water in oil - cheric

12
174 HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 174-185 Water in Oil * 100-715 3 26 * 461-701 65 (2002 9 12 , 2003 1 2 ) Preparation of Silica Nanoparticles Using Water in Oil Microemulsion Tae-Hoon Kim, Ji-Youn Kim, Min-Chung Kim, Sang-Joon Park*, Sang-Kwon Park and Jong-Choo Lim Department of Chemical Engineering, Dongguk University, 26, Pildong 3(sam)-ga, Jung-gu, Seoul 100-715, Korea *Department of Chemical Engineering, Kyungwon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam 461-701, Korea (Received 12 September 2002; accepted 2 January 2003) water-in-oil(W/O) microemulsion tetraethyl orthosilicate(TEOS) . W/O microemulsion , , 3 5 , , W/O . , . Transmission electron microscopy , W/O , . Abstract - Silica nanoparticles were synthesized by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) using water-in-oil (W/O) microemulsion. Phase behavior experiments were performed to characterize single phase W/O micro- emulsion region in ternary systems containing ammonia solution, surfactant, and oil, where 3 different types of surfactants and 5 different kinds of oils were used during the experiments. It was found that both surfactant and oil caused a substantial change in microemulsion phase behavior and microemulsion region increased with an increase in the alkyl chain length of an oil. With the information of phase behavior experiments, silica nanoparticles prepared using single phase W/O microemulsion showed that relatively monodisperse particles of spherical shape were obtained. Photographs from transmission electron microscopy showed that average particle size, particle size distribution and number of particles formed were dependent on microemulsion composition, especially contents of ammonia solution solubilized in the microemulsion region. Key words: Silica Nanoparticle, Water in Oil Microemulsion, Surfactant, Continuous Oil Phase 1. , , , , , , , , , [1]. , [2-4]. , (precursor) , , , (droplet) . To whom correspondence should be addressed. E-mail: [email protected]

Upload: others

Post on 11-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Water in Oil - CHERIC

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 174-185

Water in Oil �������� � �� ���� ��

�������������*��� ��†

����� ���� �����100-715 � � �� 3� 26*����� ���� �����

461-701 ��� �� ��� � 65(2002� 9� 12� ��, 2003� 1� 2� ��)

Preparation of Silica Nanoparticles Using Water in Oil Microemulsion

Tae-Hoon Kim, Ji-Youn Kim, Min-Chung Kim, Sang-Joon Park*, Sang-Kwon Park and Jong-Choo Lim†

Department of Chemical Engineering, Dongguk University, 26, Pildong 3(sam)-ga, Jung-gu, Seoul 100-715, Korea*Department of Chemical Engineering, Kyungwon University, San 65, Bokjeong-dong, Sujeong-gu, Seongnam 461-701, Korea

(Received 12 September 2002; accepted 2 January 2003)

� �

� ����� water-in-oil(W/O) microemulsion� �� � ��� ��� �� tetraethyl orthosilicate(TEOS)� �

��� ��� �� ��� !"#� $%&'. () *+,� W/O microemulsion� -.� /0� 123 4

� 5+, 6789$, � �� �:� ;9�<� �=>? @AB� C� 3DE� 6789$F 5DE� 5+� �

� ,GH �I� �J� 1K, �L @AB� ,MNO 6789$F 5+� DE� PQ R /S� T� U� VW&

<X, +�Y<� *+,� W/O Z�[��\] /0O �^ 5+� �_ `�� `>a�b c>d� U� e � fg

'. ,GH �I 1K� hi<� *+,� Z�[��\] /0�� "# $% �I� �J&<X, "#� Gj [3�

klY j+� �H� ��� "#� m� � fg'. Transmission electron microscopy n2<�op "#� Gj [3, �

q r s9 t�� �I� �� *+,� W/O Z�[��\] %9� /S� T<X, uv Z�[��\] w� �xy

> f� � �� �:� z{� �| R /S� T� U� e � fg'.

Abstract − Silica nanoparticles were synthesized by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS)

using water-in-oil (W/O) microemulsion. Phase behavior experiments were performed to characterize single phase W/O micro-

emulsion region in ternary systems containing ammonia solution, surfactant, and oil, where 3 different types of surfactants and5 different kinds of oils were used during the experiments. It was found that both surfactant and oil caused a substantial change

in microemulsion phase behavior and microemulsion region increased with an increase in the alkyl chain length of an oil. With

the information of phase behavior experiments, silica nanoparticles prepared using single phase W/O microemulsion showed

that relatively monodisperse particles of spherical shape were obtained. Photographs from transmission electron microscopy

showed that average particle size, particle size distribution and number of particles formed were dependent on microemulsion

composition, especially contents of ammonia solution solubilized in the microemulsion region.

Key words: Silica Nanoparticle, Water in Oil Microemulsion, Surfactant, Continuous Oil Phase

1. � �

�� �� ���� ��, ���, ���, ��, ����, �

��, ���� ! "# ��$%&' ()*+ ,-., /01 23

1 $%&' 4)*+ , ���� 5��# 67(, 8�(, 79(

:�+ ��(� ;&'! "# �<-= �>? @)ABC << D

�E F-= GH*+ ,2[1]. I(� �� 5J KL-= )ML

N "/ O)>P-� Q# &RST UV= >., WXY! 5ZC �

[\ �] 5�! Y�(^79( _�T `abc d<�N CS+

,2[2-4]. /01 d<N �e1 KL-=' ��( 7LN 7f= 1

5J KL& g1 hi/ <j kl mn op=, qr/ s�t u

)v w S)v 6x�(precursor)T $� uy&' z{bc[ b

�| }p=, ~��, ��, &��� � �# KLN /)>? �#

�((droplet)-=�� $�N �vb�-=� ��! �7| ��( �

IvN 5�>[ b�= x$� u ,2. : � �/�=&��†To whom correspondence should be addressed.E-mail: [email protected]

174

Page 2: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 175

(microemulsion)N /)1 �� 5JKL# $� dB! z{N /)>

�= �I�C �� Q-., ��v/ ���+ ��1 �) ! "#

�<N C� KL-=' �� ���� 5J& ({1 KL-= �[

l ,2[5, 6].

