w. kosek 1 , a . rzeszótko 1 , w . popiński 2

16
oscillations oscillations excited by the fluid excitation excited by the fluid excitation functions functions to the prediction errors of the pole to the prediction errors of the pole coordinates data coordinates data W. Kosek 1 , A. Rzeszótko 1 , W. Popiński 2 1 Space Research Centre, Polish Academy of Sciences, Warsaw, Poland 2 Central Statistical Office, Warsaw, Poland Journées "Systèmes de référence spatio-temporels" and X. Lohrmann-Kolloquium 22, 23, 24 September 2008 - Dresden, Germany

Upload: teleri

Post on 27-Jan-2016

66 views

Category:

Documents


2 download

DESCRIPTION

Contribution of wide-band oscillations excited by the fluid excitation functions to the prediction errors of the pole coordinates data. W. Kosek 1 , A . Rzeszótko 1 , W . Popiński 2 1 Space Research Centre, Polish Academy of Sciences, Warsaw, Poland - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

Contribution of wide-band oscillations Contribution of wide-band oscillations excited by the fluid excitation functions excited by the fluid excitation functions

to the prediction errors of the pole to the prediction errors of the pole coordinates datacoordinates data

W. Kosek1, A. Rzeszótko1 , W. Popiński2

1Space Research Centre, Polish Academy of Sciences, Warsaw, Poland 2Central Statistical Office, Warsaw, Poland

Journées "Systèmes de référence spatio-temporels"and X. Lohrmann-Kolloquium 22, 23, 24 September 2008 - Dresden, Germany

Page 2: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

DATADATA

x, y pole coordinates data from the IERS: EOPC04_IAU2000.62-now (1962.0 - 2008.6), Δt = 1 day, http://hpiers.obspm.fr/iers/eop/eopc04_05/,

Equatorial components of atmospheric angular momentum from NCEP/NCAR, aam.ncep.reanalysis.* (1948 - 2008.6) Δt = 0.25 day, ftp://ftp.aer.com/pub/anon_collaborations/sba/,

Equatorial components of ocean angular momentum (mass + motion): 1) c20010701.oam (gross03.oam) (Jan. 1980 - Mar. 2002) Δt = 1 day, 2) ECCO_kf049f.oam (Mar. 2002 - Mar. 2006), Δt = 1 day, http://euler.jpl.nasa.gov/sbo/sbo_data.html,

Equatorial components of effective angular momentum function of the hydrology obtained by numerical integration of water storage data from NCEP: water_ncep_1979.dat, water_ncep_1980.dat, …, water_ncep_2004.dat, Δt = 1 day, ftp://ftp.csr.utexas.edu/pub/ggfc/water/NCEP.

Page 3: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

x, y pole coordinates model data computed from fluid excitation functions

)()()( ttmtmich

)()()( tiytxtm

)(2

)(1

)( titt

Qi

Tchch 2

12daysTch 433 170Q

tittt

tititmttm chch

ch exp)()(2

exp)()(

Differential equation of polar motion:

- pole coordinates,

- equatorial excitation functions corresponding to AAM, OAM and HAM,

- complex-valued Chandler frequency, where and

Approximate solution of this equation in discrete time moments can be obtained using the trapezoidal rule of numerical integration:

Page 4: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

THE MORLET WAVELET TRANSFORM COHERENCE

,)exp()()(||21),( 2/1 dibaxaabX

2/)2exp()2/exp()( 2 titt

,

),(ˆ),(ˆ

),(ˆ),(ˆ

),(ˆ22

M

Mb

M

Mb

M

Mbxy

abtYabtX

abtYabtXat

)2/)2(exp()( 2

The WT coefficients of complex-valued signal are defined as:

is the CFT of complex-valued Morlet wavelet function:

ba ,0where are dilation and translation parameters, respectively,

Spectro-temporal coherence between and time series is defined as:)(tx )(ty

where M is a positive integer and Δt is the sampling interval.

).()( txx and is the CFT of

)(tx

)12(

),(ˆ

Mt

aaterr xy

Page 5: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The MWT spectro-temporal coherence between IERS x, y pole coordinates data and x, y pole coordinates model data computed from AAM, OAM and HAM excitation functions

200

400

1965 1970 1975 1980 1985 1990 1995 2000 2005

-400

-200

200

400

1980 1985 1990 1995 2000 2005

-400

-200

p

erio

d (

day

s)

200

400

IERS, AAM

IERS, OAM

IERS, HAM

1980 1985 1990 1995 2000 2005

YEARS

-400

-200

x - iy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Page 6: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The MWT spectro-temporal coherence between IERS x, y pole coordinates data and x, y pole coordinates model data computed from AAM, AAM+OAM and AAM+OAM+HAM excitation functions

200

400

1965 1970 1975 1980 1985 1990 1995 2000 2005

-400

-200

IERS, AAM

IERS, AAM+OAM

IERS, AAM+OAM+HAM

x - iy

200

400

1980 1985 1990 1995 2000 2005

-400

-200

pe

rio

d (

da

ys)

200

400

1980 1985 1990 1995 2000 2005

YEARS

-400

-200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Page 7: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

Prediction of x, y pole coordinates data Prediction of x, y pole coordinates data by the LS+AR methodby the LS+AR method

x, y LS residuals

Prediction of

x, y LS residuals

x, yLS extrapolation

Prediction of

x, y

AR prediction

x, y

x, y LS model

(Chandler circle + annual and semiannual ellipses + linear trend)

