word.

The Status Word (SW) is a word containing status information, sent by the drive to the fieldbus controller.

See text under Communication profiles below for information on the composition of the Control Word and the Status Word.

ReferencesReferences (REF) are 16-bit signed integers. A negative reference (indicating reversed direction of rotation) is formed by calculating the two’s complement from the corresponding positive reference value.

Fieldbus reference selection and correction

Fieldbus reference (called COM.REF in signal selection contexts) is selected by setting a Reference selection parameter – 11.03 or 11.06 – to COMM.REFx, FAST COMM, COM.REFx+AI1, COM.REFx+AI5, COM.REFx*AI1 or COM.REFx*AI5. (With Generic Drive communication profile, fieldbus reference is also selected when par. 10.08 is set to 1.) The latter four selections enable correction of the fieldbus reference using analogue inputs as shown below. (An optional RAIO-01 Analogue I/O Extension Module is required for use of Analogue input AI5).

COMM.REF1 (in 11.03) or COMM.REF2 (in 11.06) The fieldbus reference is forwarded as such without correction.

FAST COMM The fieldbus reference is forwarded as such without correction. The reference is read every 2 milliseconds if either of the following conditions is met:

• Control location is EXT1, par. 99.04 MOTOR CTRL MODE is DTC, and par. 40.14 TRIM MODE is OFF

• Control location is EXT2, par. 99.04 MOTOR CTRL MODE is DTC, par. 40.14 TRIM MODE is OFF, and a torque reference is used.

In any other event, the fieldbus reference is read every 6 milliseconds.

Note: The FAST COMM selection disables the critical speed function.

Page 338: VSDS Manual-ABB

Fieldbus control

200

COM.REF1+AI1; COM.REF1+AI5; COM.REF1*AI1; COM.REF1*AI5 (in 11.03) COM.REF2+AI1; COM.REF2+AI5; COM.REF2*AI1; COM.REF2*AI5 (in 11.06) These selections enable the correction of the fieldbus reference as follows:

Reference handlingThe control of rotation direction is configured for each control location (EXT1 and EXT2) using the parameters in group 10. Fieldbus references are bipolar, i.e. they can be negative or positive. The following diagrams illustrate how group 10 parameters and the sign of the fieldbus reference interact to produce the reference REF1/REF2.

Notes:• With the ABB Drives communication profile, the limit “Max.Ref.” is defined by

parameters 11.05 (REF1) and 11.08 (REF2). With the Generic Drive communication profile, the limit “Max.Ref.” is defined by parameters 99.08 (in DTC motor control mode) or 99.07 (Scalar mode).

• External reference scaling parameters 11.04 and 11.07 are also in effect.

• The use of REF2 is not supported by the Generic Drive communication profile.

For information on the scaling of the fieldbus reference, see Fieldbus reference scaling below (ABB Drives profile) or the manual delivered with the fieldbus adapter (Generic Drive profile).

Parameter Setting Effect of AI1/AI5 Input Voltage on Fieldbus Reference

COM.REFx+AI1COM.REFx+AI5

COM.REFx*AI1COM.REFx*AI5

(100 + 0.5 × [par. 13.03])%

100%

0 AI1/AI5 Input

Fieldbus ReferenceCorrection Coefficient

(100 – 0.5 × [par. 13.03])%5 V 10 V

Voltage

100%

0 AI1/AI5 Input

Fieldbus ReferenceCorrection Coefficient

0%

50%

5 V 10 VVoltage

Page 339: VSDS Manual-ABB

Fieldbus control

201

Actual ValuesActual Values (ACT) are 16-bit words containing information on selected operations of the drive. The functions to be monitored are selected with the parameters in group 92. The scaling of the integers sent to the master as Actual Values depends on the selected function; please refer to the chapter Actual signals and parameters.

*Direction determined by the sign of COM.REF

Direction determined by digital command, eg. digital input, control panel

par. 10.03 DIRECTION = FORWARD

par. 10.03 DIRECTION = REVERSE

par. 10.03 DIRECTION = REQUEST

*Direction is determined by the sign of COM.REF when par. 10.01/10.02 EXTx STRT/STP/DIR is set to COMM.CW OR par. 11.03/11.06 EXT REFx SELECT is set to FAST COMM.

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus-163%

Max.Ref.

–[Max.Ref.]

-100%

100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Direction Command:FORWARD

Direction Command:REVERSE

Page 340: VSDS Manual-ABB

Fieldbus control

202

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 97 98 99

DA

TA

DS

1

DS

2

DS

3

DS

4

DS

5

• • •

DS

33

• • •

MA

IN

DA

TA S

ETR

EFER

ENC

E

AU

XILI

AR

YR

EFER

ENC

E

PAR

AM

ETER

10.0

1

10.0

2

• • •

89.9

9

TAB

LE

30.2

0 C

OM

M F

LT R

O/A

O30

.21

AUX

REF

DS

T-O

UT

90.0

1

90.0

2

90.0

3

• • •

30.1

8 C

OM

M F

AU

LT F

UN

C

Bits

13…

15

Anal

ogue

Out

put

AO1

(see

15.

01)

Anal

ogue

Out

put

AO2

(see

15.

06)

SET

TAB

LEN

OFI

ELD

-

ADVA

NT

STD

CU

STO

M-

BU

S

MO

DBU

S

ISED 98

.02

NO

FIEL

D-

ADVA

NT

STD

CU

STO

M-

BU

S

MO

DBU

S

ISED 98

.02

CW

RE

F1

RE

F2

RE

F3

RE

F4

RE

F5

DA

TA S

ET

Rel

ay O

utpu

ts(s

ee 1

4.01

…14

.03)

30.1

8 C

OM

M F

AU

LT F

UN

C30

.19

MAI

N R

EF

DS

T-O

UT

Fiel

dbus

Adap

ter

Slot

1

Fiel

dbus

spe

cific

sel

ecto

rs

in G

roup

51*

*Ad

dres

ses

for w

ords

3 …

n in

fo

rmat

xxy

yxx

Add

ress

00yy

= w

ord

no. i

n da

ta s

et

tabl

e01

99xx

= p

ar. g

roup

yy

= p

ar. i

ndex

in

par

amet

er ta

ble

PAR

DS

* Dep

ends

on

the

sele

cted

mot

or c

ontro

l mod

e (p

aram

eter

99.

04).

** S

ee th

e fie

ldbu

s ad

apte

r use

r’s m

anua

l for

mor

e in

form

atio

n.

Wor

d 1

(Con

trol w

ord)

Wor

d 2

(Spe

ed/fr

eq re

f.*)

Wor

d 3

Wor

ds 1

… n

**

Wor

d n

PAR

DS

• • •

• • •

3 n

10.0

1

DI1

• • •C

OM

M.C

W

10.0

2

• • •

11.0

6

• • •

11.0

3

• • •

CO

MM

.CW

03.0

1D

I1

11.0

2

CO

MM

.RE

F

AI1

CO

MM

.RE

F

AI1

01.1

1

01.1

2

MAI

N C

W

EXT

REF

1

EXT

REF

2

Blo

ck d

iagr

am: C

ontr

ol d

ata

inpu

t fro

m fi

eldb

us w

hen

a ty

pe R

xxx

field

bus

adap

ter i

s us

ed

Page 341: VSDS Manual-ABB

Fieldbus control

203

AC

TUA

L SI

GN

AL/

1.01

1.02 • • •

3.99 • • •

PAR

AM

ETER

TAB

LE

10.0

1

• • •

99.9

9

92.0

1

92.0

2S

TATU

S W

OR

D*

ACT1

**AC

T2

MA

IN

DA

TA S

ETA

CTU

AL

SIG

NA

L

ACT3

ACT4

ACT5

AU

XILI

AR

Y

DA

TA S

ETA

CTU

AL

SIG

NA

L

DA

TA S

ET

DS

1

DS

2

DS

3

DS

4

• • •

DS

33

• • •

TAB

LE

92.0

3

92.0

4

92.0

5

92.0

6

Fiel

dbus

Adap

ter

(Slo

t 1)

* Fix

ed to

03.

02 M

AIN

STA

TUS

WO

RD

.**

Fixe

d to

01.

02 S

PEED

(DTC

con

trol)

or 0

1.03

FR

EQU

EN

CY

(Sca

lar c

ontro

l) w

hen

Gen

eric

com

mun

icat

ion

prof

ile is

use

d.**

* See

the

field

bus

adap

ter u

ser’s

man

ual f

or m

ore

info

rmat

ion.

* **

1 2 3 4 5 6 7 8 9 10 11 12 97 98 99

Fiel

dbus

spe

cific

sel

ecto

rs

in G

roup

51

***

Add

ress

es fo

r wor

ds 3

… n

in

form

at x

xyy

xxA

ddre

ss00

yy =

wor

d no

. in

data

set

ta

ble

01 …

99

xx =

par

. gro

up

yy =

par

. ind

ex

in p

aram

eter

tabl

e

Wor

d 1

(STA

TUS

WO

RD

)W

ord

2(A

CT1

**)

Wor

d 3

Wor

ds 1

… n

***

Wor

d n

…PA

RDS

PARDS

3 n

• • •

• • •Blo

ck d

iagr

am: A

ctua

l val

ue s

elec

tion

for f

ield

bus

whe

n a

type

Rxx

x fie

ldbu

s ad

apte

r is

used

Page 342: VSDS Manual-ABB

Fieldbus control

204

Stan

dard

DA

TA

DS

1

DS

2

DS

3

DS

4

• • •

DS

81

DS

82

DS

83

DS

84

MA

IN

DA

TA S

ETR

EFER

ENC

E

PAR

AM

ETER

10.0

1

10.0

2

• • •

89.9

9

TAB

LE

Mod

bus

Link

30.2

0 C

OM

M F

LT R

O/A

O30

.21

AUX

RE

F D

S T-

OU

T

90.0

1

90.0

2

90.0

3

• • •

• • •

30.1

8 C

OM

M F

AULT

FU

NC

Bits

13…

15

Anal

ogue

Out

put

AO1

(see

15.

01)

Anal

ogue

Out

put

AO2

(see

15.

06)

3w

ords

(6 b

ytes

)

4000

140

002

4000

3

4000

740

008

4000

9

Mod

bus

Con

trolle

r

SET

TAB

LEN

OFI

ELD

-

ADVA

NT

STD

CU

STO

M-

BUS

MO

DBU

S

ISED 98

.02

NO

FIEL

D-

ADVA

NT

STD

CU

STO

M-

BUS

MO

DBU

S

ISED 98

.02

CW

RE

F1

RE

F2

Rel

ay O

utpu

ts(s

ee 1

4.01

…14

.03)

90.0

4

1• • •

255

30.1

8 C

OM

M F

AU

LT F

UN

C30

.19

MAI

N R

EF

DS

T-O

UT

90.0

5

1• • •

255

(RM

BA)

(Slo

t 1/2

)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

Fiel

dbus

Adap

ter

(CH

0)

10.0

1

DI1

• • •C

OM

M.C

W

10.0

2

• • •

11.0

6

• • •

AU

XILI

AR

YR

EFER

ENC

E

RE

F3

RE

F4

RE

F5

DA

TA S

ET

11.0

3

• • •

CO

MM

.CW

03.0

1D

I1

11.0

2

CO

MM

.REFAI

1

CO

MM

.REFAI

1

01.1

1

01.1

2

MAI

N C

W

EXT

REF

1

EXT

REF

2

Blo

ck d

iagr

am: C

ontr

ol d

ata

inpu

t fro

m fi

eldb

us w

hen

a ty

pe N

xxx

field

bus

adap

ter i

s us

ed

Page 343: VSDS Manual-ABB

Fieldbus control

205

AC

TUA

L SI

GN

AL/

1.01

1.02 • • •

3.99 • • •

PAR

AM

ETER

TAB

LE

10.0

1

• • •

99.9

9

92.0

1*

92.0

2S

TATU

S W

OR

D*

ACT1

**AC

T2

MA

IN

DA

TA S

ETA

CTU

AL

SIG

NA

L

ACT3

ACT4

ACT5

AU

XILI

AR

Y

DA

TA S

ETA

CTU

AL

SIG

NA

L

DA

TA S

ET

DS

1

DS

2

DS

3

DS

4

• • •

DS

81

DS

82

DS

83

DS

84

TAB

LE

• • •

Stan

dard

Mod

bus

Link

92.0

3

92.0

4

92.0

5

92.0

6

4000

440

005

4000

6

4001

040

011

4001

2

Mod

bus

Con

trolle

r

Fiel

dbus

Adap

ter

(CH

0)

3w

ords

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

* Fix

ed to

03.

02 M

AIN

STA

TUS

WO

RD

.**

Fix

ed to

01.

02 S

PEE

D (D

TC m

otor

con

trol)

or 0

103

FREQ

UE

NC

Y (S

cala

r con

trol)

whe

n G

ener

ic c

omm

unic

atio

n pr

ofile

is u

sed.

(6 b

ytes

)

Blo

ck D

iagr

am: A

ctua

l val

ue s

elec

tion

for f

ield

bus

whe

n a

type

Nxx

x fie

ldbu

s ad

apte

r is

used

Page 344: VSDS Manual-ABB

Fieldbus control

206

Communication profilesThe ACS800 supports three communication profiles:

• ABB Drives communication profile

• Generic Drive communication profile.

• CSA 2.8/3.0 communication profile.

The ABB Drives communication profile should be selected with type Nxxx fieldbus adapter modules, and when the manufacturer-specific mode is selected (via the PLC) with type Rxxx fieldbus adapter modules.

The Generic Drive profile is supported by type Rxxx fieldbus adapter modules only.

The CSA 2.8/3.0 communication profile can be selected for backward compatibility with Application Program versions 2.8 and 3.0. This eliminates the need for reprogramming the PLC when drives with the above-mentioned program versions are replaced.

ABB Drives communication profileThe ABB Drives communication profile is active when parameter 98.07 is set to ABB DRIVES. The Control Word, Status Word, and reference scaling for the profile are described below.

The ABB Drives communication profile can be used through both EXT1 and EXT2. The Control Word commands are in effect when par. 10.01 or 10.02 (whichever control location is active) is set to COMM.CW.

Page 345: VSDS Manual-ABB

Fieldbus control

207

Table 5 The Control Word (Actual Signal 3.01) for the ABB Drives communication profile. The upper case boldface text refers to the states shown in Figure 2.

Bit Name Value Enter STATE/Description0 OFF1 CONTROL 1 Enter READY TO OPERATE.

0 Stop along currently active deceleration ramp (22.03/22.05). Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.

1 OFF2 CONTROL 1 Continue operation (OFF2 inactive).0 Emergency OFF, coast to stop.

Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.2 OFF3 CONTROL 1 Continue operation (OFF3 inactive).

0 Emergency stop, stop within time defined by par. 22.07. Enter OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED.Warning: Ensure motor and driven machine can be stopped using this stop mode.