�/�=&��# I(� &��(emulsion �# macroemulsion)�

�� � �(-= ��>+ 8�(-= Kv�(isotropic) $� b¡

¢-= �!*., g£(� F-= ¤rH(continuous phase)! u)

� r& ¥I/ $�*� , oil-in-water(O/W) �/�=&���

g= ¤rH! ¥I r& Y/ $�*� , water-in-oil(W/O) �#

reverse �/�=&�� :�+ ¥I� Y/ ¦b& ¤rH-= §¨>

bicontinuous middle-phase �/�=&��/ ,2. �/�=&��

N /)1 ��a¨ {vL# $� uy&'! J�/ C©>7 ª«

& ~> �vN CS f¬­�T 5J� u , �<N ®+ ,2. G

T �; �7)� H& §¨> 3-30 nm �7! 9;4v5 ¯{��

 �/°(reverse micelle)# ¯{� ±�& YN $�b² u ,7 ª«

& ³uv YEN C)�(solubilization)b² u ,N ´ µ¶· /01

³uv YE/ W/O �/�=&�� O/ w W/O �/�=&���

¸� u)� O/&' /¦¹ u ,7 ª«& /01 vEN /)>;

 �/°N /)1 ��@/ C©º�2. w1  �/° ±& $�*

Y»¼/(water pool) ½�� J¾ >&' I�1 �7T ®+ ,

7 ª«& ��! ¿v�(nucleation) À v� r�(particle growth)T Á

 JÃ� u ,-., � �(� ��v-= �>? I(� ¬Ä �

� 5J&' I�� ��! @¯N Å�(-= KS� u ,2. Æ,

 �/°# $� uy! ¬Ä@7(microreactor)= �)s-=� @

Y/ ÇÈ(� �/�=&�� ÇÇ! ¬Ä@7 ±& $�*� @

>7 ª«& ¿! �v� v�N Å�(-= 5�� u , É�1 ©

ÊN ®+ ,2[2-6].

W/O �/�=&��N /)1 Ë�Ì(silica) ���� {v# I

(-= Íζµ �� >&' /Ï�S., �� v# �� ÐÑ1 �

�N ZÒ �v*� ��¿ �v� �� v� ��-= � �Ó u

,+ �](-= v* Ë�Ì ��! Ô� �� �7 À Çu& Õ

Ö×N ¬Ø F-= �[l ,2[5-14]. ��¿ v ��# W/O �

/�=&�� H& C)�t Íζµ u)�! Y� 6x� YE O

!! Cu$º @& !º I��., �/�=&�� �((droplet) ±

&' I�� intramicellar nucleation� �/�=&�� O/! ÙÚ À {

�& !1 YE ÛÜ ��& !>? I�� intermicellar nucleation

��-= xÈ� u ,2. ��¿ v ��# �� �� {v& O)

> Y/9;4v5! mole �Ý� RÞ& !>? � Ö×N ß-.,

RÞ/ Õ à�& ½= intramicellar nucleation& !>? ��¿/ �

v*+ ;& intermicellar nucleation# RÞ/ �# à�& I��

F-= �[l ,2[5-16]. 1á vt ��¿# Brownian motion&

!1 6x� YE! âC @N ã>? �/�=&�� ±&' ��

= v�> ��� �/�=&�� O/! ÙÚ À {� ��&' 9

;4v5 Uä/ åæ*;' �vt �/�=&�� O/! �çN ã

1 YE ÛÜ& !>? �{@/ 9r �è*;' ��C v�>

é ��& !>? I�ê2[17-21].

��¿ v ��# ¥I H& §¨> 9;4v5 ¯{��  �/

°! u|  �/° ±= C)�* Y� 6x�! 3& !>? ½=

ë�*., / 9;4v5 �²7! ì/, h©7! ]í À BØ, HLB

(hydrophilie lipophilie balance) ! 9;4v5! ��( xJ| î�,

6x�(precursor)! ]í, xJ À î�, ï�, pH, âCY À counter ion

! §¨�ð, �/°! packing density & !>. ñ�t2. 1á �

�v� ��&' �/�=&�� b¡¢&'! @Y! ÛÜ r�

(intermicellar exchange rate) �/�=&��! 9; _�(interfacial

rigidity)& !>? � ñ�*., 9; _� âCY/� �J9;4

v5(cosurfactant)& !>? JÃ/ C©>2[22-26].

�/�=&��N /)1 Ë�Ì ���� 5J& h>? ò¨óS

�è*� ï g�$! ¤x�# ½= 9;4v5 À 6x�! ]í|

Y/9;4v5 �Ý À 6x�! 3 ô�& õö ��! �7 �Û| b

÷& õö ��! v� r�& hº'ø uè*ù-.[5, 6, 17-21], �

�a¨! 5J& ,�' �I>+ ¬Ä1 ��T ún �V1  �

N > dIH(single phase)! �/�=&��! �v Ö & hº'

�9(� ¤xC uè*S ûü2. �/�=&��/ �v* Ö 

! BØ| AB 9;4v5 À ¥I! ]í| î�, âC* 6x�

]í, Y �# ¥I� 6x�! �Ý, ï�, pH ! ?0 CS ôu�

& !>? ë�t2. õ·' ý ¤x&' Ë�Ì ���� 5JT B

>? 9;4v5, ¥I, Íζµ u)�! þv$-= /Ï�� b¡

¢& g>? HÔ�(phase equilibrium) ËÿN uè>? ���� 5J

& ({1 dIH! W/O �/�=&��/ �v* Ö � ABT ë

�>P-., / ë�T ��-= >? � b¡¢&' ��t Jv&'

����T 5J>P2. �� ¤rH! ¥I ]íC dIH! W/O �

/�=&�� �v Ö & ¬Ø Ö×� � ¥I b¡¢&'! ÍÎ

¶µ u)� s�, 9;4v5! ]í À î�C Ë�Ì ���� �7

À $�& ¬Ø Ö×& h>? �<(-= ��ü2.

2. � �

2-1. ����

W/O �/�=&�� 5JT B>? ý Ëÿ&' O)1 9;4v5

! ��N Table 1& ��±ù2. �/ï 9;4v5 NP 4 I��

�&' x�>P-., �/ï 9;4v5 Brj 30� /ï 9;4v5

AOT Aldrich&' x�>? È2ö �5 ��N ZØS û+ Ëÿ&

O)>P2. AOT sodium bis(2-ethylhexyl) sulfosuccinate! /ï

9;4v5= Hï&' �Û( D# W/O �/�=&�� Ö N �v

� u ,�' �/�=&��N /)1 ���� 5J& ç� O)*+

,2. 1á �/�=&��! ¤rH ¥I= X� 98%! n-heptane,

n-decane, iso-octane, cyclohexane, tolueneN Fluka&' x�>? ��

O)>P-., Ë�Ì ���� 5JT B1 6x�= tetraethyl

orthosilicate(TEOS)T Sigma&' x�>? O)>P2. w1 ��| 6x

� YE! Cu@ )�= 28 wt%! Íζµ u)�N O)>P2.

2-2. ��� ��

�I>+ ¬Ä1 ���7! ��T 5J>7 B>? dIH! W/O

�/�=&�� v Ö N ��>7 B1 HÔ� ËÿN uè>P2.

