w. bernnat, m. buck, n. bensaid, ike, university of stuttgart · w. bernnat, m. buck, n. bensaid,...

49
The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 Universität Stuttgart Institut für Kernenergetik und Energiesysteme Application and development of tools for HTR neutronics and thermal hydraulics analysis at IKE Application Application and and development development of of tools for tools for HTR neutronics and HTR neutronics and thermal thermal hydraulics analysis hydraulics analysis at IKE at IKE W. Bernnat, M. Buck, N. BenSaid, K. Hossain, M. Mesina IKE, University of Stuttgart

Upload: others

Post on 13-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Application and development oftools for HTR neutronics and

    thermal hydraulics analysis at IKE

    ApplicationApplication and and development development of oftools fortools for HTR neutronics and HTR neutronics and

    thermalthermal hydraulics analysis hydraulics analysis at IKE at IKEW. Bernnat, M. Buck, N. BenSaid,

    K. Hossain, M. MesinaIKE,

    University of Stuttgart

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 2

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    General Objectives: Development of an Integrated Tool forthe Analysis of Stationary and Dynamic Behavior of HTRs

    ●Neutronics reactordesign (stationaryand transient).

    ●In-CoreThermal-hydraulics andfuel thermalbehavior.

    ●Modeling ofcomponents anddynamics ofPower ConversionUnit (PCU).

    0

    50100

    150200

    250300

    -500

    0

    500

    1000

    15000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    x 10-5

    Radius, cm →Height, cm →

    ther

    mal

    flux

    , →

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 3

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    HTR applications

    • Neutronics stationary• Neutronics transient• Thermal hydraulics• PCU simulation

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 4

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Codes available• ZIRKUS , KIND• THERMIX/KONVEK• ANISN/DORT/TORT (1D-3D SN-transport)• Monte Carlo : MCNP(X)/KENO• NJOY (Cross section preparation)• RSYST (IKE), general reactor physics applications• MICROX-2• RESMOD (IKE), multicell spectralcode• FLOWNEX (M-Tech), system code

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 5

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    ZIRKUS• Modular system with funcional modules and data base system• Restricted to pebble bed HTR types• Flexibility high, but rather complex• Several adaptations to PBMR like systems (annular core) were made together with simplifications of input structure

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 6

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Main modular ZIRKUS sequence for stationaryneutronics - thermal hydraulics calculations

    KUG EL Defin ition of spherical fuel e lem entW Q RFL Cross-sections for reflectors (tem perature,

    density, im purity)N IVERM Num ber densities in itia lisation/shufflingNEW A Dancoff factorsM ICRO X Cross section resonance treatm ent and

    spectral ca lculation (m icroscopic XS forspectral zones)

    M AG RU M acroscopic cross sections for burnup zonesHBLO CK 2D diffusion calculation, variable group

    num bers, Xe distributionVO RNEK Power density ca lculation

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 7

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Main modular ZIRKUS sequence for stationaryneutronics - thermal hydraulics calculations

    Z B U C K B u c k l in g s f o r s p e c t r a l z o n e s d e r i v e df r o m d i f f u s io n c a lc u la t io n

    S B U R N D e p le t io n c a lc u la t io n f o r a l l b u r n u pz o n e s

    N Z W D e c a y h e a t c a lc u la t io nN Z W A U S In t e r f a c e d e c a y h e a t d a t aL D T H E R M I In t e r f a c e Z IR K U S - T H E R M IXT H E R M IX T h e r m a l h y d r a u l ic c a lc u la t io nT Z IR K In t e r f a c e T H E R M IX - Z IR K U SD IF K D i f f u s io n c o n s t a n t s f o r c a v i t y r e g io n

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 8

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    ZIRKUS-features• first core• transition core• equilibrium core• flow pattern of pebbles• reload strategy• fuel/moderator elements• 2 D representation for burn up• 3 D stationary calculations (burnup distribution 2D) with

    Monte-Carlo codes MCNP and/or KENO• temperature coefficients• water ingress• xenon reactivity• flexibility, connection to other codes possible

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 9

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemeTypical ZIRKUS/THERMIX applications

    Cross-section

    DatabaseMICROX/

    MCNP

    FIRST-CORETRANSITION COREEQUILIBRIUM CORE

    Calculation ofReactivityCoefficients.Database forTransients MonteCarlo, SN-Transport