3 INHIBIT_ OPERATION

1 Enter OPERATION ENABLED. (Note: The Run Enable signal must be active; see parameter 16.01. If par. 16.01 is set to COMM.CW, this bit also activates the Run Enable signal.)

0 Inhibit operation. Enter OPERATION INHIBITED.4 RAMP_OUT_

ZERO1 Normal operation.

Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED.0 Force Ramp Function Generator output to zero.

Drive ramps to stop (current and DC voltage limits in force).5 RAMP_HOLD 1 Enable ramp function.

Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.0 Halt ramping (Ramp Function Generator output held).

6 RAMP_IN_ ZERO

1 Normal operation. Enter OPERATING.0 Force Ramp Function Generator input to zero.

7 RESET 0 � 1 Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED.0 Continue normal operation.

8 INCHING_1 1 Not in use. 1 � 0 Not in use.

9 INCHING_2 1 Not in use. 1 � 0 Not in use.

10 REMOTE_CMD 1 Fieldbus control enabled.0 Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.

Control Word = 0 and Reference = 0: Fieldbus control enabled. Reference and deceleration/acceleration ramp are locked.

11 EXT CTRL LOC 1 Select External Control Location EXT2. Effective if par. 11.02 is set to COMM.CW.0 Select External Control Location EXT1. Effective if par. 11.02 is set to COMM.CW.

12 … 15

Reserved

Page 346: VSDS Manual-ABB

Fieldbus control

208

Table 6 The Status Word (Actual Signal 3.02) for the ABB Drives communication profile. The upper case boldface text refers to the states shown in Figure 2.

Bit Name Value STATE/Description0 RDY_ON 1 READY TO SWITCH ON.

0 NOT READY TO SWITCH ON.1 RDY_RUN 1 READY TO OPERATE.

0 OFF1 ACTIVE.2 RDY_REF 1 OPERATION ENABLED.

0 OPERATION INHIBITED.3 TRIPPED 1 FAULT.

0 No fault.4 OFF_2_STA 1 OFF2 inactive.

0 OFF2 ACTIVE.5 OFF_3_STA 1 OFF3 inactive.

0 OFF3 ACTIVE.6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED.

07 ALARM 1 Warning/Alarm.

0 No Warning/Alarm.8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is within tolerance

limits).0 Actual value differs from reference value (= is outside tolerance limits).

9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2).0 Drive control location: LOCAL.

10 ABOVE_LIMIT 1 Actual frequency or speed value equals or is greater than supervision limit (par. 32.02). Valid in both rotation directions regardless of value of par. 32.02.

0 Actual frequency or speed value is within supervision limit.11 EXT CTRL LOC 1 External Control Location EXT2 selected.

0 External Control Location EXT1 selected.12 EXT RUN ENABLE 1 External Run Enable signal received.

0 No External Run Enable received.13, 14 Reserved15 1 Communication error detected by fieldbus adapter module (on fibre optic

channel CH0).0 Fieldbus adapter (CH0) communication OK.

Page 347: VSDS Manual-ABB

Fieldbus control

209

Figure 2 State Machine for the ABB Drives communication profile.

MAINS OFF

Power ON (CW Bit0=0)

SWITCH-ONINHIBITED (SW Bit6=1)

NOT READYTO SWITCH ON (SW Bit0=0)

READY TOSWITCH ON

from any state

(CW=xxxx x1xx xxxx x110)

ABB DrivesCommunication

Profile

READY TOOPERATE (SW Bit1=1)

n(f)=0 / I=0

OPERATIONINHIBITED (SW Bit2=0)

A B C D

(CW Bit3=0)

operationinhibited

OFF1 (CW Bit0=0)

OFF1ACTIVE (SW Bit1=0)

(SW Bit0=1)

(CW Bit3=1and

SW Bit12=1)

C D

(CW Bit5=0)

OPERATIONENABLED (SW Bit2=1)

(SW Bit5=0)

from any state from any state

Emergency StopOFF3 (CW Bit2=0)

n(f)=0 / I=0

OFF3ACTIVE

Emergency OFFOFF2 (CW Bit1=0)

(SW Bit4=0)OFF2

ACTIVE

RFG: OUTPUTENABLED

RFG: ACCELERATORENABLED

OPERATING

B

B C D

(CW Bit4=0)

(CW=xxxx x1xx xxx1 1111)

(CW=xxxx x1xx xx11 1111)

D

(CW Bit6=0)

A

C(CW=xxxx x1xx x111 1111)

CW = Control WordSW = Status Wordn = SpeedI = Input Current

(SW Bit8=1)

RFG = Ramp Function Generatorf = Frequency

D

from any state

Fault

(SW Bit3=1)FAULT

(CW Bit7=1)

(CW=xxxx x1xx xxxx x111)

(CW=xxxx x1xx xxxx 1111and SW Bit12=1)

Page 348: VSDS Manual-ABB

Fieldbus control

210

Fieldbus reference scaling

With the ABB Drives communication profile active, fieldbus references REF1 and REF2 are scaled as shown in the table below.

Note: Any correction of the reference (see above) is applied before scaling.

Ref. No.

Application Macro Used (par. 99.02)

Range Reference Type Scaling Notes

REF1 (any) -32768 ... 32767

Speed or Frequency (not with FAST COMM)

-20000 = -[par. 11.05]-1 = -[par. 11.04]0 = [par. 11.04]20000 = [par. 11.05]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

Speed or Frequency with FAST COMM

-20000 = -[par. 11.05]0 = 020000 = [par. 11.05]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

REF2 FACTORY, HAND/AUTO, or SEQ CTRL

-32768 ... 32767

Speed or Freq. (not with FAST COMM)

-20000 = -[par. 11.08] -1 = -[par. 11.07] 0 = [par. 11.07] 20000 = [par. 11.08]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

Speed or Freq. with FAST COMM

-20000 = -[par. 11.08] 0 = 0 20000 = [par. 11.08]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

T CTRL or M/F (optional)

-32768 ... 32767

Torque (not with FAST COMM)

-10000 = -[par. 11.08] -1 = -[par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]

Final reference limited by par. 20.04.

Torque with FAST COMM

-10000 = -[par. 11.08] 0 = 0 10000 = [par. 11.08]

Final reference limited by par. 20.04.

PID CTRL -32768 ... 32767

PID Reference (not with FAST COMM)

-10000 = -[par. 11.08] -1 = -[par. 11.07] 0 = [par. 11.07] 10000 = [par. 11.08]

PID Reference with FAST COMM

-10000 = -[par. 11.08] 0 = 0 10000 = [par. 11.08]

Page 349: VSDS Manual-ABB

Fieldbus control

211

Generic Drive communication profileThe Generic Drive communication profile is active when parameter 98.07 is set to GENERIC. The Generic Drive profile realises the device profile for drives – speed control only – as defined by specific fieldbus standards such as PROFIDRIVE for PROFIBUS, DriveCom for InterBus-S, AC/DC Drive for DeviceNet, Drives and Motion Control for CANopen, etc. Each device profile specifies its Control and Status Words, Reference and Actual value scaling. The profiles also define Mandatory services which are transferred to the application interface of the drive in a standardised way.

The proper functioning of the Generic Drive profile requires that Control Word commands are enabled by setting parameter 10.01 to COMM.CW (or par. 10.07 to 1).

Note 1: The Generic Drive communication profile requires the use of EXT1 as the active control location.

Note 2: The Generic Drive profile is only available with type Rxxx fieldbus adapter modules.

Table 7 Drive commands supported by the Generic Drive communication profile.

Name DescriptionSTOP The drive decelerates the motor to zero speed according to the active deceleration ramp

(parameter 22.03 or 22.05).START The drive accelerates to the set reference value according to the active acceleration ramp (par.

22.02 or 22.04). The direction of rotation is determined by the sign of the reference value and the setting of par. 10.03.

COAST STOP The drive coasts to stop, i.e. the drive stops modulating. However, this command can be overridden by the Brake Control function, which forces the drive to decelerate to zero speed by the active deceleration ramp.

QUICK STOP The drive decelerates the motor to zero speed within the emergency stop deceleration time defined by par. 22.07.

CURRENT LIMIT STOP (CLS)

The drive decelerates the motor to zero speed according to the set current limit (par. 20.03) or torque limit (20.04), whichever is first reached. The same procedure is valid in case of a Voltage Limit Stop (VLS).

INCHING1 With this command active, the drive accelerates the motor to Constant Speed 12 (defined by par. 12.13). After the command is removed, the drive decelerates the motor to zero speed.Note: The speed reference ramps are not effective. The speed change rate is only limited by the current (or torque) limit of the drive.Note: Inching 1 takes priority over Inching 2.Note: Not effective in Scalar control mode.

INCHING2 With this command active, the drive accelerates the motor to Constant Speed 13 (defined by par. 12.14). After the command is removed, the drive decelerates the motor to zero speed.Note: The speed reference ramps are not effective. The speed change rate is only limited by the current (or torque) limit of the drive.Note: Inching 1 takes priority over Inching 2.Note: Not effective in Scalar control mode.

RAMP OUT ZERO When active, forces the output of the reference function generator to zero.RAMP HOLD When active, freezes the reference function generator output.FORCED TRIP Trips the drive. The drive will indicate a fault “FORCED TRIP”.RESET Resets an active fault.

Page 350: VSDS Manual-ABB

Fieldbus control

212

Speed reference and actual speed scaling

Both the nominal speed reference value given via the fieldbus interface and the actual speed value received from the drive are related to the motor nominal speed (DTC motor control mode) or motor nominal frequency (Scalar motor control mode) as follows:

Motor control mode

Speed reference/Actual speed scaling

Notes

DTC 0% = 0 rpm 100% = [par. 99.08] rpm

The filter time of the actual speed value can be adjusted using par. 34.04.

Scalar 0% = 0 Hz 100% = [par. 99.07] Hz

Page 351: VSDS Manual-ABB

Fieldbus control

213

CSA 2.8/3.0 communication profileThe CSA 2.8/3.0 communication profile is active when parameter 98.07 is set to CSA 2.8/3.0. The Control Word and Status Word for the profile are described below.

Table 8 Control Word for the CSA 2.8/3.0 communication profile.

Table 9 Status Word for the CSA 2.8/3.0 communication profile.

Bit Name Value Description0 Reserved1 ENABLE 1 Enabled

0 Coast to stop2 Reserved3 START/STOP 0 � 1 Start

0 Stop according to parameter 21.03 STOP FUNCTION4 Reserved5 CNTRL_MODE 1 Select control mode 2

0 Select control mode 16 Reserved7 Reserved8 RESET_FAULT 0 � 1 Reset drive fault

9 … 15 Reserved

Bit Name Value Description0 READY 1 Ready to start

0 Initialising, or initialising error1 ENABLE 1 Enabled

0 Coast to stop2 Reserved3 RUNNING 1 Running with selected reference

0 Stopped4 Reserved5 REMOTE 1 Drive in Remote mode

0 Drive in Local mode6 Reserved7 AT_SETPOINT 1 Drive at reference

0 Drive not at reference8 FAULTED 1 A fault is active

0 No active faults9 WARNING 1 A warning is active

0 No active warnings10 LIMIT 1 Drive at a limit

0 Drive at no limit11 … 15 Reserved

Page 352: VSDS Manual-ABB

Fieldbus control

214

Diverse status, fault, alarm and limit wordsTable 10 The Auxiliary Status Word (Actual Signal 3.03).

Bit Name Description

0 Reserved

1 OUT OF WINDOW Speed difference is out of the window (in speed control)*.

2 Reserved

3 MAGNETIZED Flux has been formed in the motor.

4 Reserved

5 SYNC RDY Position counter synchronised.

6 1 START NOT DONE

Drive has not been started after changing the motor parameters in group 99.

7 IDENTIF RUN DONE

Motor ID Run successfully completed.

8 START INHIBITION Prevention of unexpected start-up active.

9 LIMITING Control at a limit. See actual signal 3.04 LIMIT WORD 1 below.

10 TORQ CONTROL Torque reference is followed*.

11 ZERO SPEED Absolute value of motor actual speed is below zero speed limit (4% of synchronous speed).

12 INTERNAL SPEED FB

Internal speed feedback followed.

13 M/F COMM ERR Master/Follower link (on CH2) communication error*.

14 … 15 Reserved

*See Master/Follower Application Guide (3AFY 58962180 [English]).

Page 353: VSDS Manual-ABB

Fieldbus control

215

Table 11 Limit Word 1 (Actual Signal 3.04).

Table 12 Fault Word 1 (Actual Signal 3.05).

Bit Name Active Limit

0 TORQ MOTOR LIM Pull-out limit.

1 SPD_TOR_MIN_LIM Speed control torque min. limit.

2 SPD_TOR_MAX_LIM Speed control torque max. limit.

3 TORQ_USER_CUR_LIM User-defined current limit.

4 TORQ_INV_CUR_LIM Internal current limit.

5 TORQ_MIN_LIM Any torque min. limit.

6 TORQ_MAX_LIM Any torque max. limit.

7 TREF_TORQ_MIN_LIM Torque reference min. limit.

8 TREF_TORQ_MAX_LIM Torque reference max. limit.

9 FLUX_MIN_LIM Flux reference min. limit.

10 FREQ_MIN_LIMIT Speed/Frequency min. limit.

11 FREQ_MAX_LIMIT Speed/Frequency max. limit.

12 DC_UNDERVOLT DC undervoltage limit.

13 DC_OVERVOLT DC overvoltage limit.

14 TORQUE LIMIT Any torque limit.

15 FREQ_LIMIT Any speed/frequency limit.

Bit Name Description

0 SHORT CIRC For the possible causes and remedies, see the chapter Fault tracing.

1 OVERCURRENT

2 DC OVERVOLT

3 ACS 800 TEMP

4 EARTH FAULT

5 THERMISTOR

6 MOTOR TEMP

7 SYSTEM_FAULT A fault is indicated by the System Fault Word (Actual Signal 3.07).

8 UNDERLOAD For the possible causes and remedies, see the chapter Fault tracing.

9 OVERFREQ

10 … 15 Reserved

Page 354: VSDS Manual-ABB

Fieldbus control

216

Table 13 Fault Word 2 (Actual Signal 3.06).

Bit Name Description

0 SUPPLY PHASE For the possible causes and remedies, see the chapter Fault tracing.

1 NO MOT DATA

2 DC UNDERVOLT

3 Reserved

4 RUN DISABLED For the possible causes and remedies, see the chapter Fault tracing.

5 ENCODER FLT

6 I/O COMM

7 CTRL B TEMP (4100)

8 EXTERNAL FLT

9 OVER SWFREQ Switching overfrequency fault.

10 AI < MIN FUNC For the possible causes and remedies, see the chapter Fault tracing.

11 PPCC LINK

12 COMM MODULE

13 PANEL LOSS

14 MOTOR STALL

15 MOTOR PHASE

Page 355: VSDS Manual-ABB

Fieldbus control

217

Table 14 The System Fault Word (Actual Signal 3.07).