Table 1. Type of surfactants used during this study

Type Name Chemical formula

Anionic Aerosol OT(AOT) ROOC-CH2

ROOC-CHSO3-Na+

Nonionic Polyoxyethylene(4) lauryl ether(Brj 30) C12H25-(OCH2-CH2)4OH

Polyethylene(4) nonylphenyl ether(NP 4) C9H19- -(OCH2-CH2)4-OH

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 3: Water in Oil - CHERIC

176 �������������������� !"

/T B>? ±à 13 mm flat-bottomed bÿh& 9;4v5, ¥I :

�+ Íζµ u)�! JvN ô�bc;' 6� E�/ 5 g * b

�T 5J>P-., 5Jt b� |í�'(vortex mixer)&' � 20f

÷ Û1 � �0.1oCóS ï�JÃ/ C©1 �ïJ& �+ 25oC&

' é )�/ e6� Ô�& ���N ª! H! ]í| uT h�>P

2. �/�=&�� �v Ö # º�* b�C éH-= $�*Z�

lamellar liquid crystalline phase(Lα)= 6/* à9<N 7y-= >

? ë�>P2.

2-3. �� �� � �

ý Ëÿ&' O)1 Ë�Ì �� 5J��N Fig. 1& ��±ù2. �

���! 5J B! HÔ� Ëÿ& !>? ë�t dIH! W/O �

/�=&�� Ö  ±&' ËÿN uè>P-., Ëÿ& O)t �/�

=&�� JvN 7y-= >? 6x� TEOST mole� 7y-= ÍÎ

¶µ u)�/TEOS! �Ý/ 6* âC1 � magnetic stirrerT O)

>? 700 rpm J¾&' 72b÷ ¦� Ù$� Û>;' ��T 5J>

P2. 5Jt ����! �7| $��, morphology& g1 �� 75

kVóS �¦/ C©1 transmission electron microscopy(TEM, JEOL

JEM-1200X) O� �ÖN ã>? úù2. TEM O� �ÖN B>? b

�T carbon/ ��t 200 mesh �7! copper grid B& $�b� 2

¤rH! ¥IN 5Z>7 B>? >Ï �� ¾Jb� � ��>P

-., ��! � �7| $�� image analyzerT O)>? $�>

P2.

3. �� �

3-1. ���

�/�=&��N /)1 Ë�Ì ���� 5JT B>? 9;4v

5, ¥I, Íζµ u)�! þv$ b¡¢& g1 HÔ� ËÿN uè

>P2. 9;4v5= /ï 9;4v5 AOT| �/ï 9;4v5

Brj 30� NP 4T O)>P+ ¤rH! ¥I= n-heptane, n-decane, iso-

octane, cyclohexane, tolueneN O)>? ��! 9;4v5 b¡¢&'

¥I! ]íC dIH! W/O �/�=&�� �v Ö & ¬Ø Ö

×& h>? ��ü2.

Fig. 2 AOT 9;4v5 b¡¢&' ¤rH-= O)1 ¥I/ d

IH! W/O �/�=&�� �v Ö & ¬Ø Ö×& h1 Ëÿ ë

�=', HÔ��(phase diagram)& ��� à9�# ��! b¡¢&

' dIH! W/O �/�=&�� Ö N ë�> �g Íζµ u

)� JvN ��� F/2. Æ, à9� µ & º�> S # dIH

-= §¨> W/O �/�=&��N ��±., à9� B& º�> S

 # �!! u)�/ âC"& õ· W/O �/�=&��� excess water

phaseC Ô�N /Ï é H-= §¨> Ö N ��� F/2[18].

¤rH ¥I! ]í& õö Fig. 2! ë�T �Ûº �;, 9;4v5

î�C �C�u# dIH! W/O �/�=&��/ §¨> Ö #

�C>., w1 dIH! Ö # O)1 ¥I! $v À O% ì/& õ

· Õ Ö×N ß FN � u ,ù2. ¤rH! ¥I= n-decaneN O

)1 à�& ,� C� Õ dIH! W/O �/�=&�� Ö / §¨

>P-., : 2 -= iso-octane, n-heptane, cyclohexane! X'= `

a>P2. ý Ëÿ&' O)1 ¥I �&' O%! ì/C C� & n-

decane! à�& 18%! 9;4v5 î� J¾&' Íζµ u)�

! à� 12% ��óS dIH! �/�=&�� ±& C)�*ù2.

1á iso-octaneN ¤rH-= O)1 à�& n-decane! à��2

�Sø n-heptane� cyclohexane! à�| �Û>? ' Õ Ö &' �

/�=&��N �v>P-., 9;4v5 î�T 18%óS �Cb�

à�& 11% ��! Y/ $�H! �(= §¨> dIH! �/

�=&�� Ö / §¨sN )�� u ,ù2. ;& ý Ëÿ&' O

)1 ¥I �&' O% ì/C C� *# cyclohexane! à�& ,�'

auv! 9;4v5 +� �$� ¥I O% O/! H,�)/ �

� ��= 9;4v5 +� �$-=! cyclohexane -.C )/>+

Hg(-=  �/° r-= -.º ��C Y! 3/ Ëÿ&' O

)1 2ö ¥I� �Û>? �� �-�= �/�=&��/ �� /

# Ö &' �v*., 9;4v5! î�T 18%óS �Cb0N ª&

� �/�=&�� ±& $�H! �(= §¨> Y! s�# 7% �

�= C� �ü2.

Fig. 3� 4 Brj 30� NP 4! �/ï 9;4v5 b¡¢&' ¤rH

-= O)1 ¥I/ dIH! W/O �/�=&�� �v Ö & ¬Ø

Ö×& h1 Ëÿë�T �� ��� F-= 9;4v5 î�C �

� 1# J¾N 5¸>+ Fig. 2& ��� AOT 9;4v5 b¡¢!

ë�| ¦I1 à×N �?½+ , N � u ,ù2. Æ, Brj 30 9;

4v5! à� 9;4v5 î�C �C�u# dIH! W/O �/�=

&��/ §¨> Ö # �C>., dIH! Ö # O)1 ¥I!

$v� O% ì/& Ö×N ßSø AOT| NP 4 b¡¢& �º' H

g(-= ¤rH ¥I! Ö×/ �# FN � u ,ù2. w1 Fig. 4&

��� NP 4 b¡¢! à�&� 9;4v5 î�C �C�u# dIH

! W/O �/�=&��/ §¨> Ö # �C>., w1 W/O �/

�=&�� Ö # 2! à�| ¦I> n-decane > iso-octane > n-

Fig. 1. Experimental procedure for silica nanoparticle preparation.