    ZIRKUSDatabase

    Thermal- LOFC hydraulic DLOCA analysis

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 10

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    ZIRKUS options

    SINGLE MODULE INPUTS

    SEQUENCE OF MODULES

    EXECUTION OF SINGLE MODULES AND SEQUENCES

    ARCHIVING OF CALCULATIONAL RESULTS

    RESTART-OPTION

    INTERFACE TO THERMAL HYDRAULICS

    INTERFACE TO TRANSPORT PROGRAMS

    INTERFACE TO TRANSIENT CODES KIND; RZ KIND

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 11

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemeZIRKUS modular chain

    HBLOCK

    KUGEL, DIFK

    WQRFL

    NIVERM

    VORNEK

    MAGRU

    MICROX

    NEWA

    ZBUCK

    SBURN

    NZW

    NZWAUS

    LDTHERMI

    THERMIX

    TZIRK

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 12

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemeSimulation platform

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 13

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Cross section data base and spectral code

    • Data evaluations: JEFF 3.1• MICROX-2 spectral code• RESMOD spectral code• MCNP(X) Monte Carlo• Thermal neutron scattering laws for graphite

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 14

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    MICROX-2 for detailed calculation of spectra in fast,resonance and thermal range

    FDTAPE92 groupsfast range

    GARTAPEPointwiseResolved

    resonan-cerange

    GGTAPE101

    groupsthermalrange

    Geometryof cell,

    temperatureDancofffactor,

    buckling

    ZonewiseNuclide

    composi-tion

    MICROX-2

    Condensedmicroscopic

    crosssections

    Z

    I

    R

    K

    U

    S

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 15

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemePresent MICROX-2 Library based on JEFF-3.1

    158 Nuclides

    1-H-1 34-Se-79 47-Ag-109 58-Ce-141 63-Eu-151 90-Th-232 95-Am-241 5-B-10 36-Kr-83 47-Ag-110m 58-Ce-142 63-Eu-153 91-Pa-233 95-Am-242 5-B-11 37-Rb-87 48-Cd-110 58-Ce-143 63-Eu-154 93-Np-235 95-Am-242m 6-C-0 38-Sr-90 48-Cd-111 58-Ce-144 63-Eu-155 93-Np-236 95-Am-243 7-N-14 40-Zr-93 48-Cd-113 59-Pr-141 63-Eu-156 93-Np-237 95-Am-244 8-O-16 40-Zr-95 50-Sn-126 59-Pr-143 63-Eu-157 93-Np-238 95-Am-244m14-Si-28 41-Nb-94 52-Te-129m 60-Nd-142 64-Gd-152 93-Np-239 96-Cm-24014-Si-29 41-Nb-95 52-Te-132 60-Nd-143 64-Gd-154 92-U-233 96-Cm-24114-Si-30 42-Mo-100 53-I-129 60-Nd-144 64-Gd-155 92-U-234 96-Cm-24224-Cr-50 42-Mo-95 53-I-131 60-Nd-145 64-Gd-156 92-U-235 96-Cm-24324-Cr-52 42-Mo-99 53-I-135 60-Nd-146 64-Gd-157 92-U-236 96-Cm-24424-Cr-53 43-Tc-99 54-Xe-131 60-Nd-147 64-Gd-158 92-U-237 96-Cm-24524-Cr-54 44-Ru-101 54-Xe-132 60-Nd-148 64-Gd-160 92-U-238 96-Cm-24625-Mn-55 44-Ru-102 54-Xe-133 60-Nd-150 65-Tb-159 94-Pu-238 96-Cm-24726-Fe-54 44-Ru-103 54-Xe-134 61-Pm-147 65-Tb-160 94-Pu-239 96-Cm-24826-Fe-56 44-Ru-104 54-Xe-135 61-Pm-148 66-Dy-160 94-Pu-240 96-Cm-24926-Fe-57 44-Ru-106 55-Cs-133 61-Pm-148m 66-Dy-161 94-Pu-241 96-Cm-25026-Fe-58 45-Rh-103 55-Cs-134 61-Pm-149 66-Dy-162 94-Pu-24228-Ni-58 45-Rh-105 55-Cs-135 61-Pm-151 66-Dy-163 94-Pu-24328-Ni-60 46-Pd-104 55-Cs-137 62-Sm-147 66-Dy-164 94-Pu-24428-Ni-61 46-Pd-105 57-La-139 62-Sm-148 67-Ho-16528-Ni-62 46-Pd-106 62-Sm-149 72-Hf-17628-Ni-64 46-Pd-107 62-Sm-150 72-Hf-177