Bit Name Description

0 FLT (F1_7) Factory default parameter file error.

1 USER MACRO User Macro file error.

2 FLT (F1_4) FPROM operating error.

3 FLT (F1_5) FPROM data error.

4 FLT (F2_12) Internal time level 2 overflow.

5 FLT (F2_13) Internal time level 3 overflow.

6 FLT (F2_14) Internal time level 4 overflow.

7 FLT (F2_15) Internal time level 5 overflow.

8 FLT (F2_16) State machine overflow.

9 FLT (F2_17) Application program execution error.

10 FLT (F2_18) Application program execution error.

11 FLT (F2_19) Illegal instruction.

12 FLT (F2_3) Register stack overflow.

13 FLT (F2_1) System stack overflow.

14 FLT (F2_0) System stack underflow.

15 Reserved

Page 356: VSDS Manual-ABB

Fieldbus control

218

Table 15 Alarm Word 1 (Actual Signal 3.08).

Table 16 Alarm Word 2 (Actual Signal 3.09).

Bit Name Description

0 START INHIBIT For the possible causes and remedies, see the chapter Fault tracing.

1 Reserved

2 THERMISTOR For the possible causes and remedies, see the chapter Fault tracing.

3 MOTOR TEMP

4 ACS 800 TEMP

5 ENCODER ERR

6 T MEAS ALM

7 … 11 Reserved

12 COMM MODULE For the possible causes and remedies, see the chapter Fault tracing.

13 Reserved

14 EARTH FAULT For the possible causes and remedies, see the chapter Fault tracing.

15 Reserved

Bit Name Description

0 Reserved

1 UNDERLOAD (ff6A) For the possible causes and remedies, see the chapter Fault tracing.

2, 3 Reserved

4 ENCODER For the possible causes and remedies, see the chapter Fault tracing.

5, 6 Reserved

7 POWFAIL FILE Error in restoring POWERFAIL.DDF.

8 ALM (OS_17) Error in restoring POWERDOWN.DDF.

9 MOTOR STALL (7121) For the possible causes and remedies, see the chapter Fault tracing.

10 AI < MIN FUNC (8110)

11, 12 Reserved

13 PANEL LOSS (5300) For the possible causes and remedies, see the chapter Fault tracing.

14, 15 Reserved

Page 357: VSDS Manual-ABB

Fieldbus control

219

Table 17 The INT Fault Info Word (Actual Signal 3.12). The Word includes information on the location of faults PPCC LINK, OVERCURRENT, EARTH FAULT and SHORT CIRCUIT (see Table 12 Fault Word 1, Table 13 Fault Word 2, and the chapter Fault tracing.

* In use only with parallel inverters. INT 0 is connected to PBU CH1, INT 1 to CH2 etc.

Bit Name Description

0 INT 1 FLT INT 1 board fault*

1 INT 2 FLT INT 2 board fault *

2 INT 3 FLT INT 3 board fault *

3 INT 4 FLT INT 4 board fault *

4 PBU FLT PBU board fault *

5 - Not in use

6 U-PH SC U Phase U upper-leg IGBT(s) short circuit

7 U-PH SC L Phase U lower-leg IGBT(s) short circuit

8 V-PH SC U Phase V upper-leg IGBT(s) short circuit

9 V-PH SC L Phase V lower-leg IGBT(s) short circuit

10 W-PH SC U Phase W upper-leg IGBT(s) short circuit

11 W-PH SC L Phase W lower-leg IGBT(s) short circuit

12 ... 15 Not in use

U V W

INT

Upper-leg IGBTs

Lower-leg IGBTs

Inverter Block Diagram

U V W

INT

U V W

INT

U V W

INT

...

PBU

1 2 3

Inverter Unit Block Diagram (two to four parallel Inverters)

CH1 CH2CH3

RMIO Motor Control and I/O BoardINT Main Circuit Interface BoardPBU PPCS Link Branching UnitRMIO

RMIO

Page 358: VSDS Manual-ABB

Fieldbus control

220

Table 18 Auxiliary Status Word 3 (Actual Signal 3.13)

Table 19 Auxiliary Status Word 4 (Actual Signal 3.14)

Bit Name Description

0 REVERSED Motor rotates in reverse direction.

1 EXT CTRL External control is selected.

2 REF 2 SEL Reference 2 is selected.

3 CONST SPEED A Constant Speed (1…15) is selected.

4 STARTED The drive has received a Start command.

5 USER 2 SEL User Macro 2 has been loaded.

6 OPEN BRAKE The Open Brake command is ON. See group 42 BRAKE CONTROL.

7 LOSS OF REF The reference has been lost.

8 STOP DI STATUS The state of the interlock input on the RMIO board.

9 … 15 Reserved

Bit Name Description

0 SPEED 1 LIM Output speed has exceeded or fallen below supervision limit 1. See group 32 SUPERVISION.

1 SPEED 2 LIM Output speed has exceeded or fallen below supervision limit 2. See group 32 SUPERVISION.

2 CURRENT LIM Motor current has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

3 REF 1 LIM Reference 1 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

4 REF 2 LIM Reference 2 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

5 TORQUE 1 LIM The motor torque has exceeded or fallen below the TORQUE1 supervision limit. See group 32 SUPERVISION.

6 TORQUE 2 LIM The motor torque has exceeded or fallen below the TORQUE2 supervision limit. See group 32 SUPERVISION.

7 ACT 1 LIM PID controller actual value 1 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

8 ACT 2 LIM PID controller actual value 2 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

9 … 15 Reserved

Page 359: VSDS Manual-ABB

Fieldbus control

221

Table 20 Fault Word 4 (Actual Signal 3.15)

Table 21 Alarm Word 4 (Actual Signal 3.16)

Table 22 Fault Word 5 (Actual Signal 3.17)

Table 23 Alarm Word 5 (Actual Signal 3.18)

Bit Name Description

0 Reserved

1 MOTOR 1 TEMP For the possible causes and remedies, see the chapter Fault tracing.

2 MOTOR 2 TEMP

3 BRAKE ACKN

4 … 15 Reserved

Bit Name Description

0 Reserved

1 MOTOR 1 TEMP For the possible causes and remedies, see the chapter Fault tracing.

2 MOTOR 2 TEMP

3 BRAKE ACKN

4 SLEEP MODE

5 … 15 Reserved

Bit Name Description

0 BR BROKEN For the possible causes and remedies, see the chapter Fault tracing.

1 BR WIRING

2 BC SHORT CIR

3 BR OVERHEAT

4 … 15 Reserved

Bit Name Description

0 REPLACE FAN For the possible causes and remedies, see the chapter Fault tracing.

1 SYNCRO SPEED

2 BR OVERHEAT

3 Reserved

4 IN CHOKE TEMP For the possible causes and remedies, see the chapter Fault tracing.

5 … 15 Reserved

Page 360: VSDS Manual-ABB

Fieldbus control

222

Table 24 INT board init fault (Actual Signal 3.19)

Bit Name Description

0 FAULT Wrong EPLD version

1 FAULT Wrong AINT board revision

2 FAULT du/dt limitation hardware failure

3 FAULT Current measurement scaling error

4 FAULT Voltage measurement scaling error

5 … 15 Not in use

Page 361: VSDS Manual-ABB

Analogue Extension Module

223

Analogue Extension Module

Chapter overviewThe chapter describes the use of analogue extension module RAIO as an speed reference interface of ACS800 equipped with Standard Application Program.

Speed control through the analogue extension moduleTwo variants are described:• Bipolar Input in Basic Speed Control• Bipolar Input in Joystick ModeOnly the use of a bipolar input (± signal range) is covered here. The use of unipolar input corresponds to that of a standard unipolar input when:• the settings described below are done, and• the communication between the module and the drive is activated by parameter

98.06.

Basic checksEnsure the drive is:• installed and commissioned, and• the external start and stop signals are connected.Ensure the extension module:• settings are adjusted. (See below.)• is installed and reference signal is connected to AI1.• is connected to the drive.

Settings of the analogue extension module and the drive• Set the module node address to 5 (not required if installed to the option slot of the

drive).• Select the signal type for the module input AI1 (switch).• Select the operation mode (unipolar/bipolar) of the module input (switch). • Ensure the drive parameter settings correspond to the mode of the module inputs

(parameter 98.13 and 98.14).• Set the drive parameters (see the appropriate subsection on the following pages).

Page 362: VSDS Manual-ABB

Analogue Extension Module

224

Parameter settings: bipolar input in basic speed controlThe table below lists the parameters that affect the handling of the speed reference received through the extension module bipolar input AI1 (AI5 of the drive).

The figure below presents the speed reference corresponding to bipolar input AI1 of the extension module .

1) For the negative speed range, the drive must receive a separate reverse command.2) Set if supervision of living zero is used.

Parameter Setting98.06 AI/O EXT MODULE RAIO-SLOT198.13 AI/O EXT AI1 FUNC BIPO AI510.03 DIRECTION FORWARD; REVERSE; REQUEST(1

11.02 EXT1/EXT2 SELECT EXT111.03 EXT REF1 SELECT AI511.04 EXT REF1 MINIMUM minREF111.05 EXT REF1 MAXIMUM maxREF113.16 MINIMUM AI5 minAI513.17 MAXIMUM AI5 maxAI513.18 SCALE AI5 100%13.20 INVERT AI5 NO30.01 AI<MIN FUNCTION (2

Spee

d R

efer

ence

scaled

minREF1

-minAI5 minAI5 maxAI5-maxAI5

-minREF1

-scaled

10.03 DIRECTION =FORWARD orREQUEST1)

Analogue Input Signal

Operation Range

minAI5 = 13.16 MINIMUM AI5 maxAI5 = 13.17 MAXIMUM AI5scaled maxREF1 = 13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

maxREF1

maxREF1

10.03 DIRECTION =REVERSE orREQUEST1)

Page 363: VSDS Manual-ABB

Analogue Extension Module

225

Parameter settings: bipolar input in joystick mode The table below lists the parameters that affect the handling of the speed and direction reference received through the extension module bipolar input AI1 (AI5 of the drive).

The figure below presents the speed reference corresponding to bipolar input AI1 of the extension module in joystick mode.

1) Enables the use of both positive and negative speed range.2) Set if supervision of living zero is used.

Parameter Setting98.06 AI/O EXT MODULE RAIO-SLOT198.13 AI/O EXT AI1 FUNC BIPO AI510.03 DIRECTION FORWARD; REVERSE; REQUEST(1

11.02 EXT1/EXT2 SELECT EXT111.03 EXT REF1 SELECT AI5/JOYST11.04 EXT REF1 MINIMUM minREF111.05 EXT REF1 MAXIMUM maxREF113.16 MINIMUM AI5 minAI513.17 MAXIMUM AI5 maxAI513.18 SCALE AI5 100%13.20 INVERT AI5 NO30.01 AI<MIN FUNCTION (2

Spee

d R

efer

ence

minAI5 = 13.15 MINIMUM AI5maxAI5 = 13.17 MAXIMUM AI5scaled maxREF1 = 13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

scaled

minREF1

-minAI5 minAI5 maxAI5-maxAI5

-minREF1

-scaled

Analogue Input Signal

Operation Range

maxREF1

maxREF1

10.03 DIRECTION =FORWARD orREQUEST1)

10.03 DIRECTION =REVERSE orREQUEST1)

Page 364: VSDS Manual-ABB

Analogue Extension Module

226

Page 365: VSDS Manual-ABB

Additional data: actual signals and parameters

227

Additional data: actual signals and parameters

Chapter overviewThis chapter lists the actual signal and parameter lists with some additional data. For the descriptions, see chapter Actual signals and parameters.

Terms and abbreviations

Fieldbus addressesModbus and Modbus Plus address: 4xxyy, where xxyy = drive parameter number.

Type Rxxx adapter modules (such as RPBA, RIBA, etc.): See the appropriate user’s manual.

Profibus-DP NPBA-12 module: See the tables below.

Interbus-S NIBA-01 module:

• xxyy · 100 + 12288 converted into hexadecimal (xxyy = drive parameter number)

• Example: The index for drive parameter 13.09 is 1309 + 12288 = 13597 = 351D.

Term Definition

PB Profibus equivalent for drive parameters communicating through the NPBA-12 Profibus Adapter.

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Absolute Maximum Frequency Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.

Page 366: VSDS Manual-ABB

Additional data: actual signals and parameters

228

Actual signalsIndex Name Short name FbEq Unit Range PB01 ACTUAL SIGNALS01.01 PROCESS VARIABLE PROC VAR 1 = 1 According to

parameter 34.021

01.02 SPEED SPEED -20000 = -100% 20000 = 100% of motor absolute max. speed

rpm 2

01.03 FREQUENCY FREQ -100 = -1 Hz 100 = 1 Hz

Hz 3

01.04 CURRENT CURRENT 10 = 1 A A 401.05 TORQUE TORQUE -10000 = -100%

10000 = 100% of motor nominal torque

% 5

01.06 POWER POWER 1000 = -100% 1000 = 100% of motor nominal power

% 6

01.07 DC BUS VOLTAGE V DC BUS V 1 = 1 V V 701.08 MAINS VOLTAGE MAINS V 1 = 1 V V 801.09 OUTPUT VOLTAGE OUT VOLT 1 = 1 V V 901.10 ACS800 TEMP ACS TEMP 1 = 1 °C C 1001.11 EXTERNAL REF 1 EXT REF1 1 = 1 rpm rpm 1101.12 EXTERNAL REF 2 EXT REF2 0 = 0% 10000 =

100% 1)% 12

01.13 CTRL LOCATION CTRL LOC (1,2) LOCAL; (3) EXT1; (4) EXT2

LOCAL; EXT1; EXT2 13

01.14 OP HOUR COUNTER OP HOURS 1 = 1 h h 1401.15 KILOWATT HOURS KW HOURS 1 = 100 kWh kWh 1501.16 APPL BLOCK OUTPUT APPL OUT 0 = 0% 10000 =

100%% 16

01.17 DI6-1 STATUS DI6-1 1701.18 AI1 [V] AI1 [V] 1 = 0.001 V V 1801.19 AI2 [mA] AI2 [mA] 1 =0.001 mA mA 1901.20 AI3 [mA] AI3 [mA] 1 = 0.001 mA mA 2001.21 RO3-1 STATUS RO3-1 2101.22 AO1 [mA] AO1 [mA] 1 =0.001 mA mA 2201.23 AO2 [mA] AO2 [mA] 1 = 0.001 mA mA 2301.24 ACTUAL VALUE 1 ACT VAL1 0 = 0% 10000 =