Fig. 2. Effect of oil on water in oil microemulsion region in AOT sur-factant system at 25oC.

���� �41� �2� 2003� 4�

Page 4: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 177

heptane > cyclohexane > toluene! X'= ��32.

� H(&' W/O �/�=&��& !1 Y! C)� 9;!

curvature| �/�=&�� �( O/! H,�)& !>? Ö×N ß

-., / interfacial layer! xJ| ¤rH ¥I! ]í& !>? ½

= ë�* F-= �[l ,2[22-26]. GT �;, ¤rH ¥I! O

% ì/C �C�u# �/�=&��! radius of spontaneous curvature

�C> *� C)� �C> *�, ;& �/�=&�� �(

O/! H,�Ê& Ö×N ½ 9; 4! -. ì/(penetration length

of interfacial layer during interpenetration of droplets) �C>Â "&

õ· H,�Ê# �C>? C)� `a> t2. õ·' ¤rH ¥

I! ô�C �/�=&��! C)�& ¬Ø Ö×# é Ö× ��

! Hg(� �7& !>? ë�t2. Fig. 2-4& ��� AOT, Brj 30,

NP 4! ��! 9;4v5 b¡¢&' ¥I O% ì/ �CC dIH

! �/�=&�� Ö & ¬Ø Ö×& h1 Ëÿë�& !>;, �

/�=&��! radius of spontaneous curvature �C Ö×/ �/�=

&�� �( O/! H,�Ê �C Ö×& �>? Hg(-= Õ FN

� u ,2. õ·' ¥I O% ì/C �C�u# dIH-= §¨>

�/�=&�� Ö # �2 D�S t2. :0� ¥I O% ì/ �

C& õ· 9;4v5 5{�(aggregate)�  �/°! curvature|

rigidity Hg(-= `a> *., /01 ë� Ë�Ì �� 5J

& ,�' ¤rH-= O)> ¥I! ]í| O% ì/& õ· �/

�=&�� O/! @ r�, Æ intermicellar exchange rate& Ö×N

¬Ø., õ·' v* Ë�Ì ��! �7| $��& �V1 Ö×

N ¬� u ,2.

3-2. � �

9;4v5, ¥I, Íζµ u)�! þv$-= /Ï�� b¡¢&

g>? 9;4v5| ¥I! ]íT ô�bc;' dIH! W/O �/

�=&��/ �v* Ö � ABT ë�1 HÔ� Ëÿ ë�T �

�-= >? � b¡¢&' ��t Jv&' ����T 5J>? H

Ô� Ëÿ ë�|! Hh h9T ��+� >P2. �� ���� 5

J Ëÿ&' Íζµ u)� s�, 9;4v5! ]í À î� :�

+ ¥I! ]í| O% ì/ ô�C vt Ë�Ì ��! �v& ¬Ø

Ö×& h>? �<(-= ��ü2.

3-2-1. ¤rH ¥I Ö×

HÔ� Ëÿ& !>? ë�t �/�=&�� Ö &'! ����

5J Ëÿ& 2' dIH! �/�=&�� Ö  à9� 6! W/O �

/�=&��� excess water phase! é H-= §¨> Ö &' ¤

rH! ¥I= n-decane� tolueneN �� O)>? Ë�Ì �� 5J

ËÿN uè>P-., : ë�T Fig. 5! (a)| (b)& �� ��±ù2.

Fig. 5 E� 7y-= 8% Brj 30 9;4v5, 87% ¥I :�+ 5%

! Íζµ u)�& º�> Jv J¾&' ËÿN uè1 ë�=

', / Jv J¾# Fig. 3& ��� Brj 30 9;4v5 b¡¢! HÔ

� Ëÿ ë�&' 7 u ,8/ dIH! W/O �/�=&�� Ö  6

& º�> FN � u ,2. Fig 5! (a)| (b)! ë�&' 7 u ,8

/ W/O �/�=&��� excess water phase! é H-= §¨>

Ö &' �� 5J ËÿN uè1 à�& J�1 �� $�!

monodisperse1 ��C v* F/ µ¶· vt ��C é ]í!

$�T ® FN � u ,2. GT �;, n-decaneN ¤rH! ¥I=

O)1 à�& Ô� �� �7C � 30 nm� �# ��| � 110 nm

� Õ ��C ¦b& v*ù-., tolueneN O)1 à�& Ô� �

� �7C �� � 40 nm� �# ��| � 280 nm� Õ ��C ¦b

& v*ù2. /| �/ W/O �/�=&��� excess water phase

! é H Ö & º�> J¾&' �� 5J ËÿN uè1 à�&

,�' vt ��! �7C �Û( �+ é ]í! �� $�T ®

F# �� {v @/ �/�=&�� �( ±&'ø I�� F/

µ¶· bulk u)�� �/�=&�� H&' ¦b& I�ê FN ��

± F/2. NP 4| AOT 9;4v5 b¡¢&' dIH! W/O �/

�=&�� Ö  6! J¾&' �� �� 5J ËÿN uè1 à�&

� ¦I1 à×N ��±ù-., õ·' �/�=&��N /)>? �

I1 ����T 5J>7 Bº' º� b¡¢& g1 HÔ� Ëÿ

N ã1 dIH! �/�=&�� Ö  ë�/ ��*�% sN � u

,2.

1á Brj 30! ¦I1 9;4v5 b¡¢& g>? dIH! W/O �

/�=&�� Ö  ±! ¦I1 JvN ® J¾(E� 7y-= Brj 9

;4v5 15%, u)� 3%, ¥I 82%)&' ¤rH! ¥I=' cyclohexane

n-heptane, iso-octane, n-heptaneN �� O)>? Ë�Ì ��T 5J1

Ëÿ ë�T Fig. 6! (a)-(d)& �� ��±ù2. :9! ë��&' �

7 u ,8/ ¤rH-= O)1 ¥I! ]í& h9:/ vt Ë

�Ì ��! $�C �� �+ �� Ô� �7C 32 nm&' 51 nmó

S! x� ��T 5J� u ,ù2. / Fig. 5! (a)| (b)& ���

ë�| �Û>? 7 ª dIH! �/�=&��/ �I1 ¬Ä ��

��T 5J� u , �� ;<1 ��@7!  �N > FN �

Fig. 3. Effect of oil on water in oil microemulsion region in Brj 30 sur-factant system at 25oC.

Fig. 4. Effect of oil on water in oil microemulsion region in NP 4 sur-factant system at 25oC.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 5: Water in Oil - CHERIC

178 �������������������� !"

u ,2.

Brj 30 9;4v5 b¡¢&' ¥I O% ì/ ô�C dIH! �/

�=&�� Ö & ¬Ø Ö×& h1 Ëÿë�T ��� Fig. 3& !