LS extrapolation

Page 8: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

LS+AR prediction errors of IERS x, y pole coordinates data and of x, y pole LS+AR prediction errors of IERS x, y pole coordinates data and of x, y pole coordinates model data computed from AAM, OAM and HAM excitation coordinates model data computed from AAM, OAM and HAM excitation

functionsfunctions

1980 1984 1988 1992 1996 2000 2004 20080

100

200

300

0

0.02

0.04

0.06

0.08

0.1

1980 1984 1988 1992 1996 2000 2004 20080

100

200

300

x (AAM)

x (IERS)

1980 1984 1988 1992 1996 2000 2004 20080

100

200

300

y (IERS)

1980 1984 1988 1992 1996 2000 2004 20080

100

200

300

y (AAM)

x (OAM)

arcsec

y (OAM)

1980 1984 1988 1992 1996 2000 20040

100

200

300

d

ays

in t

he

futu

re

1980 1984 1988 1992 1996 2000 20040

100

200

300

x (HAM) y (HAM)

1980 1984 1988 1992 1996 2000 2004

YEARS

0

100

200

300

1980 1984 1988 1992 1996 2000 2004

YEARS

0

100

200

300

Page 9: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM (orange), OAM (blue) and HAM (green)

excitation functions

0 100 200 300days in the future

0.00

0.01

0.02

0.03

xarcsecIERS

AAM

OAM

HAM

0 100 200 300days in the future

0.00

0.01

0.02

0.03

yarcsec

Page 10: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM+OAM (red) and AAM+OAM+HAM

(purple) excitation functions

0 100 200 300days in the future

0.00

0.01

0.02

0.03

xarcsecIERS

AAM+OAM

AAM+OAM+HAM

0 100 200 300days in the future

0.00

0.01

0.02

0.03

yarcsec

Page 11: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

DISCRETE WAVELET TRANSFORM BAND PASS FILTER

,2,1,...,1,,1,...,1,0)()( 00

112

12,,

pnpjjjntfortStx

j

jkkjkjj

1

0,, )()(

n

tkjkj ttxS

)22/(2)( 2/, knntnt j

jj

kj

- the DWT coefficients,

The DWT j-th frequency component of the complex valued signal x(t) is given by:

,]/)2/(sin[

)1]/)2/(2cos[2](/)2/(2sin[]/)2/(exp[1)(nnt

nntnntnntintjj

j

nn jj /2)2/(

- discrete Shannon wavelets.

1

0

)()(p

jjtxtjx

Signal reconstruction:

20

0 pj 12,...,12,2 000 jjjk

,]/)2/(sin[

]/)2/(2sin[]/)2/(exp[1)(10

0 nntnntnntint

j

j

nn

jj /2)2/(

100

1,...,2,1 00 pjjj 12,...,12,2 111 jjjk

For fixed lowest frequency index and time index

For higher frequency index and time index

Page 12: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

-0.040.000.04 j= 0arcsec

-0.040.000.04 j= 1

-0.040.000.04 j= 2

-0.040.000.04 j= 3

-0.300.000.30 j= 4

-0.040.000.04 j= 5

-0.020.000.02 j= 6

-0.010.000.01 j= 7

-0.010.000.01 j= 8

-0.010.000.01 j= 9

-0.010.000.01 j=10

40000 44000 48000 52000MJD

-0.010.000.01 j=11

1962 2008

The DWT frequency components of x pole coordinate data

Chandler + Annual

Semiannual

longer period

shorter period

Page 13: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed by summing the chosen DWTBPF components

0 50 100 150 200 250 300 350days in the future

0.00

0.01

0.02

0.03

0.04arcsec

y

0 50 100 150 200 250 300 350days in the future

0.00

0.01

0.02

0.03

0.04IERSarcsecCh + An + Sa

Ch + An + longer periodCh + An + shorter periodx

Ch + An

Page 14: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

The mean LS+AR prediction errors of IERS x, y pole coordinates data (black), and of x, y pole coordinates model data computed from AAM+OAM (red) excitation functions as

well as by summing the DWTBPF components corresponding to Chandler, annual and shorter period oscillations (green)

0 100 200 300days in the future

0.00

0.01

0.02

0.03

xarcsecIERS

AAM+OAM

Ch + An + shorter period

0 100 200 300days in the future

0.00

0.01

0.02

0.03

yarcsec

Page 15: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

CONCLUSIONSCONCLUSIONS The contributions of atmospheric or ocean angular momentum excitation

functions to the mean prediction errors of x, y pole coordinates data from 1 to about 100 days in the future is similar and of the order of 60% of the total prediction error.

The contribution of ocean angular momentum excitation function to the mean prediction errors of x, y pole coordinates data for prediction lengths greater than 100 days becomes greater than the contribution of the atmospheric excitation function.

The contribution of the joint atmosphere and ocean angular momentum excitation to the mean prediction errors of x, y pole coordinates data is almost equal to the contribution of the sum of Chandler + annual and shorter period frequency components. Both contributions explain about 80÷90% of the total prediction error.

Big prediction errors of IERS x, y pole coordinates data in 1981-1982 and in 2006-2007 are mostly caused by wide-band ocean and atmospheric excitation, respectively.

The contribution of the hydrologic angular momentum excitation to the mean prediction errors of x, y pole coordinates data is negligible.

Page 16: W. Kosek 1 ,   A .  Rzeszótko 1 , W .  Popiński 2

AcknowledgementsAcknowledgements

This paper was supported by the Polish Ministry of Education and Science, project No 8T12E 039 29 under the leadership of Dr. W. Kosek. The authors of this poster are also supported by the Organizers of Journées "Systemes de référence spatio-temporels" and X. Lohrmann-Kolloquium.

poster available: http://www.cbk.waw.pl/~kosek