100%% 24

01.25 ACTUAL VALUE 2 ACT VAL2 0 = 0% 10000 = 100%

% 25

01.26 CONTROL DEVIATION CONT DEV -10000 = -100% 10000 = 100%

% 26

01.27 APPLICATION MACRO MACRO 1 … 7 According to parameter 99.02

27

01.28 EXT AO1 [mA] EXT AO1 1 = 0.001 mA mA 2801.29 EXT AO2 [mA] EXT AO2 1 = 0.001 mA mA 2901.30 PP 1 TEMP PP 1 TEM 1 = 1 °C °C 3001.31 PP 2 TEMP PP 2 TEM 1 = 1 °C °C 3101.32 PP 3 TEMP PP 3 TEM 1 = 1 °C °C 3201.33 PP 4 TEMP PP 4 TEM 1 = 1 °C °C 3301.34 ACTUAL VALUE ACT V 0 = 0% 10000 =

100%% 34

01.35 MOTOR 1 TEMP M 1 TEMP 1 = 1 °C °C 3501.36 MOTOR 2 TEMP M 2 TEMP 1 = 1 °C °C 3601.37 MOTOR TEMP EST MOTOR TE 1 = 1 °C °C 3701.38 AI5 [mA] AI5 [mA] 1 = 0.001 mA mA 38

Page 367: VSDS Manual-ABB

Additional data: actual signals and parameters

229

01.39 AI6 [mA] AI6 [mA] 1 = 0.001 mA mA 3901.40 DI7-12 STATUS DI7..12 1 = 1 4001.41 EXT RO STATUS EXT RO 1 = 1 4101.42 PROCESS SPEED REL P SPEED 1 = 1 % 4201.43 MOTOR RUN TIME MOTOR RUN TIME 1 = 10 h h 4301.44 FAN ON-TIME FAN TIME 1 = 10 h h 4401.45 CTRL BOARD TEMP CTRL B T 1 = 1 °C °C 4502 ACTUAL SIGNALS02.01 SPEED REF 2 S REF 2 0 = 0% 20000 =

100% of motor absolute max. speed

rpm 5102.02 SPEED REF 3 S REF 3 rpm 52

02.09 TORQUE REF 2 T REF 2 0 = 0% 10000 = 100% of motor nominal torque

% 5902.10 TORQUE REF 3 T REF 3 % 6002.13 TORQ USED REF T USED R % 6302.14 FLUX REF FLUX REF 0 = 0% 10000 =

100%% 64

02.17 SPEED ESTIMATED SPEED ES 0 = 0% 20000 = 100% of motor absolute max. speed

rpm 6702.18 SPEED MEASURED SPEED ME rpm 68

03 ACTUAL SIGNALS 2)03.01 MAIN CTRL WORD MAIN CW 0 ... 65535 (Decimal) 7603.02 MAIN STATUS WORD MAIN SW 0 ... 65535 (Decimal) 7703.03 AUX STATUS WORD AUX SW 0 ... 65535 (Decimal) 7803.04 LIMIT WORD 1 LIMIT W1 0 ... 65535 (Decimal) 7903.05 FAULT WORD 1 FAULT W1 0 ... 65535 (Decimal) 8003.06 FAULT WORD 2 FAULT W2 0 ... 65535 (Decimal) 8103.07 SYSTEM FAULT SYS FLT 0 ... 65535 (Decimal) 8203.08 ALARM WORD 1 ALARM W1 0 ... 65535 (Decimal) 8303.09 ALARM WORD 2 ALARM W2 0 ... 65535 (Decimal) 8403.11 FOLLOWER MCW FOLL MCW 0 ... 65535 (Decimal) 8603.12 INT FAULT INFO INT FAUL 0 ... 65535 (Decimal) 8703.13 AUX STATUS WORD 3 AUX SW 3 0 ... 65535 (Decimal) 8803.14 AUX STATUS WORD 4 AUX SW 4 0 ... 65535 (Decimal) 8903.15 FAULT WORD 4 FAULT W4 0 ... 65535 (Decimal) 9003.16 ALARM WORD 4 ALARM W4 0 ... 65535 (Decimal) 913.17 FAULT WORD 5 FAULT W5 0 ... 65535 (Decimal) 923.18 ALARM WORD 5 ALARM W5 0 ... 65535 (Decimal) 933.19 INT INIT FAULT INT INIT 0 ... 65535 (Decimal) 943.20 LATEST FAULT LAST FLT 0 ... 65535 (Decimal) 953.21 2.LATEST FAULT 2.FAULT 0 ... 65535 (Decimal) 963.22 3.LATEST FAULT 3.FAULT 0 ... 65535 (Decimal) 973.23 4.LATEST FAULT 4.FAULT 0 ... 65535 (Decimal) 983.24 5.LATEST FAULT 5.FAULT 0 ... 65535 (Decimal) 993.25 LATEST WARNING LAST WRN 0 ... 65535 (Decimal)3.26 2.LATEST WARNING 2.WARN 0 ... 65535 (Decimal)3.27 3.LATEST WARNING 3.WARN 0 ... 65535 (Decimal)3.28 4.LATEST WARNING 4.WARN 0 ... 65535 (Decimal)3.29 5.LATEST WARNING 5.WARN 0 ... 65535 (Decimal)09 ACTUAL SIGNALS09.01 AI1 SCALED AI1 SCAL 20000 = 10 v 0 … 20000 -09.02 AI2 SCALED AI2 SCAL 20000 = 20 mA 0 … 20000 -09.03 AI3 SCALED AI3 SCAL 20000 = 20 mA 0 … 20000 -09.04 AI5 SCALED AI5 SCAL 20000 = 20 mA 0 … 20000 -09.05 AI6 SCALED AI6 SCAL 20000 = 20 mA 0 … 20000 -09.06 DS MCW DS MCW 0 ... 65535 (Decimal) 0 ... 65535 (Decimal) -09.07 MASTER REF1 M REF1 -32768 … 32767 -32768 … 32767 -09.08 MASTER REF2 M REF2 -32768 … 32767 -32768 … 32767 -09.09 AUX DS VAL1 AUX DSV1 -32768 … 32767 -32768 … 32767 -

Index Name Short name FbEq Unit Range PB

Page 368: VSDS Manual-ABB

Additional data: actual signals and parameters

230

1) Percent of motor max. speed / nominal torque / max. process reference (depending on the ACS800 macro selected).

2) The contents of these data words are detailed in the chapter Fieldbus control. For the contents of Actual Signal 3.11, see the Master/Follower Application Guide (3AFE 64590430 [English]).

Parameters

09.10 AUX DS VAL2 AUX DSV2 -32768 … 32767 -32768 … 32767 -09.11 AUX DS VAL3 AUX DSV3 -32768 … 32767 -32768 … 32767 -

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB10 START/STOP/DIR10.01 EXT1 STRT/STP/DIR DI1,2 (US:

DI1P,DI2P)DI1,2 DI1 DI1,2 DI1,2 101

10.02 EXT2 STRT/STP/DIR NOT SEL DI6,5 DI6 DI1,2 NOT SEL 10210.03 REF DIRECTION FORWARD REQUEST FORWARD REQUEST REQUEST 10310.04 EXT 1 STRT PTR 0 0 0 0 10410.05 EXT 2 STRT PTR 0 0 0 0 0 10510.06 JOG SPEED SELECT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 10610.07 NET CONTROL 0 0 0 0 0 10710.08 NET REFERENCE 0 0 0 0 0 10811 REFERENCE SELECT11.01 KEYPAD REF SEL REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) 12611.02 EXT1/EXT2 SELECT EXT1 DI3 DI3 DI3 EXT1 12711.03 EXT REF1 SELECT AI1 AI1 AI1 AI1 AI1 12811.04 EXT REF1 MINIMUM 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12911.05 EXT REF1 MAXIMUM 1500 rpm 1500 rpm 1500 rpm 1500 rpm 1500 rpm 13011.06 EXT REF2 SELECT KEYPAD AI2 AI1 AI2 AI1 13111.07 EXT REF2 MINIMUM 0% 0% 0% 0% 0% 13211.08 EXT REF2 MAXIMUM 100% 100% 100% 100% 100% 13311.09 EXT 1/2 SEL PTR 0 0 0 0 0 13411.10 EXT 1 REF PTR 0 0 0 0 0 13511.11 EXT 2 REF PTR 0 0 0 0 0 13612 CONSTANT SPEEDS12.01 CONST SPEED SEL DI5,6 DI4(SPEED4) DI4(SPEED4) DI4(SPEED4) DI4,5,6 15112.02 CONST SPEED 1 300 rpm 300 rpm 300 rpm 300 rpm 300 rpm 15212.03 CONST SPEED 2 600 rpm 600 rpm 600 rpm 600 rpm 600 rpm 15312.04 CONST SPEED 3 900 rpm 900 rpm 900 rpm 900 rpm 900 rpm 15412.05 CONST SPEED 4 300 rpm 300 rpm 300 rpm 300 rpm 1200 rpm 15512.06 CONST SPEED 5 0 rpm 0 rpm 0 rpm 0 rpm 1500 rpm 15612.07 CONST SPEED 6 0 rpm 0 rpm 0 rpm 0 rpm 2400 rpm 15712.08 CONST SPEED 7 0 rpm 0 rpm 0 rpm 0 rpm 3000 rpm 15812.09 CONST SPEED 8 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 15912.10 CONST SPEED 9 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16012.11 CONST SPEED 10 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16112.12 CONST SPEED 11 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16212.13 CONST SPEED 12 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16312.14 CONST SPEED 13 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16412.15 CONST SPEED 14 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16512.16 CONST SPEED 15 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16613 ANALOGUE INPUTS13.01 MINIMUM AI1 0 V 0 V 0 V 0 V 0 V 17613.02 MAXIMUM AI1 10 V 10 V 10 V 10 V 10 V 17713.03 SCALE AI1 100% 100% 100% 100% 100% 17813.04 FILTER AI1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 17913.05 INVERT AI1 NO NO NO NO NO 18013.06 MINIMUM AI2 0 mA 0 mA 0 mA 0 mA 0 mA 181

Index Name Short name FbEq Unit Range PB

Page 369: VSDS Manual-ABB

Additional data: actual signals and parameters

231

13.07 MAXIMUM AI2 20 mA 20 mA 20 mA 20 mA 20 mA 18213.08 SCALE AI2 100% 100% 100% 100% 100% 18313.09 FILTER AI2 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 18413.10 INVERT AI2 NO NO NO NO NO 18513.11 MINIMUM AI3 0 mA 0 mA 0 mA 0 mA 0 mA 18613.12 MAXIMUM AI3 20 mA 20 mA 20 mA 20 mA 20 mA 18713.13 SCALE AI3 100% 100% 100% 100% 100% 18813.14 FILTER AI3 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 18913.15 INVERT AI3 NO NO NO NO NO 19013.16 MINIMUM AI5 0 mA 0 mA 0 mA 0 mA 0 mA 19113.17 MAXIMUM AI5 20 mA 20 mA 20 mA 20 mA 20 mA 19213.18 SCALE AI5 100% 100% 100% 100% 100% 19313.19 FILTER AI5 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 19413.20 INVERT AI5 NO NO NO NO NO 19513.21 MINIMUM AI6 0 mA 0 mA 0 mA 0 mA 0 mA 19613.22 MAXIMUM AI6 20 mA 20 mA 20 mA 20 mA 20 mA 19713.23 SCALE AI6 100% 100% 100% 100% 100% 19813.24 FILTER AI6 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 19913.25 INVERT AI6 NO NO NO NO NO 20014 RELAY OUTPUTS14.01 RELAY RO1 OUTPUT READY READY READY READY READY 20114.02 RELAY RO2 OUTPUT RUNNING RUNNING RUNNING RUNNING RUNNING 20214.03 RELAY RO3 OUTPUT FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) 20314.04 RO1 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20414.05 RO1 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20514.06 RO2 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20614.07 RO2 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20714.08 RO3 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20814.09 RO3 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 20914.10 DIO MOD1 RO1 READY READY READY READY READY 21014.11 DIO MOD1 RO2 RUNNING RUNNING RUNNING RUNNING RUNNING 21114.12 DIO MOD2 RO1 FAULT FAULT FAULT FAULT FAULT 21214.13 DIO MOD2 RO2 WARNING WARNING WARNING WARNING WARNING 21314.14 DIO MOD3 RO1 REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL 21414.15 DIO MOD3 RO2 AT SPEED AT SPEED AT SPEED AT SPEED AT SPEED 21514.16 RO PTR1 0 0 0 0 0 21614.17 RO PTR2 0 0 0 0 0 21714.18 RO PTR3 0 0 0 0 0 21814.19 RO PTR4 0 0 0 0 0 21914.20 RO PTR5 0 0 0 0 0 22014.21 RO PTR6 0 0 0 0 0 22114.22 RO PTR7 0 0 0 0 0 22214.23 RO PTR8 0 0 0 0 0 22314.24 RO PTR9 0 0 0 0 0 22415 ANALOGUE OUTPUTS15.01 ANALOGUE OUTPUT1 SPEED SPEED SPEED SPEED SPEED 22615.02 INVERT AO1 NO NO NO NO NO 22715.03 MINIMUM AO1 0 mA 0 mA 0 mA 0 mA 0 mA 22815.04 FILTER AO1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 22915.05 SCALE AO1 100% 100% 100% 100% 100% 23015.06 ANALOGUE OUTPUT2 CURRENT CURRENT CURRENT CURRENT CURRENT 23115.07 INVERT AO2 NO NO NO NO NO 23215.08 MINIMUM AO2 0 mA 0 mA 0 mA 0 mA 0 mA 23315.09 FILTER AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 23415.10 SCALE AO2 100% 100% 100% 100% 100% 23515.11 AO1 PTR 0 0 0 0 0 23615.12 AO2 PTR 0 0 0 0 0 237

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 370: VSDS Manual-ABB

Additional data: actual signals and parameters

232

16 SYSTEM CTRL INPUTS16.01 RUN ENABLE YES YES DI5 DI6 YES 25116.02 PARAMETER LOCK OPEN OPEN OPEN OPEN OPEN 25216.03 PASS CODE 0 0 0 0 0 25316.04 FAULT RESET SEL NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 25416.05 USER MACRO IO CHG NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 25516.06 LOCAL LOCK OFF OFF OFF OFF OFF 25616.07 PARAMETER SAVE DONE DONE DONE DONE DONE 25716.08 RUN ENA PTR 0 0 0 0 0 25816.09 CTRL BOARD SUPPLY INTERNAL 24V INTERNAL 24V INTERNAL 24V INTERNAL 24V INTERNAL 24V 25920 LIMITS20.01 MINIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 35120.02 MAXIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 35220.03 MAXIMUM CURRENT type specific type specific type specific type specific type specific 35320.04 TORQ MAX LIM1 300% 300% 300% 300% 300% 35420.05 OVERVOLTAGE CTRL ON ON ON ON ON 35520.06 UNDERVOLTAGE CTRL ON ON ON ON ON 35620.07 MINIMUM FREQ - 50 Hz - 50 Hz - 50 Hz - 50 Hz - 50 Hz 35720.08 MAXIMUM FREQ 50 Hz 50 Hz 50 Hz 50 Hz 50 Hz 35820.11 P MOTORING LIM 300% 300% 300% 300% 300% 36120.12 P GENERATING LIM -300% -300% -300% -300% -300% 36220.13 MIN TORQ SEL NEG MAX