>; dIH! Ö # cyclohexane < n-heptane < iso-octane < n-decane

! X-= ��32. Fig. 6& ��� Ëÿë�| �Û>; D# dIH!

W/O �/�=&�� Ö N ® ¤rH! ¥IIu# v* Ë�

Ì ��! Ô� �7 �C> FN � u ,2. NP 4| AOT 9;

4v5 b¡¢&' dIH! W/O �/�=&�� Ö  ±! ¦I1 J

vN ® J¾&' ¤rH! ¥I=' cyclohexane n-heptane, iso-

octane, n-heptaneN �� O)>? Ë�Ì ��T 5J1 Ëÿ&'�

Brj 30 b¡¢� ¦I1 à×N ��±ù2. NP 4 9;4v5 15%, Í

ζµ u)� 1% :�+ ¥I 84%! JvN ® J¾&' ¤rH!

¥I= cyclohexane n-heptane, iso-octaneN �� O)>? ��5J Ë

ÿN uè1 ë�, vt Ë�Ì ��! Ô��7 �� 30.64 nm,

42.2 nm, 48.74 nm=' dIH! �/�=&��! ֠/ �C>

¥IIu# Ô� ���7C �C>P2. w1 AOT 9;4v5 13%,

Íζµ u)� 4% :�+ ¥I 83%! JvN ® J¾&' ¤rH

! ¥I= cyclohexane n-heptane, iso-octaneN �� O)>? ��5J

ËÿN uè1 ë�&'� vt Ë�Ì ��! Ô��7 �� 11.66

nm, 12.33 nm, 17.23 nm=' dIH! �/�=&��! ֠/ �C

> ¤rH ¥IIu# Ô� ���7C �C>P2.

¤rH ¥I! ]í À O% ì/ ô�C dIH! �/�=&��

Ö & ¬Ø Ö×&' =>1 �| �/ ¤rH ¥I! ]í À O%

ì/ ô� W/O �/�=&�� ̄ {�! rigidity| curvatureT `a

bc., õ·' ¤rH ¥I! ô�C vt �� �v& ¬Ø Ö×

# é Ö× ��! Hg(� �7& !>? ë�t2. ¤rH ¥I! O

Fig. 5. TEM image and particle size distribution of silica nanoparticles prepared by using 8% Brj 30, 87% oil and 5% aqueous solution on a weightbasis at 25oC(×100,000). The initial composition corresponds to the region above one phase water in oil microemulsion in all cases; (a) with n-decane, (b) with toluene.

���� �41� �2� 2003� 4�

Page 6: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 179

% ì/C �C>Â *; ¥I! 9;4v5 auv +� �$-=!

-.C �[\SÂ *. õ·' ¥I� 9;4v5 +� �$�! H

,�)# `a> * ;& �/�=&�� �( O/! H,�)

# �C> t2. õ·' �/�=&��! rigidity `a& õ· é Ç

! �/�=&��/ ÙÚ>? ?�l @Y/ /¦> intermicellar

exchange rate �C>Â t2. Intermicellar exchange rate! ô� �

�¿! v r�| �� v� r�& Ö×N ¬Ø., õ·' �](-

= v* ��! Çu| �7& Ö×N ¬Ø t2. GT ��, �

�¿ v À �� v�/ intermicellar ��& !>? I�� à�&

,�'! intermicellar exchange rate �C é Ç! �/�=&��/

ÙÚ>? ?�l @Y/ /¦s& õ· ��¿N v> r�T �

Cbc� Hg(-= ��! v� r� `abc�= v* ��

! �7 �µS+ Çu @�� t2. /| �/ �/�=&��

b¡¢&'! @Y! ÛÜ r� �/�=&��! 9; _�& !

>? � ñ�*., 9; _� �J9;4v5| �# âC5& !

º JÃ/ C©>2[22-26]. õ·' ¤rH ¥I O% ì/! �C& õö

�/�=&��! rigidity `a Å�øN +[� à�& intermicellar

exchange rateC A·S *� v* ��! �7 �µS+ Çu

@�� t2. /01 à×# AOT 9;4v5! �/�=&��N

/)>? AgCl �� 5J&' ¤rH! ¥I O% ì/C �C�u#, Æ

D# dIH! W/O �/�=&�� Ö N ® ¤rH ¥IIu# v

t AgCl Ô� ��! �7C �µS Ëÿë�&' �7 u ,2[27].

;& �� rigid1 9;N ® �/�=&�� b¡¢! à�& ,

�' ¤rH ¥I O% ì/ ô�& õö intermicellar exchange rate ô

� Z! ðb� u , ;& �/�=&�� ¯{�! curvature

& k2B Ö×N y2. Æ, ¤rH ¥I O% ì/C �C�u# �/

�=&��! radius of spontaneous curvature �C> t2. õ·'

�� rigid1 9;N ® �/�=&�� b¡¢! à�| �/

intermicellar exchange rateC CD à�& ��¿ v À �� v�# ½

= intramicellar ��& !>? I�� *., ��¿! v r� �

� C�� ��! v r� �Û( EF �èt2. õ·' ¤rH

¥I O%ì/ �C& õ· �/�=&��! radius of spontaneous

Fig. 6. Effect of oil on silica nanoparticles prepared in systems containing 15% Brj 30 and 3% aqueous solution at 25oC(×100,000); (a) cyclohexane,(b) n-heptane, (c) iso-octane, (d) n-decane.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 7: Water in Oil - CHERIC

180 �������������������� !"

curvature �C> *�= �](-= v* ��! �7 �C

> t2. /01 à×# Fig. 2-4& ��� AOT, Brj 30, NP 4! �

�! 9;4v5 b¡¢&' ¥I O%ì/ �CC dIH! �/�=

&�� Ö & ¬Ø Ö×& h1 Ëÿë�&' �/�=&��!

radius of spontaneous curvature �C Ö×/ �/�=&�� �( O/

! H,�Ê �C Ö×& �>? Hg(-= Õ F�� �{> FN

� u ,2.

3-2-2. 9;4v5 î� Ö×

dIH! W/O �/�=&��N /)>? 5J1 G=/H ��!