    46-Pd-108 62-Sm-151 72-Hf-17862-Sm-152 72-Hf-17962-Sm-153 72-Hf-18062-Sm-154

    Temperatures: 300; 600; 800; 900; 1100; 1400; 1800; 2400 K

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 16

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemeThermal neutron scattering on graphite

    Frequency distributions of graphite

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0.00 0.05 0.10 0.15 0.20 0.25Omega in eV

    Rho

    (Om

    ega)

    in 1

    /eV

    GA

    ORNL

    NCSU

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 17

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Comparison of measured and calculated spectra

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    0.01 0.10 1.00

    Neutron Energy (eV)

    EPhi

    (E) (

    arbi

    trary

    uni

    ts)

    Experiment GAC-5A 274 K

    GAC-5a : GA modelGAC-5a : ORNL model

    GAC-5a : NCSU modelExperiment GAC-5F 600 K

    GAC-5f : GA modelGAC-5F : ORNL model

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 18

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Transient calculations

    ⇒ ZKIND and ⇒ RZKIND codes

    Both are neutron kinetic/dynamic codes for the pebble bed core primarily developed for the HTR-MODUL reactor.

    The Tasks are: calculation of

    • time dependent power distributions and reactivity effects• temperature distributions

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 19

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Thermal-hydraulic Models

    Different models to simulate the heat productionand temperature distribution in fuel

    • Macro Model (2D RZKIND)• Macro and Micro Model (1D ZKIND)• enhanced Micro Model (1D PKIND)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 20

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Macro and Micro modelof Heat conduction

    Macro Model:

    In RZKIND at the time a homogeneous model is implemented. TheFuel spheres are subdivided into several shells but the fueltemperature is assumed to be identical to the graphite temperature inthe corresponding shell. The fuel temperature calculated forreactivity feedback is averaged over all shells containing fuel (exceptouter shell). The moderator temperature is the average of graphitetemperatures of all shells.

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 21

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Thermal-hydraulic Modelsused in KIND codes

    Macrosystem Microsystem

    ShellMatrix

    Kernel

    Coating

    Share of MatrixGraphite

    τ =T -

    τ : Temperature increase in the particle : average Temperature over the fine structure

    rM

    rS

    rK

    rC

    rM M

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 22

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Data Flow to RZKIND

    Data Library User’s InputFile

    RZKIND

    ZIRKUS

    OUTPUTFILE

    ZIRKUSGeometryCross Section data

    KONTRCondensation of cross sections

    ZIRKUS-Geometry RZKIND-Geometry

    ZKIND

    VPFPolynomial fit of cross sections

    RZKINDData-Library

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 23

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Features of the KIND CodesSimulate• Inlet temperature disturbances• Mass flow disturbances• Changes in power• Reactivity disturbances

    •Control rod movement or SAS insertion•Xenon effects•external reactivity effects

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 24

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Example: Control rod withdrawal(2D RZ-KIND calculation for HTR Modul)

    (a) first scram works at 120% neutron flux

    (b) second scram works if average He coolant outlet Temperature exceeds limit

    (c) neither 1. Scram nor 2. scram works control rods withdraw to the maximum upper end position (-100cm)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    1,8

    2,0

    0 100 200 300 400 500

    Time (s)

    Rela

    tive

    Pow

    er

    1.Scram (a)

    2.Scram (b)

    2.Scram, control rodswithdraw (c)

    (a)

    (b)

    (c)

    control rod

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 25

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Withdrawal of all rods with 100 cm/s

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 1 2 3 4 5 6 7 8 9 10

    Time [s]

    Rel

    ativ

    e Po

    wer

    [-]

    RZKIND (bue)calculation

    Particle Modell ofZKIND

    Influence of detailed fuel temperature model(control rod velocity: 100 cm/s)

    (blue) 2D RZ-KIND calculation

    (red) 1D ZKIND particle model calculation

    Extreme differences betweenthe two models

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 26

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Fast transient calculation

    500

    550

    600

    650

    700

    750

    800

    850

    900

    0 20 40 60 80 100

    Time [s]