TORQNEG MAX TORQ

NEG MAX TORQ

NEG MAX TORQ

NEG MAX TORQ

363

20.14 MAX TORQ SEL MAX LIM1 MAX LIM1 MAX LIM1 MAX LIM1 MAX LIM1 36420.15 TORQ MIN LIM1 0.0% 0.0% 0.0% 0.0% 0.0% 36520.16 TORQ MIN LIM2 0.0% 0.0% 0.0% 0.0% 0.0% 36620.17 TORQ MAX LIM2 300.0% 300.0% 300.0% 300.0% 300.0% 36720.18 TORQ MIN PTR 0 0 0 0 0 36820.19 TORQ MAX PTR 0 0 0 0 0 36920.20 MIN AI SCALE 0% 0% 0% 0% 0% 37020.21 MAX AI SCALE 300% 300% 300% 300% 300% 37121 START/STOP21.01 START FUNCTION AUTO AUTO AUTO AUTO AUTO 37621.02 CONST MAGN TIME 500.0 ms 500.0 ms 500.0 ms 500.0 ms 500.0 ms 37721.03 STOP FUNCTION COAST COAST COAST COAST RAMP 37821.04 DC HOLD NO NO NO NO NO 37921.05 DC HOLD SPEED 5 rpm 5 rpm 5 rpm 5 rpm 5 rpm 38021.06 DC HOLD CURR 30% 30% 30% 30% 30% 38121.07 RUN ENABLE FUNC COAST STOP COAST STOP COAST STOP COAST STOP COAST STOP 38221.08 SCALAR FLY START NO NO NO NO NO 38321.09 START INTRL FUNC OFF2 STOP OFF2 STOP OFF2 STOP OFF2 STOP OFF2 STOP 38421.10 ZERO SPEED DELAY 0.5 s 0.5 s 0.5 s 0.5 s 0.5 s 38522 ACCEL/DECEL22.01 ACC/DEC SEL DI4 ACC/DEC 1 ACC/DEC 1 DI5 DI3 40122.02 ACCEL TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 40222.03 DECEL TIME 1 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 40322.04 ACCEL TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 40422.05 DECEL TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 40522.06 ACC/DEC RAMP SHPE 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 40622.07 EM STOP RAMP TIME 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 40722.08 ACC PTR 0 0 0 0 0 40822.09 DEC PTR 0 0 0 0 0 40923 SPEED CTRL23.01 GAIN 10 10 10 10 10 42623.02 INTEGRATION TIME 2.50 s 2.50 s 2.50 s 2.50 s 2.50 s 42723.03 DERIVATION TIME 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 42823.04 ACC COMPENSATION 0.00 s 0.00 s 0.00 s 0.00 s 0.12 s 42923.05 SLIP GAIN 100.0% 100.0% 100.0% 100.0% 100.0% 430

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 371: VSDS Manual-ABB

Additional data: actual signals and parameters

233

23.06 AUTOTUNE RUN NO NO NO NO NO 43124 TORQUE CTRL24.01 TORQ RAMP UP 0.00 s 45124.02 TORQ RAMP DOWN 0.00 s 45225 CRITICAL SPEEDS25.01 CRIT SPEED SELECT OFF OFF OFF OFF OFF 47625.02 CRIT SPEED 1 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47725.03 CRIT SPEED 1 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47825.04 CRIT SPEED 2 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47925.05 CRIT SPEED 2 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48025.06 CRIT SPEED 3 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48125.07 CRIT SPEED 3 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48226 MOTOR CONTROL26.01 FLUX OPTIMIZATION NO NO NO NO NO 50126.02 FLUX BRAKING YES YES YES YES YES 50226.03 IR-COMPENSATION 0% 0% 0% 0% 0% 50326.05 HEX FIELD WEAKEN NO NO NO NO NO 50426.06 FLUX REF PTR 0 0 0 0 0 50627 BRAKE CHOPPER27.01 BRAKE CHOPPER CTL OFF OFF OFF OFF OFF27.02 BR OVERLOAD FUNC NO NO NO NO NO27.03 BR RESISTANCE27.04 BR THERM TCONST 0 s 0 s 0 s 0 s 0 s27.05 MAX CONT BR POWER 0 kW 0 kW 0 kW 0 kW 0 kW27.06 BC CTRL MODE AS GENERATOR AS GENERATOR AS GENERATOR AS GENERATOR AS GENERATOR30 FAULT FUNCTIONS30.01 AI<MIN FUNCTION FAULT FAULT FAULT FAULT FAULT 60130.02 PANEL LOSS FAULT FAULT FAULT FAULT FAULT 60230.03 EXTERNAL FAULT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 60330.04 MOTOR THERM PROT NO NO NO NO NO 60430.05 MOT THERM P MODE DTC/USER

MODEDTC/USER MODE

DTC/USER MODE

DTC/USER MODE

DTC/USER MODE

605

30.06 MOTOR THERM TIME (calculated) (calculated) (calculated) (calculated) (calculated) 60630.07 MOTOR LOAD CURVE 100.0% 100.0% 100.0% 100.0% 100.0% 60730.08 ZERO SPEED LOAD 74.0% 74.0% 74.0% 74.0% 74.0% 60830.09 BREAK POINT 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 60930.10 STALL FUNCTION FAULT FAULT FAULT FAULT FAULT 61030.11 STALL FREQ HI 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 61130.12 STALL TIME 20.00 s 20.00 s 20.00 s 20.00 s 20.00 s 61230.13 UNDERLOAD FUNC NO NO NO NO NO 61330.14 UNDERLOAD TIME 600.0 s 600.0 s 600.0 s 600.0 s 600.0 s 61430.15 UNDERLOAD CURVE 1 1 1 1 1 61530.16 MOTOR PHASE LOSS NO NO NO NO NO 61630.17 EARTH FAULT FAULT FAULT FAULT FAULT FAULT 61730.18 COMM FLT FUNC FAULT FAULT FAULT FAULT FAULT 61830.19 MAIN REF DS T-OUT 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 61930.20 COMM FLT RO/AO ZERO ZERO ZERO ZERO ZERO 62030.21 AUX DS T-OUT 3.0 s 3.0 s 3.0 s 3.0 s 3.0 s 62130.22 IO CONFIG FUNC WARNING WARNING WARNING WARNING WARNING 62231 AUTOMATIC RESET31.01 NUMBER OF TRIALS 0 0 0 0 0 62631.02 TRIAL TIME 30.0 s 30.0 s 30.0 s 30.0 s 30.0 s 62731.03 DELAY TIME 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 62831.04 OVERCURRENT NO NO NO NO NO 62931.05 OVERVOLTAGE NO NO NO NO NO 63031.06 UNDERVOLTAGE NO NO NO NO 63131.07 AI SIGNAL<MIN NO NO NO NO NO 632

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 372: VSDS Manual-ABB

Additional data: actual signals and parameters

234

32 SUPERVISION32.01 SPEED1 FUNCTION NO NO NO NO NO 65132.02 SPEED1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 65232.03 SPEED2 FUNCTION NO NO NO NO NO 65332.04 SPEED2 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 65432.05 CURRENT FUNCTION NO NO NO NO NO 65532.06 CURRENT LIMIT 0 0 0 0 0 65632.07 TORQUE 1 FUNCTION NO NO NO NO NO 65732.08 TORQUE 1 LIMIT 0% 0% 0% 0% 0% 65832.09 TORQUE 2 FUNCTION NO NO NO NO NO 65932.10 TORQUE 2 LIMIT 0% 0% 0% 0% 0% 66032.11 REF1 FUNCTION NO NO NO NO NO 66132.12 REF1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 66232.13 REF2 FUNCTION NO NO NO NO NO 66332.14 REF2 LIMIT 0% 0% 0% 0% 0% 66432.15 ACT1 FUNCTION NO NO NO NO NO 66532.16 ACT1 LIMIT 0% 0% 0% 0% 0% 66632.17 ACT2 FUNCTION NO NO NO NO NO 66732.18 ACT2 LIMIT 0% 0% 0% 0% 0% 66833 INFORMATION33.01 SOFTWARE VERSION (Version) (Version) (Version) (Version) (Version) 67633.02 APPL SW VERSION (Version) (Version) (Version) (Version) (Version) 67733.03 TEST DATE (Date) (Date) (Date) (Date) (Date) 67834 PROCESS VARIABLE34.01 SCALE 100 100 100 100 100 70134.02 P VAR UNIT % % % % % 70234.03 SELECT P VAR 142 142 142 142 142 70334.04 MOTOR SP FILT TIM 500 ms 500 ms 500 ms 500 ms 500 ms 70434.05 TORQ ACT FILT TIM 100 ms 100 ms 100 ms 100 ms 100 ms 70534.06 RESET RUN TIME NO NO NO NO NO 70635 MOT TEMP MEAS35.01 MOT 1 TEMP AI1 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 72635.02 MOT 1 TEMP ALM L 110 110 110 110 110 72735.03 MOT 1 TEMP FLT L 130 130 130 130 130 72835.04 MOT 2 TEMP AI2 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 72935.05 MOT 2 TEMP ALM L 110 110 110 110 110 73035.06 MOT 2 TEMP FLT L 130 130 130 130 130 73135.07 MOT MOD COMPENSAT YES YES YES YES YES 73240 PID CONTROL40.01 PID GAIN 1 1 1 1 1 85140.02 PID INTEG TIME 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 85240.03 PID DERIV TIME 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 85340.04 PID DERIV FILTER 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s 85440.05 ERROR VALUE INV NO NO NO NO NO 85540.06 ACTUAL VALUE SEL ACT1 ACT1 ACT1 ACT1 ACT1 85640.07 ACTUAL1 INPUT SEL AI2 AI2 AI2 AI2 AI2 85740.08 ACTUAL2 INPUT SEL AI2 AI2 AI2 AI2 AI2 85840.09 ACT1 MINIMUM 0 0 0 0 0 85940.10 ACT1 MAXIMUM 100% 100% 100% 100% 100% 86040.11 ACT2 MINIMUM 0% 0% 0% 0% 0% 86140.12 ACT2 MAXIMUM 100% 100% 100% 100% 100% 86240.13 PID INTEGRATION ON ON ON ON ON 86340.14 TRIM MODE OFF OFF OFF OFF 86440.15 TRIM REF SEL AI1 AI1 AI1 AI1 86540.16 TRIM REFERENCE 0.0% 0.0% 0.0% 0.0% 0.0% 86640.17 TRIM RANGE ADJUST 100.0% 100.0% 100.0% 100.0% 100.0% 86740.18 TRIM SELECTION SPEED TRIM 86840.19 ACTUAL FILT TIME 0.04 s 0.04 s 0.04 s 0.04 s 0.04 s 869

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 373: VSDS Manual-ABB

Additional data: actual signals and parameters

235

40.20 SLEEP SELECTION not visible not visible OFF not visible not visible 87040.21 SLEEP LEVEL not visible not visible 0.0 rpm not visible not visible 87140.22 SLEEP DELAY not visible not visible 0.0 s not visible not visible 87240.23 WAKE UP LEVEL not visible not visible 0% not visible not visible 87340.24 WAKE UP DELAY not visible not visible 0.0 s not visible not visible 87440.25 ACTUAL1 PTR 0 0 0 0 0 87540.26 PID MINIMUM -100.0% -100.0% -100.0% -100.0% -100.0% 87640.27 PID MAXIMUM 100.0% 100.0% 100.0% 100.0% 100.0% 87742 BRAKE CONTROL42.01 BRAKE CTRL OFF OFF OFF OFF OFF -42.02 BRAKE ACKNOWLEDGE OFF OFF OFF OFF OFF -42.03 BRAKE OPEN DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.04 BRAKE CLOSE DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.05 ABS BRAKE CLS SPD 10 rpm 10 rpm 10 rpm 10 rpm 10 rpm -42.06 BRAKE FAULT FUNC FAULT FAULT FAULT FAULT FAULT -42.07 START TORQ REF SEL NO NO NO NO NO -42.08 START TORQ REF 0% 0% 0% 0% 0% -42.09 EXTEND RUN T 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.10 LOW REF BRK HOLD 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -50 ENCODER MODULE50.01 PULSE NR 2048 2048 2048 2048 2048 100150.02 SPEED MEAS MODE A --- B --- A --- B --- A --- B --- A --- B --- A --- B --- 100250.03 ENCODER FAULT WARNING WARNING WARNING WARNING WARNING 100350.04 ENCODER DELAY 1000 1000 1000 1000 1000 100450.05 ENCODER DDCS

CHANNELCHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 1005

50.06 SPEED FB SEL INTERNAL INTERNAL INTERNAL INTERNAL INTERNAL 100651 COMM MOD DATA 1026

...52 STANDARD MODBUS52.01 STATION NUMBER 1 1 1 1 1 105152.02 BAUDRATE 9600 9600 9600 9600 9600 105252.03 PARITY ODD ODD ODD ODD ODD 105360 MASTER/FOLLOWER60.01 MASTER LINK MODE NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 119560.02 TORQUE SELECTOR not visible not visible not visible TORQUE not visible 119660.03 WINDOW SEL ON not visible not visible not visible NO not visible 116760.04 WINDOW WIDTH POS not visible not visible not visible 0 not visible 119860.05 WINDOW WIDTH NEG not visible not visible not visible 0 not visible 119960.06 DROOP RATE 0 0 0 0 0 120060.07 MASTER SIGNAL 2 202 202 202 202 202 120160.08 MASTER SIGNAL 3 213 213 213 213 213 120270 DDCS CONTROL70.01 CHANNEL 0 ADDR 1 1 1 1 1 137570.02 CHANNEL 3 ADDR 1 1 1 1 1 137670.03 CH1 BAUDRATE 2 Mbits 2 Mbits 2 Mbits 2 Mbits 2 Mbits 137770.04 CH0 DDCS HW CONN RING RING RING RING RING 137883 ADAPT PROG CTRL83.01 ADAPT PROG CMD EDIT EDIT EDIT EDIT EDIT 160983.02 EDIT COMMAND NO NO NO NO NO 161083.03 EDIT BLOCK 0 0 0 0 0 161183.04 TIMELEVEL SEL 100ms 100ms 100ms 100ms 100ms 161283.05 PASSCODE 0 0 0 0 0 161384 ADAPTIVE PROGRAM84.01 STATUS 162884.02 FAULTED PAR 162984.05 BLOCK1 NO NO NO NO NO 163084.06 INPUT1 0 0 0 0 0 1631