�7 � é V�& !>? ë�t2[17-21]. op @YN �s

>+ , �/�=&�� �( Çu=' I(-= �/�=&��

�(! ÇuC "Nu# �2 "# ��¿N �v> t2. w >�

�/�=&�� �( O/! @Y! ÛÜ r�(interdroplet dynamic

exchange rate)T ë�> 9;4v5 Uä! steric hindrance Å�=

' �/�=&�� �( £;& IJ*� , 9;4v5 Uä!

rigidityC Ku# w �(& g1 IJ/ _�u# �/�=&�� �

( O/! ��vN �Cbc 9;4v5 Uä! barrier  �# �C

> t2. ¦I 9ã! 9;4v5 b¡¢! à�, 9;4v5 Uä!

rigidity auv O%ì/C �C�u# �C> F& >? �(&

g1 IJ# ³uv �$/ �C�u# �C>Â t2. õ·' �/�

=&�� �( O/! @Y ÛÜ# Z! I��S û *�= ��

¿ v# ½= intramicellar nucleation& !>? I��., vt �

�! �7 `a>+ ;& Çu �C>Â t2. ý Ëÿ&' G

=/H �� �7& Ö×N ¬Ø é V�& Ö×N L u , Ëÿ

ôu=' 9;4v5 î�T ��>? 9;4v5 î� ô�C vt

Ë�Ì ��! �7| $�& ¬Ø Ö×& h>? ��ü2.

9;4v5 î�C 1# J¾&' 9;4v5 ¯{�T /Ï+ ,

9;4v5 d��! Çu� aggregation number| 9;4v5 ¯{

�! �7 Õ ;& vt ¯{�! Çu (2. Æ, ��! 9;

4v5 ¯{��  �/° ±& §¨> Y# �� 9;4v5 ³u

v �$� ë{>.(bound water), �MS Y# 9;4v5 ³uv �

$� ë{>S û# H(! Y(free water)= §¨> t2. õ·' �

�! 9;4v5 ¯{� ±& §¨> TEOS 6x� $� Çu� �

C>? �/�=&�� ±&'! 6x�! u�@(hydrolysis) r�

�C> *., õ·' vt ��! Ô� �7 �+ ;& ��!

Çu "µS t2. ;& 9;4v5 î�C Q# J¾&' 9

Fig. 6. Continued.

���� �41� �2� 2003� 4�

Page 8: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 181

;4v5 ¯{�! �7 �+ aggregation number (# ;&

vt  �/° ¯{�! Çu "2. õ·' ��!  �/° ±& §

¨> g�$! Y# 9;4v5 ³uv �$� ë{1 H(= §¨

> *�' TEOS $�| u�@N �è� u , free water! 3

/ �-�= �/�=&�� ±&'! 6x�! u�@ r� `a

> t2[17-21]. õ·' 9;4v5! î� �C& õ· 9;4v5

¯{��  �/°! �7 `a>+ vt  �/° ¯{�! Çu

�C>�= vt Ë�Ì ��! �7 `a>., ;& Çu

�C>Â t2.

2' Fig. 4& ��� NP 4 b¡¢! HÔ� Ëÿë�&' 7 u ,

8/ dIH! W/O �/�=&��# AOT| Brj 30 b¡¢& �>?

�� /# Ö &' �v*�= NP 4 b¡¢N 5¸1 AOT| Brj 30

��! 9;4v5 b¡¢& g>? Íζµ u)�! JvN E� 7

y-= 3%= +�b� H(&' 9;4v5! s�N 8%&' 15%ó

S �Cbc;' ËÿN uè>P2. ¤rH! ¥I= n-heptaneN O

)1 AOT| Brj 30 9;4v5 b¡¢! ë�(Fig. 7, 8)&' � �

| �/ 9;4v5! î�T 8%&' 15%= �Cb�& õ· vt

Ë�Ì ��! �7 `a> ;& Çu �C> FN � u ,

2. GT �� AOT 9;4v5 b¡¢! à� 9;4v5 î�T 8%

&' 15%= �Cb�& õ· Ô� �7 55 nm&' 21 nm= `a>

P-., ;& Çu 78Ç&' 470Ç= �C>P2. w1 Brj 30 9

;4v5 b¡¢! à�&� Ô� �7 59 nm&' 46 nm= `a>

+ ;& Çu 107Ç&' 150Ç= �C>� AOT 9;4v5 b¡

¢� �Û>? 9;4v5! î�& g1 Ö×/ �Û( �# FN �

u ,2.

1á Fig. 7� 8& ��� ë�& !>; 9;4v5 î�C �Cs

& õ· vt ��! �7 `a>+ ÇuC �C� ´ µ¶· ��

$�C �C> FN )�� u ,2. 2&' =>1 �| �/ 9;

Fig. 7. Effect of AOT concentration on silica nanoparticles prepared in systems containing n-heptane and 3% aqueous solution at 25 oC(×100,000);(a) 8 wt%, (b) 15 wt%.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 9: Water in Oil - CHERIC

182 �������������������� !"

4v5 î�C �Û( 1# à�& ,�' 9;4v5 ¯{� ±&

§¨> free water 3/ Ù$>�= ��¿ v# ½= intramicellar

nucleation& !>. I��., vt ��! �7 �C>+ Çu

`a> t2. õ·' ��! Ë�Ì �� £;& IJ*� , 9;

4v5 Çu �C> *� ��! ��v# �C> *., �� O

/! @Y ÛÜ/ N I��S û *�= �� $�C �Û( �I

1 ��C vt2. ;& 9;4v5 î�C �Cs& õ· v*

9;4v5 ¯{�! �7 �+ aggregation number (# ;

& vt  �/° ¯{�! Çu "µS t2. õ·' ��!  

�/° ±& §¨> g�$! Y# 9;4v5 ³uv �$� ë{

1 H(= §¨> *�' TEOS $�| u�@N �è� u ,

free water! 3/ � *� �/�=&�� ±&'! 6x�! u�

@ r� `a> *�=[17-21], 9;4v5! î� �C& õ·

vt Ë�Ì ��! �7 `a>+ ;& Çu �C> t2. w

1 9;4v5 î�C Q# à�& ,�'! ��¿ v# ½=

intermicellar nucleation& !>. I��., 9;4v5 î�C 1# à

�| �Û>? �� O/! @Y ÛÜ/ ~4> I���= ��

$� �C>Â t2.

3-2-3. Íζµ u)� s� Ö×

Fig. 2-4& ��� HÔ� Ëÿ ë�& !>; dIH-= §¨>

W/O �/�=&�� Ö # ¥I O%! ì/C ìu# :�+ O)

1 9;4v5 Jv/ �C�u# D�ON � u ,ù2. õ·' ý Ë

ÿ&' ÍζµT �s1 u)� 3! ô�C vt ��! �7

| $�& ¬Ø Ö×& h>? ��ü2. /T B>? AOT 9;4

v5 b¡¢& g>? 9;4v5! JvN E� 7y-= 8%= +�

b� H(&' Íζµ u)�! s�N 3%&' 4%| 5%óS �C

bP Ëÿ>P2. Fig. 2-4& ��� HÔ� Ëÿ ë�&' 7 u ,8

/ u)�! s�N 5%= �Cb² à�, AOT 9;4v5 b¡¢&'

n-decaneN ¤rH! ¥I= O)1 à�T 5¸1 ÎQ à�& ,�'

º�> Jv/ dIH! �/�=&�� Ö  6& BØ>�= AOT

Fig. 8. Effect of Brj 30 concentration on silica nanoparticles prepared in systems containing n-heptane and 3% aqueous solution at 25 oC(×100,000);(a) 8 wt%, (b) 15 wt%.