    Tem

    pera

    ture

    [°C

    ]

    FuelCoat.1Coat.2Matrix-max

    Matrix-averageFE_Shell

    Fuel Element Shell

    average Matrix Temperature

    UO2 TemperatureZKIND (Particle model)

    - 100 cm/s

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 27

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    General Objectives :

    • Reliable and flexible integrated tool for analysis of static anddynamic behavior of HTRs:

    • Emphasis on detailed description of in-vessel behavior,especially coupling of thermal-hydraulics and neutronics

    • Existing tools as starting point for further development

    • Present code THERMIX

    Thermal hydraulics

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 28

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    HTR with annular core [PBMR]THERMIX discretisationce

    ntra

    l gra

    hite

    col

    umn

    annu

    lar c

    ore

    Initial steady state temperature distribution

    Design of PBMR with annular core andcompact central column• Thermal power: 400 MW

    • System pressure: 85 bar

    • Inlet temperature: 500 °C

    • Outlet temperature: 900 °C

    Examples of analyses and applications

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 29

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Results for Annular Core ReactorLOFC with depressurization LOFC without depressurization:

    Gas temperature and velocity(annular core only)

    Solid temperature development Solid temperature development

    Examples of analyses and applications

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 30

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Further developments• 3D calculations in ZIRKUS• Improved treatment of streaming in cavities for

    diffusion calculations• New 2D/3D thermal hydraulics module• Extensions of the space time kinetics modules

    – more energy groups– more flexible mesh grid– coupling to new thermal hydraulics code– detailed heat transfer model for coated particles

    embedded into graphite matrix for 2D version

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 31

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Benchmark PBMR 400Neutronics/Thermal hydraulics

    • ZIRKUS and DORT model (exercise 1)• THERMIX and KONVEK model (exercise 2)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 32

    Universität Stuttgart

    Institut für Kernenergetik und EnergiesystemeMesh and media assignment : Steady State Exercise 1

    73,6 80,55 92,05 100 117 134 151 168 185 192,5 204,5 211,4 225 243,6 260,6 275 287,5 292,5Mesh subdivision

    0 10 41 73,6 80,6 92,1 100 117 134 151 168 185 193 204 211 225 244 261 275 288 2931 2 3 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1

    -200 10 31 32,6 6,95 11,5 7,95 17 17 17 17 17 7,95 11,5 6,95 13,6 18,6 17 14,4 12,5 5-150 5 50 133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190-100 5 50 133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190-50 5 50 133 133 133 133 155 116 112 112 112 112 112 135 164 144 144 152 152 152 189 1900 5 50 133 133 133 133 155 116 111 111 111 111 111 135 165 144 144 152 152 152 189 190

    50 5 50 134 134 134 125 156 117 1 23 45 67 89 136 166 145 145 153 153 153 189 190100 5 50 134 134 134 125 156 117 2 24 46 68 90 136 167 145 145 153 153 153 189 190150 5 50 134 134 134 126 157 118 3 25 47 69 91 137 168 146 146 153 153 153 189 190200 5 50 134 134 134 126 157 118 4 26 48 70 92 137 169 146 146 153 153 153 189 190250 5 50 134 134 134 126 157 118 5 27 49 71 93 137 170 146 146 153 153 153 189 190300 5 50 134 134 134 127 158 119 6 28 50 72 94 138 171 147 147 153 153 153 189 190350 5 50 134 134 134 127 158 119 7 29 51 73 95 138 172 147 147 153 153 153 189 190400 5 50 134 134 134 127 158 119 8 30 52 74 96 138 173 147 147 153 153 153 189 190450 5 50 134 134 134 127 158 119 9 31 53 75 97 138 174 147 147 153 153 153 189 190500 5 50 134 134 134 128 159 120 10 32 54 76 98 139 175 148 148 153 153 153 189 190550 5 50 134 134 134 128 159 120 11 33 55 77 99 139 176 148 148 153 153 153 189 190600 5 50 134 134 134 128 159 120 12 34 56 78 100 139 177 148 148 153 153 153 189 190650 5 50 134 134 134 128 159 120 13 35 57 79 101 139 178 148 148 153 153 153 189 190700 5 50 134 134 134 129 160 121 14 36 58 80 102 140 179 149 149 153 153 153 189 190750 5 50 134 134 134 129 160 121 15 37 59 81 103 140 180 149 149 153 153 153 189 190800 5 50 134 134 134 129 160 121 16 38 60 82 104 140 181 149 149 153 153 153 189 190850 5 50 134 134 134 129 160 121 17 39 61 83 105 140 182 149 149 153 153 153 189 190900 5 50 134 134 134 130 161 122 18 40 62 84 106 141 183 150 150 153 153 153 189 190950 5 50 134 134 134 130 161 122 19 41 63 85 107 141 184 150 150 153 153 153 189 190