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 374: VSDS Manual-ABB

Additional data: actual signals and parameters

236

84.07 INPUT2 0 0 0 0 0 163284.08 INPUT3 0 0 0 0 0 163384.09 OUTPUT 0 0 0 0 0 1634… … …

164484.79 OUTPUT 0 0 0 0 0 -85 USER CONSTANTS85.01 CONSTANT1 0 0 0 0 0 164585.02 CONSTANT2 0 0 0 0 0 164685.03 CONSTANT3 0 0 0 0 0 164785.04 CONSTANT4 0 0 0 0 0 164885.05 CONSTANT5 0 0 0 0 0 164985.06 CONSTANT6 0 0 0 0 0 165085.07 CONSTANT7 0 0 0 0 0 165185.08 CONSTANT8 0 0 0 0 0 165285.09 CONSTANT9 0 0 0 0 0 165385.10 CONSTANT10 0 0 0 0 0 165485.11 STRING1 MESSAGE1 MESSAGE1 MESSAGE1 MESSAGE1 MESSAGE1 165585.12 STRING2 MESSAGE2 MESSAGE2 MESSAGE2 MESSAGE2 MESSAGE2 165685.13 STRING3 MESSAGE3 MESSAGE3 MESSAGE3 MESSAGE3 MESSAGE3 165785.14 STRING4 MESSAGE4 MESSAGE4 MESSAGE4 MESSAGE4 MESSAGE4 165885.15 STRING5 MESSAGE5 MESSAGE5 MESSAGE5 MESSAGE5 MESSAGE5 165990 D SET REC ADDR90.01 AUX DS REF3 0 0 0 0 0 173590.02 AUX DS REF4 0 0 0 0 0 173690.03 AUX DS REF5 0 0 0 0 0 173790.04 MAIN DS SOURCE 1 1 1 1 1 173890.05 AUX DS SOURCE 3 3 3 3 3 173992 D SET TR ADDR92.01 MAIN DS STATUS WORD 302 302 302 302 302 177192.02 MAIN DS ACT1 102 102 102 102 102 177292.03 MAIN DS ACT2 105 105 105 105 105 177392.04 AUX DS ACT3 305 305 305 305 305 177492.05 AUX DS ACT4 308 308 308 308 308 177592.06 AUX DS ACT5 306 306 306 306 306 177696 EXTERNAL AO96.01 EXT AO1 SPEED SPEED SPEED SPEED SPEED 184396.02 INVERT EXT AO1 NO NO NO NO NO 184496.03 MINIMUM EXT AO1 0 mA 0 mA 0 mA 0 mA 0 mA 184596.04 FILTER EXT AO1 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 184696.05 SCALE EXT AO1 100% 100% 100% 100% 100% 184796.06 EXT AO2 CURRENT CURRENT CURRENT CURRENT CURRENT 184896.07 INVERT EXT AO2 NO NO NO NO NO 184996.08 MINIMUM EXT AO2 0 mA 0 mA 0 mA 0 mA 0 mA 185096.09 FILTER EXT AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 185196.10 SCALE EXT AO2 100% 100% 100% 100% 100% 185296.11 EXT AO1 PTR 0 0 0 0 0 185396.12 EXT AO2 PTR 0 0 0 0 0 185498 OPTION MODULES98.01 ENCODER MODULE NO NO NO NO NO 190198.02 COMM. MODULE LINK NO NO NO NO NO 190298.03 DI/O EXT MODULE 1 NO NO NO NO NO 190398.04 DI/O EXT MODULE 2 NO NO NO NO NO 190498.05 DI/O EXT MODULE 3 NO NO NO NO NO 190598.06 AI/O EXT MODULE NO NO NO NO NO 190698.07 COMM PROFILE ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES 190798.09 DI/O EXT1 DI FUNC DI7,8,9 DI7,8,9 DI7,8,9 DI7,8,9 DI7,8,9 190998.10 DI/O EXT2 DI FUNC DI10,11,12 DI10,11,12 DI10,11,12 DI10,11,12 DI10,11,12 1910

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 375: VSDS Manual-ABB

Additional data: actual signals and parameters

237

98.11 DI/O EXT3 DI FUNC DI11,12 DI11,12 DI11,12 DI11,12 DI11,12 191198.12 AI/O MOTOR TEMP NO NO NO NO NO 191298.13 AI/O EXT AI1 FUNC UNIPOLAR AI5 UNIPOLAR AI5 UNIPOLAR AI5 UNIPOLAR AI5 UNIPOLAR AI5 191398.14 AI/O EXT AI2 FUNC UNIPOLAR AI6 UNIPOLAR AI6 UNIPOLAR AI6 UNIPOLAR AI6 UNIPOLAR AI6 191499 START-UP DATA99.01 LANGUAGE ENGLISH ENGLISH ENGLISH ENGLISH ENGLISH 192699.02 APPLICATION MACRO FACTORY HAND/AUTO PID-CTRL T CTRL SEQ CTRL 192799.03 APPLIC RESTORE NO NO NO NO NO 192899.04 MOTOR CTRL MODE DTC DTC DTC DTC DTC 192999.05 MOTOR NOM VOLTAGE 0 V 0 V 0 V 0 V 0 V 193099.06 MOTOR NOM CURRENT 0.0 A 0.0 A 0.0 A 0.0 A 0.0 A 193199.07 MOTOR NOM FREQ 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 193299.08 MOTOR NOM SPEED 1 rpm 1 rpm 1 rpm 1 rpm 1 rpm 193399.09 MOTOR NOM POWER 0.0 kW 0.0 kW 0.0 kW 0.0 kW 0.0 kW 193499.10 MOTOR ID RUN MODE ID MAGN ID MAGN ID MAGN ID MAGN ID MAGN 193599.11 DEVICE NAME 1936

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB

Page 376: VSDS Manual-ABB

Additional data: actual signals and parameters

238

Page 377: VSDS Manual-ABB

Control block diagrams

239

Control block diagrams

Chapter overviewDiagram Related

diagrams

Reference control chain, sheet 1Valid when FACTORY, HAND/AUTO, SEQ CTRL or T CTRL macro is active (see parameter 99.02).

Continued on sheet 2

Reference control chain, sheet 1Valid when PID CTRL macro is active (see parameter 99.02).

Continued on sheet 2

Reference control chain, sheet 2Valid with all macros (see parameter 99.02).

Continued from sheet 1

Handling of Start, Stop, Run Enable Start InterlockValid with all macros (see parameter 99.02).

-

Handling of Reset and On/OffValid with all macros (see parameter 99.02).

-

Page 378: VSDS Manual-ABB

Control block diagrams

240

Reference control chain, sheet 1: FACTORY, HAND/AUTO, SEQ CTRL and T CTRL macros (continued on the next page …)

a

b

c

d

Page 379: VSDS Manual-ABB

Control block diagrams

241

… continued from the previous page

a

b

c

d

Page 380: VSDS Manual-ABB

Control block diagrams

242

Reference control chain sheet 1: PID CTRL macro (continued on the next page …)

a

b

c

Page 381: VSDS Manual-ABB

Control block diagrams

243

… continued from the previous page

a

b

c

Page 382: VSDS Manual-ABB

Control block diagrams

244

Reference control chain sheet 2: All macros (continued on the next page …)

a

b

c

d

Page 383: VSDS Manual-ABB

Control block diagrams

245

… continued from the previous page

a

b

c

d

Page 384: VSDS Manual-ABB

Control block diagrams

246

Handling of Start, Stop, Run Enable and Start Interlock

Page 385: VSDS Manual-ABB

Control block diagrams

247

Handling of Reset and On/OffThe diagram below is a detail to the previous diagram (Handling of Start, Stop, Run Enable and Start Interlock).

Page 386: VSDS Manual-ABB

Control block diagrams

248

Page 387: VSDS Manual-ABB
Page 388: VSDS Manual-ABB

3AFE

645

2759

2 R

EV D

/ EN

EFFE

CTI

VE: 2

2.02

.200

3

ABB OyAC DrivesP.O. Box 184FIN-00381 HELSINKIFINLANDTelephone +358 10 22 211Telefax +358 10 22 22681Internet http://www.abb.com

ABB Inc.Drives and Power Electronics16250 West Glendale DriveNew Berlin, WI 53151USATelephone 262 785-3200

800 243-4384Telefax 262 780-5135

Page 389: VSDS Manual-ABB

ABB Drives

Modbus Adapter ModuleRMBA-01

User’s Manual

Page 390: VSDS Manual-ABB
Page 391: VSDS Manual-ABB

Modbus Adapter ModuleRMBA-01

User’s Manual

3AFE 64498851 REV A EN

EFFECTIVE: 1.3.2002

© 2002 ABB Oy. All Rights Reserved.

Page 392: VSDS Manual-ABB
Page 393: VSDS Manual-ABB

RMBA-01 User’s manual iii

Safety instructions

Overview This chapter states the general safety instructions that must be followed when installing and operating the RMBA-01 Modbus Adapter module.

The material in this chapter must be studied before attempting any work on, or with, the unit.

In addition to the safety instructions given below, read the complete safety instructions of the specific drive you are working on.

General safety instructions

WARNING! All electrical installation and maintenance work on the drive should be carried out by qualified electricians only.

The drive and adjoining equipment must be properly earthed.

Do not attempt any work on a powered drive. After switching off the mains, always allow the intermediate circuit capacitors 5 minutes to discharge before working on the frequency converter, the motor or the motor cable. It is good practice to check (with a voltage indicating instrument) that the drive is in fact discharged before beginning work.

The motor cable terminals of the drive are at a dangerously high voltage when mains power is applied, regardless of motor operation.

There can be dangerous voltages inside the drive from external control circuits even when the drive mains power is shut off. Exercise appropriate care when working on the unit. Neglecting these instructions can cause physical injury or death.

Page 394: VSDS Manual-ABB

Safety instructions

iv RMBA-01 User’s manual

Page 395: VSDS Manual-ABB

RMBA-01 User’s manual v

Table of contents

Safety instructions

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiGeneral safety instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of contents

Chapter 1 – Introduction

Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1Before you start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1What this manual contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2Terms used in this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3Communication module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3RMBA-01 Modbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3Adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3Broadcast write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34XXXX register area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Chapter 2 – Overview

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1Introduction to Modbus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1The RMBA-01 Modbus Adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Delivery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Warranty and liability information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Chapter 3 – Installation

Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Terminal designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2Wiring Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3Bus termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Page 396: VSDS Manual-ABB

Table of contents

vi RMBA-01 User’s manual

Chapter 4 – Programming

Configuring the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1Modbus connection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Control locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Chapter 5 – Communication

Register read and write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1Exception codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Data update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Chapter 6 – Fault tracing

Installation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1Drive setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1PLC programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1Diagnostic LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Appendix A – Technical data

RMBA-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1Fieldbus link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Page 397: VSDS Manual-ABB

RMBA-01 User’s manual 1-1

Chapter 1 – Introduction

Intended audience

The manual is intended for the people who are responsible for commissioning and using a RMBA-01 Modbus Adapter module with the ACS 800 drive. The reader is expected to have a basic knowledge of electrical fundamentals, electrical wiring practices and how to operate the drive.

Before you start It is assumed that the drive is installed and ready to operate before starting the installation of the extension module.

In addition to conventional installation tools, have the drive manuals available during the installation as they contain important information not included in this manual. The drive manuals are referred to at various points of this document.

Page 398: VSDS Manual-ABB

Chapter 1 – Introduction

1-2 RMBA-01 User’s manual

What this manual contains

This manual contains information on the wiring, configuration and use of the RMBA-01 module.

Safety instructions are featured in the first few pages of this manual.

Chapter 2 – Overview contains a short description of the RMBA-01 Modbus Adapter module, a delivery checklist and warranty information.

Chapter 3 – Installation contains instructions for module hardware settings, mounting and cabling.

Chapter 4 – Programming explains how to program the master station and the drive before the communication through the adapter module can be started.

Chapter 5 – Communication contains a description of how data is transmitted through the RMBA-01 module.

Chapter 6 – Fault tracing explains fault tracing and the LED indications of the RMBA-01 module.

Appendix A contains technical data.

Page 399: VSDS Manual-ABB

Chapter 1 – Introduction

RMBA-01 User’s manual 1-3

Terms used in this manual

Parameter A parameter is an operating instruction for the drive. Parameters can be read and programmed with the drive control panel, or through the RMBA-01 module.

Communicationmodule

Communication module is a parameter name/parameter selection name for a device (e.g. a fieldbus adapter) through which the drive is connected to an external serial communication network (e.g. a fieldbus). The communication with the communication module is activated with a drive parameter.

RMBA-01 ModbusAdapter module

The RMBA-01 Adapter module is one of the optional fieldbus adapter modules available for ACS 800 drives. The RMBA-01 is a device through which an ACS 800 drive is connected to a Modbus serial communication bus.

Broadcast write Modbus network allows the Modbus master to perform a write to every slave station at the same time. This write is called Broadcast. This service does not give verification back to the master that the value has been received by each one of the slaves properly.

4XXXX register area Modicon PLCs have a signed integer data table area, which is used for analogue output modules and for storing temporary or set-point values. These registers are in the address area starting from 40001. The last register address available on PLCs depends on the available memory, but is 49999 at most. The drive simulates this area by providing a read and write access to its parameters through this register address area.

Page 400: VSDS Manual-ABB

Chapter 1 – Introduction

1-4 RMBA-01 User’s manual

Page 401: VSDS Manual-ABB

RMBA-01 User’s manual 2-1

Chapter 2 – Overview

Overview This chapter contains a short description of the Modbus protocol and the RMBA-01 Modbus Adapter module, a delivery checklist, and warranty information.

Introduction to Modbus

Modbus is a serial, asynchronous protocol. The Modbus protocol does not specify the physical interface. Typical physical interfaces are RS-232 and RS-485. The RMBA-01 provides a galvanically-isolated RS-485 interface.

Modbus is designed for integration with Modicon PLCs or other automation devices, and the services closely correspond to the PLC architecture. The RMBA-01 supports the RTU protocol only.

The RMBA-01 Modbus Adapter module

The RMBA-01 Modbus Adapter module is an optional device for ABB drives which enables the connection of the drive to a Modbus system. The drive is considered as a slave on the Modbus network. Through the RMBA-01 Modbus Adapter module it is possible to:

• Give control commands to the drive(Start, Stop, Run enable, etc.)

• Feed a motor speed or torque reference to the drive

• Give a process actual value or a process reference to the PID controller of the drive

• Read status information and actual values from the drive

• Change drive parameter values

• Reset a drive fault

Page 402: VSDS Manual-ABB

Chapter 2 – Overview

2-2 RMBA-01 User’s manual

The Modbus commands and services supported by the RMBA-01 Modbus Adapter module are discussed in Chapter 5. Please refer to the user documentation of the drive as to which commands are supported by the drive.

Figure 2-1 The construction of the Modbus link and the RMBA-01 Adapter module layout.

Delivery check The option package for the RMBA-01 Modbus Adapter module contains:

• RMBA-01 module

• Two screws (M3×8 mm)

• This manual.