���� �41� �2� 2003� 4�

Page 10: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 183

9;4v5 b¡¢&' ¤rH! ¥I= n-decaneN O)1 à�& g

º'ø Íζµ u)� s�& õö Ë�Ì ���� 5J ËÿN u

è>P2.

Fig. 9& ��� n-decane b¡¢! ë�&' � �| �/ u)�

! s�N �Cb�& õ· vt Ë�Ì ��! �7 �C>

;& Çu �µS FN � u ,2. I(-= u$/ : H(

! �$v ¥I H& §¨>  �/°& YN âC>; Y$� 9

;4v5! ³uv �$� ë{>? �RD H(! �/°(swollen

micelle)H(C *., YN ' âC>; 9;4v5 $�| ë{*S û

# H(! Y! 3/ �C>? 9;4v5 ¯{�! �7 �C>Â

t2. w1 ��! 9;4v5 ¯{� ±& §¨> TEOS 6x� $

� Çu� �C>? �/�=&�� ±&'! 6x�! u�@ r�

�C> t2. w1 �/�=&�� Ö  ±&' Y! 3N �Cb

�& õ·', �� dIH! Ö N ��± à9 ��& S��u#,

�/�=&�� b¡¢&'! @Y! ÛÜ r� �C> F-=

�[l ,2[17-21]. õ·' 9;4v5 î�T I�> �S1 J¾

&' Y! âC�N �Cbc; v* Ë�Ì ��! �7 �C

>., Çu L�� t2. GT �� O%ì/C C� & n-decaneN

O)�N à� u)� s�N 3%&' 4%| 5%= �� �Cb�& õ

· Ô� �7 14 nm&' 22.66 nm| 61 nm= �� �C>P-.,

;& Çu 625Ç&' 276Ç| 98Ç= �� L��ù2.

4. � �

ý ¤x&' �/�=&��N /)1 Ë�Ì ���� 5JT B

>? 9;4v5, ¥I, Íζµ u)�! þv$-= /Ï�� b¡

¢& g>? 9;4v5| ¥I! ]íT ô�bc;' HÔ� ËÿN

uè>? ���� 5J& ({1 dIH! W/O �/�=&��/ �

v* Ö � ABT ë�>P-., / ë�T ��-= >? � b¡

¢&' ��t Jv&' ����T 5J>? HÔ� Ëÿ ë�|! H

h h9T ��ü2. �� Íζµ u)� s�, 9;4v5! ]í

À î� :�+ ¥I! ]í| O%ì/ ô�C vt Ë�Ì ���

Fig. 9. Effect of concentration of aqueous solution on silica nanoparticles prepared in systems containing n-decane and 8 wt% AOT at25 oC(×100,000); (a) 3 wt%, (b) 5 wt%.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 11: Water in Oil - CHERIC

184 �������������������� !"

el

o-

a-

ar-

-

d

in

et,

e

g

D.,

,

ase

cal

s:

l-

-

M.

-

e,

on

on-

e

a in

abil-

ic

� �v& ¬Ø Ö×& h>? �<(-= ��ü-. 2 � �

# ëTN úù2.

(1) 9;4v5, Íζµ u)�, ¥I= /Ï�� þv$ b¡¢&

g>? HÔ� ËÿN uè1 ë�, dIH! W/O �/�=&��!

Ö # ¥I! O%ì/ À $v& õ· � Ö×N ß FN � u

,ù2. Æ, ¥I! O%ì/C �C>Z� �# $v/ �C�u# 9

;4v5! ³uv/ �Cs& õ·  �/° r-= -.º ��C

Íζµ u)�! 3/ �C> *� dIH! W/O �/�=&��

Ö # D�S FN � u ,ù2. Ëÿ& O)1 9;4v5 �&'

NP 4 9;4v5C C� /# W/O �/�=&�� ֠N ��U-.,

Brj 30� AOT 9;4v5�# Hï&' �Û( D# dIH! W/O �

/�=&�� ֠N �v>P2.

(2) HÔ� Ëÿ ë�T ��-= >? dIH! W/O �/�=&�

� Ö &' ��T 5J1 à�, �� $�C J�1 x�! Ë�Ì �

�T úN u ,ù2. ;& W/O �/�=&��� excess water! é

H-= §¨> Ö &' �� 5J ËÿN uè1 à�& bulk u

)�� �/�=&�� H&' ¦b& ��C 5J*7 ª«& é C

S /H! �� $�T ®, �Û( �7C Õ ��! v/ /Ï�

ON )�� u ,ù2. õ·' �I>+ ¬Ä1 Ë�Ì ���� 5J

T Bº' º� b¡¢& g1 HÔ� ËÿN ã>? dIH! W/O

�/�=&�� Ö N ë�> F/ Uu(� FN � u ,ù2.

(3) dIH! W/O �/�=&�� Ö  ±& º�> J¾&' ¤

rH-= O)1 ¥I O%ì/T �Cb²u# v* Ë�Ì ��

! Ô��7 �C>Pn, / ¥I O%ì/C �C& õö �/

�=&��! radius of spontaneous curvature �C Ö×/ �/�=&

�� �( O/! H,�Ê �C Ö×& �>? Hg(-= �7 ª«

� F-= �t2.

(4) AOT| Brj 30 9;4v5 b¡¢& g>? 9;4v5 î�T �

Cb²u# ¥I H& §¨*  �/°! �7 ̀ a>+ ;& Ç

u �C>�= vt Ë�Ì ��! �7 `a>+ Çu �C

>P2. w1 9;4v5 î� �C& õ· �� $� �C>Pn

/ Ë�Ì �� £;& IJ*� , 9;4v5 ÇuC `as&

õ· vt ��! ��v/ �>*., õ·' �� O/! @Y Û

Ü/ �C> ª«/2.

(5) ¦I 9;4v5| ¥I b¡¢& g>? Íζµ u)�! 3

N �Cbc; �/�=&��! �7C �C>., w1 9;4v5 $

�| ë{*S û# H(! Y! 3/ �C>? ��! 9;4v5 ¯

{� ±& §¨> TEOS 6x� $� Çu� �C>? �/�=&�

� ±&'! 6x�! u�@ r� �C> t2. GT �� AOT

9;4v5| n-decaneN O)1 à�& ,�' Íζµ u)�N E�

7y-= 3%&' 5%= �Cb�& õ· ��! Ô� �7 14 nm&

' 61 nm= �C>P-., ;& Çu 625Ç&' 98Ç= L��ù2.