    1000 5 50 134 134 134 130 161 122 20 42 64 86 108 141 185 150 150 153 153 153 189 1901050 5 50 134 134 134 131 162 123 21 43 65 87 109 142 186 151 151 153 153 153 189 1901100 5 50 134 134 134 131 162 123 22 44 66 88 110 142 187 151 151 153 153 153 189 1901150 5 50 132 132 132 132 163 124 114 114 114 114 114 143 188 151 151 154 154 154 189 1901200 5 50 132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 1901250 5 50 132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 190

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 33

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Compositions for Benchmark Model (THERMIX-Konvek)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 34

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Results neutronics exercise 1

    • Calculations performed with the Diffusion code of ZIRKUS (2D)–Cavities treated via direction dependent diffusion coefficients

    • For comparisons: DORT 2D SN-calculations P0- transport corrected–Cavities treated as vacuum

    Value ZIRKUS/Diffusion DORT-S16 DORT-S12 DORT-S8 DORT-S6 DORT-S4 DORT-S2k-eff 1.003488 0.992842 0.991904 0.99383 0.997045 0.99376 0.995983Maximum Power density (W/cm3) 12.14 12.2994 12.3250 12.3264 12.3240 12.3330 12.4070Maximum fast flux (n/cm2/s) 2.005E+14 2.041E+14 2.045E+14 2.045E+14 2.043E+14 2.046E+14 2.052E+14Maximum thermal flux (n/cm2/s) 3.055E+14 3.141E+14 3.141E+14 3.153E+14 3.170E+14 3.153E+14 3.171E+14Leakage from core (% per lost neutron) 15.40 15.24 15.28 15.20 15.06 15.20 15.12Leakage from domain (% per lost neutron) 0.209 0.208 0.210 0.211 0.213 0.167

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 35

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Fast flux density PBMR-400 exercise 1DORT S16

    050

    100150

    200250

    300

    -500

    0

    500

    1000

    15000

    1

    2

    3

    4

    5

    6

    7

    x 10-6

    Radius, cm →Height, cm →

    fast

    flux

    , →

    Top

    Bottom

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 36

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Thermal flux density PBMR-400 exercise 1DORT- S16

    050

    100150

    200250

    300

    -500

    0

    500

    1000

    15000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    x 10-5

    Radius, cm →Height, cm →

    ther

    mal

    flux

    , →

    Top

    Bottom

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 37

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100150

    200250

    300

    -2000

    200400

    600800

    10001200

    1400-50

    -40

    -30

    -20

    -10

    0

    10

    20

    Radius, cm →Height, cm →

    diff

    fast

    flux

    s8-

    s16,

    Relative difference DORT S8 to S16 referencesolution (fast group)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 38

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100

    150

    200250

    300

    -2000

    200400

    600800

    10001200

    1400-10

    -8

    -6

    -4

    -2

    0

    2

    Radius, cm →Height, cm →

    diff

    ther

    mal

    flux

    s8-

    s16,

    Relative difference DORT S8 to S16 referencesolution (thermal group)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 39

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100150

    200250

    300

    -500

    0

    500

    1000

    1500-100

    -50

    0

    50

    100

    150

    200

    Radius, cm →Height, cm →

    diff

    fast

    flux

    s2-

    s16,

    Relative difference DORT S2 to S16 referencesolution (fast group)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 40

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100150

    200250

    300

    -500

    0

    500

    1000

    1500-40

    -30

    -20

    -10

    0

    10

    Radius, cm →Height, cm →

    diff

    ther

    mal

    flux

    s2-

    s16,

    Relative difference DORT S2 to S16 referencesolution (thermal group)