4321

CH

ASS

ISRM

BA-0

1M

ODB

US

ADA

PTER

A-

B+

GN

D

SHLD

X1

WD

/IN

IT

TXD

RXD

BU

SS1

TER

M.

GN

D

ABB Drive

ABB Drive

Master station

Slave stations Module status LEDs

Fixing screw (GND)

Terminal block for bus cable connection (X1)

Bus termination switch (S1)Fixing screw (CHASSIS)

Page 403: VSDS Manual-ABB

Chapter 2 – Overview

RMBA-01 User’s manual 2-3

Compatibility The RMBA-01 is compatible with ACS 800 Standard Application Program version ASXR7000 or later.

Warranty and liability information

The warranty for your ABB drive and options covers manufacturing defects. The manufacturer carries no responsibility for damage due to transport or unpacking.

In no event and under no circumstances shall the manufacturer be liable for damages and failures due to misuse, abuse, improper installation, or abnormal conditions of temperature, dust, or corrosives, or failures due to operation above rated capacities. Nor shall the manufacturer ever be liable for consequential and incidental damages.

The period of manufacturer's warranty is 12 months, and not more than 18 months, from the date of delivery. Extended warranty may be available with certified start-up. Contact your local distributor for details.

Your local ABB Drives company or distributor may have a different warranty period, which is specified in their sales terms, conditions, and warranty terms.

If you have any questions concerning your ABB drive, contact your local distributor or ABB Drives office.

The technical data and specifications are valid at the time of printing. ABB reserves the right to subsequent alterations.

Page 404: VSDS Manual-ABB

Chapter 2 – Overview

2-4 RMBA-01 User’s manual

Page 405: VSDS Manual-ABB

RMBA-01 User’s manual 3-1

Chapter 3 – Installation

WARNING! Follow the safety instructions given in this guide and in the ACS 800 Hardware Manual.

Mounting The RMBA-01 is to be inserted into the position marked SLOT 1 on the drive. The module is held in place with plastic retaining clips and two screws. The screws also provide the earthing of the I/O cable shield connected to the module, and interconnect the GND signals of the module and the RMIO board.

On installation of the module, the signal and power connection to the drive is automatically made through a 38-pin connector.

The module can alternatively be mounted on a DIN rail-mountable AIMA-01 I/O Module Adapter (not available at the time of publication).

Mounting procedure:

1. Insert the module carefully into SLOT 1 on the RMIO board until the retaining clips lock the module into position.

2. Fasten the two screws (included) to the stand-offs.

3. Set the bus termination switch of the module to the required position.

Note: Correct installation of the screws is essential for fulfilling the EMC requirements and for proper operation of the module.

Page 406: VSDS Manual-ABB

Chapter 3 – Installation

3-2 RMBA-01 User’s manual

Wiring See the Hardware Manual of the drive for cable routing information.

Arrange the bus cables as far away from the motor cables as possible. Avoid parallel runs. Use bushings at cable entries.

The terminal block (X1) on the RMBA-01 is of the detachable type for easy connection.

The Modbus cable shield may be directly earthed at one node only. At other nodes, the cable shield should be earthed via an RC circuit.

Terminaldesignations

Figure 3-1 RMBA-01 terminal designations

X1 Marking Description

1 A Data negative (Conductor 1 in twisted pair).

2 B Data positive (Conductor 2 in twisted pair).

3 DG

Data ground (Conductor 3 in a three-wire system). Used in a three-wire system as a common reference potential for all devices on the bus. Three-wire connection is highly recommended as it improves noise immunity. See the wiring diagrams below.

4 SHLDModbus cable shield AC earthing (via an RC circuit to the frame).

X1

Bus termination switch (S1)

1 2 3 4

Page 407: VSDS Manual-ABB

Chapter 3 – Installation

RMBA-01 User’s manual 3-3

Wiring Diagrams

Figure 3-2 Two-wire connection

Figure 3-3 Three-wire connection (preferred practice)

...Modbus Master

Termination: ON

A

1

B

2

DG

3

SH

LD

4X1

RMBA-01[Station N]

Termination: ON

RMBA-01[Station 1]

Termination: OFFA

1

B

2

DG

3

SH

LD

4X1

GN

D

A

B

...Modbus Master

Termination: ON

A1

B2

DG

3

SH

LD

4X1

RMBA-01[Station N]

Termination: ON

RMBA-01[Station 1]

Termination: OFF

A

1

B

2

DG

3

SH

LD

4X1

GN

D

A

B

Page 408: VSDS Manual-ABB

Chapter 3 – Installation

3-4 RMBA-01 User’s manual

Bus termination The built-in active bus termination must be switched on if the RMBA-01 module is installed at the end of the bus. Otherwise the bus termination must be switched off. Bus termination prevents signal reflections from the bus cable ends.

Figure 3-4 Bus termination switch (S1)

Note: The built-in termination circuitry of the RMBA-01 is of the active type, so the module has to be powered for the termination to work. If the module needs to be switched off during operation of the network, the bus can be terminated by connecting a 220 ohm, 1/4 W resistor between the A and B lines.

ON ON

Bus termination OFF Bus termination ON

Page 409: VSDS Manual-ABB

RMBA-01 User’s manual 4-1

Chapter 4 – Programming

Configuring the system

After the RMBA-01 Modbus Adapter module has been mechanically and electrically installed according to the instructions in Chapter 3, the master station and the drive must be prepared for communication with the module.

Please refer to the master station documentation for information on configuring the system for communication with the RMBA-01.

Modbusconnection

configuration

To establish communication between the RMBA-01 and the Modbus controller, the parameters in group 52 must be checked and adjusted where necessary (see the drive manuals).

The detailed procedure of activating the module for the control of the drive is described in the drive documentation.

Control locations ABB drives can receive control information from multiple sources including digital inputs, analogue inputs, the drive control panel and a communication module (e.g. RMBA-01). ABB drives allow the user to separately determine the source for each type of control information (Start, Stop, Direction, Reference, Fault Reset, etc.). In order to give the fieldbus master station the most complete control over the drive, the communication module must be selected as source for this information. See the user documentation of the drive for information on the selection parameters.

Page 410: VSDS Manual-ABB

Chapter 4 – Programming

4-2 RMBA-01 User’s manual

Page 411: VSDS Manual-ABB

RMBA-01 User’s manual 5-1

Chapter 5 – Communication

Register read and write

The drive parameter and data set information is mapped into a 4xxxx register area. This holding register area can be read from an external device, and an external device can modify the register values by writing to them.

There are no setup parameters for mapping the data to the 4xxxx register. The mapping is pre-defined and corresponds directly to the drive parameter grouping which is being used by the local drive panel.

All parameters are available for both reading and writing. The parameter writes are verified for correct value, and for valid register addresses. Some parameters never allow writing (e.g. actual values), some parameters allow writing only when the drive is stopped (e.g. setup variables), and some can be modified at any time (e.g. actual reference values).

Register mapping The drive parameters are mapped to the 4xxxx area such that:

• 40001 – 40096 are reserved for data sets.

• 40101 – 49999 are reserved for parameters.

In this mapping, the thousands and hundreds correspond to the group number, while the tens and ones correspond to the parameter number within a group. Register addresses 4GGPP are shown in Table 5-1 Parameter mapping. In this table GG is the group number, and PP is the parameter number within the group.

Page 412: VSDS Manual-ABB

Chapter 5 – Communication

5-2 RMBA-01 User’s manual

Table 5-1 Parameter mapping

The register addresses which are not allocated to any drive parameter or data set are invalid. No reads or writes are allowed for these addresses. If there is an attempt to read or write outside the parameter addresses, the Modbus interface will return an exception code to the controller.

Refer to the drive manuals for its data sets, group and parameter numbers supported.

4GGPP GG PP

Data sets

Each data set consists of 3 data words. For example, Data word 2.3 refers to 3rd word in data set 2.

40001 – 40096

00 Data sets 01 Data word 1.102 Data word 1.203 Data word 1.304 Data word 2.105 Data word 2.206 Data word 2.307 Data word 3.1...94 Data word 32.195 Data word 32.296 Data word 32.3

Parameters

40101 – 40199

01 Group 01 01 Parameter 0102 Parameter 02...99 Parameter 99

40201 – 40299

02 Group 02 01 Parameter 0102 Parameter 02...99 Parameter 99

… ... ...

49901 – 49999

99 Group 99 01 Parameter 01…99 Parameter 99

Page 413: VSDS Manual-ABB

Chapter 5 – Communication

RMBA-01 User’s manual 5-3

Exception codes The RMBA-01 supports the Modbus exception codes shown in Table 5-2.

Table 5-2 Exception codes.

Data update The RMBA-01 module has been designed for time-optimised, reliable data transfer between the Modbus network and the drive.

Table 5-3 Function codes.

Data set registers are updated in a cyclic interval. Updating of parameter registers happens at a slower interval.

Code Name Reason

01 ILLEGAL FUNCTION Unsupported command.

02 ILLEGAL DATA ADDRESS Address does not exist or is read/write protected.

03 ILLEGAL DATA VALUE Value is outside min-max limits. Parameter is read-only.

Code Name Meaning

03 Read holding registers

Reads the binary contents of holding registers (4X references) in the slave.

06 Preset single register

Presets a value into a single holding register (4X reference). When broadcast, the function presets the same register reference in all attached slaves.

16(10 hex)

Preset multiple registers

Presets values into a sequence of holding registers (4X references). When broadcast, the function presets the same register references in all attached slaves.

Page 414: VSDS Manual-ABB

Chapter 5 – Communication

5-4 RMBA-01 User’s manual

Page 415: VSDS Manual-ABB

RMBA-01 User’s manual 6-1

Chapter 6 – Fault tracing

Installation problems

Verify all the connections on the module. Check that

• the Modbus cable is connected correctly to terminal block X1.

• the RMBA-01 module is correctly connected on the RMIO board using the fixing screws.

Drive setup Drive parameters can be read, but control commands (Start/Stop or Reference) do not work.

• Activate the fieldbus module according to the instructions in the drive manual.

• Check that the drive has the Modbus Adapter selected as the source of these commands (see the Firmware Manual of the drive).

PLC programming PLC program is beyond ABB support. Contact the manufacturer for assistance.

Page 416: VSDS Manual-ABB

Chapter 6 – Fault tracing

6-2 RMBA-01 User’s manual

Diagnostic LEDs There are three diagnostic LEDs on the RMBA-01 module. Two green LEDs show the transmit and receive activity. A yellow LED shows the status of the module.

The RxD LED blinks every time a Modbus message is received by the RMBA-01 (independent of the node address setting). The TxD LED blinks every time the RMBA-01 sends a Modbus message over the bus.

The yellow LED lights at power-up and remains lit until the drive has configured the module. If the LED lights again after a successful configuration of the module, the module has gone to reset state due to e.g. power loss.

In case the LED does not go out after one second:

• The configuration has failed.

- Switch off and restart the power supply of the drive.

• The module has a hardware failure.

- Ensure the 38-pin connector is properly inserted.

- Contact an ABB service representative.

Page 417: VSDS Manual-ABB

RMBA-01 User’s manual A-1

Appendix A – Technical data

RMBA-01 Enclosure:

Mounting: Into an option slot of the RMIO board of the drive or onto external I/O Module Adapter (AIMA-01).

Degree of protection: IP 20

Ambient conditions: The applicable ambient conditions specified for the drive in its Hardware Manual are in effect.

Connectors:

• 38-pin parallel bus connector

• One 4-pole terminal block for connection of the fieldbus cable, detachable (max 1.5 mm2)

Hardware settings:

• One DIP switch for bus termination selection

Settings: Via drive interface (control panel)

95 m

m

34 mm

20 mm 62 mm

43

21

CHASSISRMBA-01

MODBUS ADAPTER

A-

B+

GND

SHLD

X1

WD/INIT

TXD

RXD

BUS S1TERM.

GND

Page 418: VSDS Manual-ABB

Appendix A – Technical data

A-2 RMBA-01 User’s manual

General:

• Max. power consumption: 140 mA (5 V), supplied by the RMIO board

• Estimated min. lifetime: 100 000 h

• All materials UL/CSA-approved

• Complies with EMC Standards EN 50081-2 and EN 50082-2

Fieldbus link Compatible devices: Any Modbus device capable of Modbus communication as a master

Size of the link: 247 stations including repeaters (31 stations and 1 repeater per segment)

Medium: Shielded, twisted pair RS485 cable

• Termination: built in, active type

• Modbus cable: Belden 9841 (2-wire), Belden 9842 (4-wire), or equivalent

• Maximum Bus Length: 1200 m

Topology: Multi-drop

Serial communication type: Asynchronous, half Duplex

Transfer rate: 600, 1200, 2400, 4800, 9600, 19200 bit/s

Protocol: Modbus RTU

Page 419: VSDS Manual-ABB
Page 420: VSDS Manual-ABB

ABB OyAC DrivesP.O. Box 184FIN-00381 HelsinkiFINLANDTelephone:+358 10 22 11Fax: +358 10 222 2681Internet: www.abb.com

RM

BA

-01

3AF

E 6

4498

851

RE

V A

EN

EF

FE

CT

IVE

: 1.3

.200

2

ABB Inc.Drives & Power Products16250 West Glendale DriveNew Berlin, WI 53151USATelephone:262 785-8378

800 243-4384Fax: 262 780-5135

Page 421: VSDS Manual-ABB

ABB Drives

Analogue I/O Extension ModuleRAIO-01

User’s Manual

Page 422: VSDS Manual-ABB
Page 423: VSDS Manual-ABB

Analogue I/O Extension ModuleRAIO-01

User’s Manual

3AFE 64484567 REV A EN

EFFECTIVE: 1.2.2002

© 2002 ABB Oy. All Rights Reserved.

Page 424: VSDS Manual-ABB
Page 425: VSDS Manual-ABB

RAIO-01 User’s manual iii

Safety instructions

Overview This chapter states the general safety instructions that must be followed when installing and operating the RAIO-01 Analogue I/O Extension module.

The material in this chapter must be studied before attempting any work on, or with, the unit.

In addition to the safety instructions given below, read the complete safety instructions of the specific drive you are working on.

General safety instructions

WARNING! All electrical installation and maintenance work on the drive should be carried out by qualified electricians only.

The drive and adjoining equipment must be properly earthed.

Do not attempt any work on a powered drive. After switching off the mains, always allow the intermediate circuit capacitors 5 minutes to discharge before working on the frequency converter, the motor or the motor cable. It is good practice to check (with a voltage indicating instrument) that the drive is in fact discharged before beginning work.

The motor cable terminals of the drive are at a dangerously high voltage when mains power is applied, regardless of motor operation.

There can be dangerous voltages inside the drive from external control circuits even when the drive mains power is shut off. Exercise appropriate care when working on the unit. Neglecting these instructions can cause physical injury or death.