� �

ý ¤x 1V��¨d W(7f¤x(�5X, R01-2000-000-

00327-0) S~-= uè*ù-., /& `OH­¶2.

���

1. Aldinger, F. and Kalic, H. J., “Determination of Water Activity in

Water-in-Oil Microemulsions,”Chem. Int. Ed. Eng., 26, 371(1987).

2. Yoldas, B. E., “Hydrolysis of Aluminium Alkoxides and Bayerite

Conversion,”J. Appl. Chem. Biotechnol., 23, 803-809(1973).

3. Yoldas, B. E., “Preparation of a Thick PZT Film by a New Sol-G

Process Using an Interfacial Polymerization,” Ceram. Bull., 54, 286-

292(1975).

4. Pierson, H. O., Assessing and Quantifying the Impact Sol-Gel Pr

duction Of High Performance Ceramics and Glasses, Marco Lsland,

Florida(1989).

5. Chang, C. L. and Fogler, H. S., “Kinetics of Silica Particle Form

tion in Nonionic W/O Microemulsions from TEOS,” AIChE J., 42,

3153-3163(1996).

6. Chang, C. L. and Fogler, H. S., “Controlled Formation of silica P

ticles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Micro

emulsions,”Langmuir, 13, 3295-3307(1997).

7. Towey, T. F., Khan-Lodhi, A. and Robinson, B. H., “Kinetics an

Mechanism of Quantum-sized Cadmuim Sulphide Particles

Water-Aerosol-OT-Oil Microemulsions,” J. Chem. Soc. Faraday

Trans., 86, 3757-3768(1990).

8. Nagy, J. B., Derouancd, E. G., Gourgue, A., Lufimpadio, N., Rav

I. and Verfailie, J. P., Physico-Chemical Characterization of Micro-

emulsions: Preparation of Monodisperse Colloidal Metal Borid

Particles, In Surfactant in Solution, (ed. Mittal, K. L.), Plenum

Press, New York, 10(1991).

9. Kamal, M. R., Kuo, Y. and Doan, P. H., “The Injection Moldin

Behavior of Thermoplastics in Thin Rectangular Cavities,” Polym.

Eng. Sci., 15, 863-868(1975).

10. Eastoe, J., Robinson, B. H., Steytler, D. C. and Thorn-Lesson,

“Structural Studies of Microemulsions Stabilised by Aerosol-OT”

Adv. Colloid Interface Sci., 36, 1-31(1991).

11. Sjoblom, J., Lindberg, R. and Friberg, S. E., “Microemulsions-Ph

Equilibria Characterization, Structures, Applications and Chemi

Reactions,”Adv. Colloid Interface Sci., 65, 125-287(1996).

12. Shinoda, K. and Lindman, B., “Organized Surfactant System

Microemulsions,” Langmuir, 3, 135-149(1987)

13. Kon-No, K., “Formation of Reversed Micelles and W/O Microemu

sions of Butyldodecyldimethylammonium Bromide in Chloroben

zene,”Surface Colloid Sci., 15, 125-137(1993).

14. Darab, J. G., Pfund, D. M., Fulton, J. L., Linehan, J. C., Capel,

and Ma, Y., “Characterization of a Water-in-Oil Microemulsion Con

taining a Concentrated Ammonium Ferric Sulfate Aqueous Phas”

Langmuir, 10, 135-141(1994).

15. Ward, A. J. I. and Friberg S., “Preparing Narrow Size Distributi

Particles from Amphiphilic Association Structure,” MRS Bull., 41-

48(1989).

16. Modes, S. and Lianos, P., “Luminescence Probe Study of the C

ditions Affecting Colloidal Semiconductor Growth in Revers

Micelles and Water-in-Oil Microemulsions,” J. Phys. Chem., 93,

5854-5859(1989).

17. Arriagada F. J. and Osseo-Asare, K., “Synthesis of Nanosize Silic

Aerosol OT Reverse Microemulsions,” J. Colloid and Interface Sci-

ence, 170, 8-17(1995).

18. Arriagada, F. J. and Osseo-Asare, K., “Preparation of SiO2 Nanopar-

ticles in a Non-ionic Reverse Micellar System,” Colloids and Surf.,

50, 321-339(1990).

19. Arriagada F. J. and Osseo-Asare, K., “Phase and Dispersion St

ity Effects in the Synthesis of Silica Nanoparticle in a Non-ion

Reverse Microemulsion,” Colloids and Surf., 69, 105-115(1992).

20. Arriagada, F. J. and Osseo-Asare, K., J. Disp. Sci. Technol., 15,

���� �41� �2� 2003� 4�

Page 12: Water in Oil - CHERIC

Water in Oil �������� � �� ���� �� 185

rsw

f

gle

, S.

s

59(1994).

21. Arriagada, F. J. and Osseo-Asare, K., “Synthesis of Nanosize Silica

in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Sur-

factant Molar Ratio and Ammonia Concentration,” J. Colloid and

Interface Science, 211, 210-220(1999).

22. Hou, M. J. and Shah, D. O., “Effects of Molecular Structure of the

Interface and Continuous Phase on Solbilization of Water in Water/

Oil Microemulsions,”Langmuir, 3, 1086-1096(1987).

23. Bansal, V. K., Shah, D. O. and O'Connell J. P., “Influence of Alkyl

Chain Length Compatibility on Microemulsion Structure and Solu-

bilization,” J. Colloid and Interface Science, 75, 462-475(1980).

24. Johnson, K. and Shah, D. O., “Effect of Oil Chain Length and Elec-

trolytes On Water Solubilization in Alcohol-Free Pharmaceutical

Microemulsions,” J. Colloid and Interface Science, 107, 269-271

(1985).

25. Leong, Y. S., Candau, F., Pouyet, G. and Canau, S. J., “Inve

Microemulsion Polymerization of Acrylamide: Characterization o

the Water-in-Oil Microemulsions and the Final Microlatexes,” J. Col-

loid and Interface Science, 101, 167-183(1984).

26. De Gennes P. G. and Joanny, J. F., “A Model For Contact An

Hysteresis,”J. Chem. Phys., 86, 552-562(1984).

27. Jung, K. Y., Kim, M. C., Park, S. J., Lee, E. S., Lee, M. C., Park

K. and Lim, J. C., “Preparation of Silver Chloride Nanoparticle

Using AOT-Based Microemulsion,” J. of Korean Ind. and Eng.

Chemistry, 13, 551-557(2002).

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003