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 41

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    0

    100

    200

    300-200 0 200 400 600 800 1000 1200 1400

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    x 10-8

    Radius, cm →Height, cm →

    fissi

    on s

    ourc

    e di

    strib

    utio

    n, →

    TOP

    Fission neutron source distribution (DORT) S-16calculation for exercise 1

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 42

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100150

    200250

    300

    -2000

    200400

    600800

    10001200

    1400

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    Radius, cm →Height, cm →

    diff

    sour

    ce d

    istri

    butio

    n s8

    -s16

    , →

    TOP

    Relative difference in fission neutron source distributionbetween S-8 and S-16 calculation

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 43

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    050

    100150

    200250

    300

    -200 0 200 400 600 800 1000 1200 1400

    -3

    -2

    -1

    0

    1

    2

    3

    4

    Radius, cm →Height, cm →

    diff

    sour

    ce d

    istri

    butio

    n s2

    -s16

    , → TOP

    Relative difference in fission neutron source distributionbetween S-2 and S-16 calculation

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 44

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Exercise 2

    Heat flow to surface cooling system 974,5 kw! Maximum fuel temperature 996,7 °C!

    Inlet helium temperature (°C) 500Outlet helium temperature (°C) 998.2Inlet Pressure (MPa) 9.33944Outlet Pressure (MPa) 9Total pressure drop (kPa) - Inlet to outlet 339.44Pebble bed pressure drop (kPa) - Top / bottom fuel 278Average fuel temperature (°C) 815.28Average moderator temperature (°C) 796.5Average helium temperature in core (°C) 740.61

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 45

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Pebble surface temperature distributiionexercise 2

    -235-1

    001203

    305407

    5096011

    60132515

    00

    0

    92,0

    5

    134

    176,

    5

    225

    287,

    5

    316

    462,

    5

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Surf

    ace

    Tem

    pera

    ture

    [ °C

    ]

    Radius [m]Heigh

    t [m]

    900-1000800-900700-800600-700500-600400-500300-400200-300100-2000-100

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 46

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Flow fieldexercise 2

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 47

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Remarks exercise 1

    • keff strongly dependent from diffusion constants incavity over pebble bed core for diffusion method

    • keff about 1% lower for SN (DORT) method,depending from SN order

    • SN order from influence of fluxes at outer boundariesand cavities

    • For SN calculations the absorber cross sectionsshould be adopted

    • transport correction for P0 calculation adequate ?• Treatment of cavities well defined for SN calculations

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 48

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Remarks exercise 2

    • Spatial discretisation could be refined• fuel, moderator and reflector temperatures seem to

    be adequate for steady state cases

  • The PBMR-400 Core Design - 2nd Workshop - OECD/NEA, Issy les Moulineaux - 26-27 January 2006 49

    Universität Stuttgart

    Institut für Kernenergetik und Energiesysteme

    Remarks exercise 3

    • A reproduction of the reference cross section datawas not possible

    • Coupled calculations with interpolated cross sectionsled to inconsistent results

    • Some interpolated data should be compared

    Application and development of tools for HTR neutronics and thermal hydraulics analysis at IKEHTR applicationsCodes availableZIRKUSMain modular ZIRKUS sequence for stationary neutronics - thermal hydraulics calculationsMain modular ZIRKUS sequence for stationary neutronics - thermal hydraulics calculationsZIRKUS-featuresTypical ZIRKUS/THERMIX applicationsZIRKUS optionsZIRKUS modular chainCross section data base and spectral codeMICROX-2 for detailed calculation of spectra in fast, resonance and thermal rangePresent MICROX-2 Library based on JEFF-3.1Thermal neutron scattering on graphiteComparison of measured and calculated spectraTransient calculationsThermal-hydraulic ModelsMacro and Micro model of Heat conductionThermal-hydraulic Modelsused in KIND codes Data Flow to RZKINDFeatures of the KIND CodesExample: Control rod withdrawal(2D RZ-KIND calculation for HTR Modul) Influence of detailed fuel temperature model(control rod velocity: 100 cm/s)Fast transient calculation Further developmentsBenchmark PBMR 400Neutronics/Thermal hydraulicsCompositions for Benchmark Model (THERMIX-Konvek)Results neutronics exercise 1Fast flux density PBMR-400 exercise 1 DORT S16Thermal flux density PBMR-400 exercise 1DORT- S16Exercise 2Pebble surface temperature distributiion exercise 2Flow field exercise 2Remarks exercise 1Remarks exercise 2Remarks exercise 3