Page 426: VSDS Manual-ABB

Safety instructions

iv RAIO-01 User’s manual

Page 427: VSDS Manual-ABB

RAIO-01 User’s manual v

Table of contents

Safety instructions

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiGeneral safety instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of contents

Chapter 1 – Introduction

Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1Before you start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1What this manual contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Chapter 2 – Overview

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1The RAIO-01 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Module layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1Delivery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2Warranty and liability information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Chapter 3 – Installation

Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1Removing and refitting the cover of the enclosure . . . . . . . . . . . . . . . . . . . . 3-2Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2Input mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3Input signal type selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4Terminal designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6Node ID selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Page 428: VSDS Manual-ABB

Table of contents

vi RAIO-01 User’s manual

Chapter 4 – Fault tracing

Status LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1Option slot installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1I/O Module Adapter installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Appendix A – Technical data

Page 429: VSDS Manual-ABB

RAIO-01 User’s manual 1-1

Chapter 1 – Introduction

Intended audience

The manual is intended for the people who are responsible for commissioning and using an RAIO-01 Analogue I/O Extension module with the ACS 800 drive. The reader is expected to have a basic knowledge of electrical fundamentals, electrical wiring practices and how to operate the drive.

Before you start It is assumed that the drive is installed and ready to operate before starting the installation of the extension module.

In addition to conventional installation tools, have the drive manuals available during the installation as they contain important information not included in this manual. The drive manuals are referred to at various points of this document.

Page 430: VSDS Manual-ABB

Chapter 1 – Introduction

1-2 RAIO-01 User’s manual

What this manual contains

This manual contains information on the wiring, configuration and use of the RAIO-01 module.

Safety instructions are featured in the first few pages of this manual.

Chapter 2 – Overview contains a short description of the RAIO-01 Analogue I/O Extension module, a delivery checklist and warranty information.

Chapter 3 – Installation contains instructions for module hardware settings, mounting and cabling.

Chapter 4 – Fault tracing explains fault tracing and the LED indications of the RAIO-01 module.

Appendix A contains technical data.

Page 431: VSDS Manual-ABB

RAIO-01 User’s manual 2-1

Chapter 2 – Overview

Overview This chapter contains a short description of the Analogue I/O Extension module, a delivery checklist and warranty information.

The RAIO-01 module

The RAIO-01 Analogue I/O Extension module offers two bipolar current (±0[4]…20 mA) or voltage (±0[2]…10 V or ±0…2 V) inputs and two unipolar current (0[4]…20 mA) outputs with 12-bit resolution. The analogue inputs and outputs are galvanically isolated as a group from each other and the power supply.

Module layout

Figure 2-1 Module layout

1 2 3 4 5 6 1 2 3 4 5 6

Fixing screw (GND)

Node ID selector

Module status LED

Fixing screw(CHASSIS)

Configuration switch(behind cover)

0 8

4

C

2 6

AE

1

3 5

79

BD

F

CH

ASS

IS

GND

Nod

e ID

AO

1+

SHLD

SHLD

AO

1-

AO

2+

AO

2-

AI1

-

SHLD

SHLD

AI1

+

AI2

-

AI2

+

WD

/IN

IT

RAIO

-01

ANAL

OG

UE I/

O E

XTEN

SIO

N

X2 X1

Terminal block foranalogue outputs (X2)

Terminal block foranalogue inputs (X1)

Page 432: VSDS Manual-ABB

Chapter 2 – Overview

2-2 RAIO-01 User’s manual

Delivery check The option package contains:

• RAIO-01 module

• Two screws (M3×8 mm)

• This manual.

Compatibility The RAIO-01 is compatible with the ACS 800 Standard Application Program version ASXR7000 or later.

Warranty andliability

information

The warranty for your ABB drive and options covers manufacturing defects. The manufacturer carries no responsibility for damage due to transport or unpacking.

In no event and under no circumstances shall the manufacturer be liable for damages and failures due to misuse, abuse, improper installation, or abnormal conditions of temperature, dust, or corrosives, or failures due to operation above rated capacities. Nor shall the manufacturer ever be liable for consequential and incidental damages.

The period of manufacturer's warranty is 12 months, and not more than 18 months, from the date of delivery. Extended warranty may be available with certified start-up. Contact your local distributor for details.

Your local ABB Drives company or distributor may have a different warranty period, which is specified in their sales terms, conditions, and warranty terms.

If you have any questions concerning your ABB drive, contact your local distributor or ABB Drives office.

The technical data and specifications are valid at the time of printing. ABB reserves the right to subsequent alterations.

Page 433: VSDS Manual-ABB

RAIO-01 User’s manual 3-1

Chapter 3 – Installation

WARNING! Follow the safety instructions given in this guide and in the ACS 800 Hardware Manual.

Mounting The RAIO-01 is to be inserted into the position marked SLOT 1 or SLOT 2 on the drive. The module is held in place with plastic retaining clips and two screws. The screws also provide the earthing of the I/O cable shield connected to the module, and interconnect the GND signals of the module and the RMIO board.

On installation of the module, the signal and power connection to the drive is automatically made through a 38-pin connector.

The module can alternatively be mounted on a DIN rail-mountable AIMA-01 I/O Module Adapter (not available at the time of publication).

Mounting procedure:

1. Insert the module carefully into SLOT 1 or SLOT 2 on the RMIO board until the retaining clips lock the module into position.

2. Fasten the two screws (included) to the stand-offs.

3. Remove the cover of the module enclosure – directions are given below.

4. Set the configuration DIP switches of the module to the required position and refit the cover.

Note: Correct installation of the screws is essential for fulfilling the EMC requirements and for proper operation of the module.

Page 434: VSDS Manual-ABB

Chapter 3 – Installation

3-2 RAIO-01 User’s manual

Removing and refitting the cover of the enclosure

To choose operating mode and input signal type, the cover of the module enclosure must be removed. This can be done by carefully bending the two cover retaining clips with a small screwdriver (see Figure 3-1) and lifting the cover off.

Refit the cover by pushing it back into its place until the retaining clips lock it into position.

Figure 3-1 Removing and refitting the cover

Switches

Figure 3-2 Top view of the module, cover removed

Cover

Retaining clips

BaseCover

Retaining clips

Base

X2 X1

1 2 3 4 5 6 1 2 3 4 5 6

0 8

4

C

2 6

AE

1

3 5

79

BD

F

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

AI1 signal modeAI1 signal level

AI2 signal modeAI2 signal level

Node ID selector (S1)

Pos. 0,1,2,…,E,F ID 0,1,2,…,14,15

Configuration switch (S2)

Page 435: VSDS Manual-ABB

Chapter 3 – Installation

RAIO-01 User’s manual 3-3

Input mode selection

The operating mode of the analogue inputs can be selected using the configuration DIP switch (S2) on the circuit board of the module. The drive parameters must be set accordingly.

In bipolar mode, the analogue inputs can handle positive and negative signals. The resolution of the A/D conversion is 11 data bits (+ 1 sign bit). The way the drive interprets the negative range of the inputs depends on the settings of the drive. See the Firmware Manual of the drive.

In unipolar mode (default), the analogue inputs can handle positive signals only. The resolution of the A/D conversion is 12 data bits.

DIP switch settingInput signal type

Analogue input AI1 Analogue input AI2

±0(4)…20 mA±0(2)…10 V

±0…2 V

0(4)…20 mA0(2)…10 V

0…2 V(Default)

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

Page 436: VSDS Manual-ABB

Chapter 3 – Installation

3-4 RAIO-01 User’s manual

Input signal type selection

Each input can be used with a current or voltage signal. The selection is made with the configuration DIP switch (S2) on the circuit board of the module.

Input signal type

DIP switch settings

Analogue input 1 Analogue input 2

Current signal±0(4)…20 mA

(Default)

Voltage signal±0(2)…10 V

Voltage signal±0…2 V

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

ON

1 2 3 4 5 6

Page 437: VSDS Manual-ABB

Chapter 3 – Installation

RAIO-01 User’s manual 3-5

Terminal designations

The RAIO-01 is equipped with two 6-pole non-detachable screw-type connectors. Terminal block X1 provides the connection for the analogue input signals, and X2 provides the connection for the analogue output signals. Each terminal block includes two terminals for the cable shield (see also Figure 3-3).

X1 Marking Description

1 AI1-

Ana

logu

ein

put 1

Current signal±0(4)…20 mA

Input impedance 100 �

Galvanically isolated as a group (1.5 kV AC, 1 minute) from the analogue outputs, power supply and earth.

Voltage signal±0(2)…10 V or ±0…2 V

Input impedance 200 k�

Galvanically isolated as a group (1.5 kV AC, 1 minute) from the analogue outputs, power supply and earth.

2 AI1+

3 AI2-

Ana

logu

ein

put 2

4 AI2+

5 SHLD Cable shield AC earthing. Connected via an RC circuit to the frame.6 SHLD

X2 Marking Description

1 AO1+

Cur

rent

outp

ut 1 Current signal

0(4)...20 mA

Load resistance max. 700 �

Galvanically isolated as a group (1.5 kV AC, 1 minute) from the analogue inputs, power supply and earth.

2 AO1-

3 AO2+

Cur

rent

outp

ut 2

4 AO2-

5 SHLDCable shield AC earthing (via an RC circuit to the frame).

6 SHLD

Page 438: VSDS Manual-ABB

Chapter 3 – Installation

3-6 RAIO-01 User’s manual

Wiring 0.5 to 1.5 mm2 twisted pair cable with individual and/or overall shields should be used for analogue signals. The shields should be connected to the SHLD terminals on the RAIO-01 module. See the example below.

Figure 3-3 Wiring example

Note: If the transducers or indicators are located far away from each other, earth the shield at one unit through a capacitor (e.g. 10 nF/400 V) to avoid circulating earth current flow.

Note: X1 and X2 have separate RC circuits as shown above, i.e. the SHLD terminals on one terminal block are connected together and earthed through a common RC circuit.

AI1+

AI1-

SHLD

Transducer 1

AI2+

AI2-

SHLD

Transducer 2

Indicator 1

Indicator 2

TSHLD

AO2-

AO2+

SHLD

AO1-

AO1+

RAIO-01

P

X2X1

Page 439: VSDS Manual-ABB

Chapter 3 – Installation

RAIO-01 User’s manual 3-7

Node ID selection If the RAIO-01 module is mounted onto the external I/O Module Adapter (AIMA-01), choose the proper node ID for the module using the node ID selector (S1, range 1…15). Setting the node ID is not required when the module is mounted into SLOT 1 or SLOT 2 on the drive.

The default setting of selector S1 is 5.

Programming The communication between the module and the drive is activated by a drive parameter. (Ensure that the parameter settings correspond to the mode switch setting of the module.) The RAIO-01 can replace and/or extend certain standard inputs and outputs. See the drive Firmware Manual, Parameter Group 98.

Note: The new settings take effect only when the module is powered up.

Page 440: VSDS Manual-ABB

Chapter 3 – Installation

3-8 RAIO-01 User’s manual

Page 441: VSDS Manual-ABB

RAIO-01 User’s manual 4-1

Chapter 4 – Fault tracing

Status LED There is one status LED (WD/INIT, yellow) on the RAIO-01 module. The LED is lit when the drive is configuring the module at power-up.

Option slotinstallation

In case the LED does not go out after one second:

• The configuration has failed.

- Cycle the power supply of the drive.

• The module has a hardware failure.

- Ensure the 38-pin connector is properly inserted.

- Contact an ABB service representative.

I/O Module Adapterinstallation

• There is no communication with the drive.

- Check that the drive is powered.

- Check the module node ID.

- Check that the fibre optic cables are connected correctly (transmitters to receivers) and the connectors properly inserted.

- Check the fibre optic cables visually for dirt or flaws.

- Ensure the 38-pin connector is properly inserted.

- Try new fibre optic cables.

- Contact an ABB service representative.

Page 442: VSDS Manual-ABB

Chapter 4 – Fault tracing

4-2 RAIO-01 User’s manual

Page 443: VSDS Manual-ABB

RAIO-01 User’s manual A-1

Appendix A – Technical data

Dimensions:

Mounting: Into an option slot of the RMIO board of the drive or onto external I/O Module Adapter (AIMA-01).

Degree of protection: IP 20

Ambient conditions: The applicable ambient conditions specified for the drive in its Hardware Manual are in effect.

Hardware settings:

• Rotary switch for node ID selection (range 1…15)

• One DIP switch per input for selection between bipolar mode (default) and unipolar mode

• Two DIP switches per input for signal type and level selection

Connectors:

• 38-pin parallel bus connector

• Two 6-pin screw-type terminal blocks for max. 2.5 mm2 wires, non-detachable

95 m

m

34 mm

20 mm 62 mm

S2

12

34

56

12

34

56

0

8

4

C

2

6A

E1

35

79

BD

F

CHASSIS

GND

Node ID

AO1+

SHLD

SHLD

AO1-

AO2+

AO2-

AI1-

SHLD

SHLD

AI1+

AI2-

AI2+

WD/INIT

RAIO-01ANALOGUE I/O EXTENSION

X2

X1

Page 444: VSDS Manual-ABB

Appendix A – Technical data

A-2 RAIO-01 User’s manual

Analogue inputs:

• Signal types: ±(0)4…20 mA, ±(0)2…10 V, ±0…2 V

• Input impedance: 100 � (current), 200 k� (voltage)

• Resolution in unipolar mode: 0.024% (12 data bits)

• Resolution in bipolar mode: 0.048% (11 data bits + sign)

• Inaccuracy: ±0.5% (Full Scale Range) at 25 °C Temperature coefficient: ±100 ppm/°C max.

• Isolated from the analogue outputs, power supply and earth. Test voltage: 1.5 kV AC, 1 minute

• Common mode voltage: ±15 V max.

• HW filtering: 2 ms approx.

Analogue outputs:

• Signal type: 0(4)...20 mA

• Load resistance max.: 700 �

• Resolution: 0.024% (12 bits)

• Inaccuracy: ±0.5% (Full Scale Range) at 25 °C Temperature coefficient: ±100 ppm/°C max.

• Isolated from the analogue inputs, power supply and earth. Test voltage: 1.5 kV AC, 1 minute

General

• Max. power consumption:100 mA (5 V) + 120 mA (24 V)Both voltages supplied by the RMIO board

• Estimated min. lifetime: 100 000 h

• All materials UL/CSA-approved

• Complies with EMC standards EN 50081-2 and EN 50082-2

Page 445: VSDS Manual-ABB
Page 446: VSDS Manual-ABB

ABB OyAC DrivesP.O. Box 184FIN-00381 HelsinkiFINLANDTelephone:+358 10 22 11Fax: +358 10 222 2681Internet: www.abb.com

RA

IO-0

13A

FE

644

8456

7 R

EV

A E

NE

FF

EC

TIV

E: 1

.2.2

002

ABB Inc.Drives & Power Products16250 West Glendale DriveNew Berlin, WI 53151USATelephone:262 785-8378

800 243-4384Fax: 262 780-5135