white pine species resources & blister rust resistance – what resources are available for...

26
White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Upload: alice-carr

Post on 16-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

White Pine Species Resources

& Blister Rust Resistance –

What Resources are Available for Genomics?

PNW Region Strobusphere Mtg- Happy Camp, May 10,

2012 (R.Sniezko , USDA Forest Service; [email protected])

Page 2: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Pacific Northwest Region• Regional + Inter-regional Scope – • Facilities

– Dorena GRC– Field sites– Common garden testing– Clone banking/orchards

• Scope– Large Scale Operational Testing –& ‘phenotyping’– Seed storage – 1000’s of seedlots– Species

• Personnel– >>80 years rust resistance experience

• Contacts– Partners/Cooperators– U.S – Canada – Europe – Asia – 2.02.15 – Breeding and genetic resources of five-needle pines -

http://www.iufro.org/science/divisions/division-2/20000/20200/20215/• Proposed 2014 Meeting

Page 3: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

1739.jpg

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service;

[email protected])

Inoculation Chamber

Page 4: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service;

[email protected])

Page 5: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Whitebark pine -225 families2 sources of rust (SY2007)

Limber pine (SY2007)

WWP (SY2007)

Sugar Pine (SY2009)

SWWP (SY2009)

Sugar pine (SY2008)

8 WWP Diallels

WWP SY2006

Rust testing at Dorena GRC

Page 6: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Resistance

• Complete Resistance – ‘MGR’– Some species

• Other (partial resistance) – All species

Page 7: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Species

• P. monticola (western white pine)• P. lambertiana (sugar pine)• P. albicaulis (whitebark pine)• P. strobiformis* (southwestern white pine)• P. flexilis** (limber pine)• P. aristata** (Rocky Mountain bristlecone

pine)• P. longaeva** (Great Basin bristlecone pine)

Page 8: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Table 1—Number of seedlots of six high elevation white pine species in white pine blister rust resistance testing (inoculated with rust as of fall 2010) by test locationa.

Species Test location

# Individual Tree seedlots # Bulked seedlots Long duration testb

Short duration testc

Total Long duration test

Short duration test

Total

P. albicaulis CDA 200 0 200 3 0 3 DGRC 380 0 380 1 0 1 IFG 0 70 70 0 0 0 P. aristata DGRC 189 0 189 11 11 11 IFG 0 108 108 0 0 0 P. balfouriana IFG 0 14 14 0 0 0 P. flexilis CDA 0 0 0 0 0 0 DGRC 70 271 341 0 32 32 IFG 0 33 33 0 2 0 P. longaeva IFG 0 84 84 0 0 0 P. strobiformis

CDA 0 0 0 3 0 3

DGRC 51 1 52 0 0 0 IFG 0 76 76 0 0 0 aNumber of unique lots within a test location; if a seedlot was tested for both short- and long-duration testing the seedlot was listed only in the long-duration test. Some seedlots have been tested across test facilities (see text for details). See paper for estimate of number of additional seedlots for inoculation in 2011 and 2012. bLong-duration testing is focused on identifying multiple resistance mechanisms. In general the seedlings are 2 or more years old at the time of rust inoculation, the seedlings are planted outdoors and disease symptom development and mortality are followed for up to 5 years. The outdoor planting environment allows vigorous tree growth. cShort-duration testing is focused on identifying complete resistance mechanisms including the HR needle reaction; some other resistance types may also be identified. Seedlings for these tests are in small containers which allow for limited seedling growth. Disease symptoms and mortality are generally followed for 2 years or more, depending on the facility and species.

Page 9: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Sugar Pine

• Rust Testing – 1000’s of parent trees– Surviving progeny available

• Seedlots Available – 1000’s of wild OP and CC’s• Field trials– 6 long term (1982/1983) progeny tests (see FHM poster)– 5 provenance trials (last assessed by DGRC 2009-2010)– 1998 Diallel trial at HC (3 six parent half diallels – 41

of 45 crosses)– Other field trials since 1996

Page 10: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Page 11: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service;

[email protected])

Page 12: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Sugar Pine Provenance Field Sites, Five Site Rust Summary,

050412, DRAFTYear # Trees Last # Trees % Alive

Mean # Bole Mean # Branch

Planted Planted Inspection Alive with Rust Cankersa CankersaNotes:

Cannon 1984 4014 2009 861 < 1% ~1 ~1 Much charcoal root rot mortality

Fitch-Rantz 1984 3728 2009 2157 84.0% 1.59 16.18 Thinned after 2009 evaluation

Burnt Timber 1988 3684 2009 464 80.4% 2.55 13.72 1315 trees thinned in 2001

Sundown 1988 3680 2009 1549 73.7% 1.96 6.93 Branches pruned

Harrel 1992 13440 2010 5287 37.5% 1.13 2.17a Excludes trees without stem symptoms

2010 FHM Poster: Long-term Monitoring of White Pine Blister Rust Infection and Survival at 10 Sugar Pine Evaluation Sites J.L. Hill, R. Sniezko, D. Vogler, J.W. Wright

FHM Grant: WC-F-09-01 Long-term Monitoring of White Pine Blister Rust Infection and Survival at 10 Sugar Pine Evaluation Sites(Jerry Hill, Rich Sniezko, Ellen Goheen1 of 3 $23,000) FHM Proposal 2009-2011

42 & 62 provenances planted in 4 sites 2 in OR, 2 in CA

Page 13: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Sugar Pine Diallels (RV3 –Happy Camp)

~41 families, ~72 trees/fam,Planted 1998

Page 14: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service;

[email protected])

1053 11053-003 B1053-008 11053-026 B1053-069 B1053-162 B1053-163

  7.6 2.2 5.1 10.8 10.4 7.2

  14.9 4.3 7.5 5.7 5.0 13.7

  3.3 3.3 18.6 5.5 5.5 18.6

  5.0 5.7 4.3 7.5 13.7 14.9

  5.1 7.2 10.4 7.6 2.2 10.8

7.2 4.5 9.2 7.4 7.3 13.0

#Stem Symptoms/tree for 6 parents in half diallel (based on 7 of 12 reps ~2007 data)

DRAFT & 2012 assessment planned

1053 11053-003 B1053-008 11053-026 B1053-069 B1053-162 B1053-163

  81.7% 52.7% 83.7% 90.9% 87.5% 79.0%

  86.3% 54.4% 86.0% 73.1% 79.2% 98.3%

  56.7% 56.7% 94.8% 70.9% 70.9% 94.8%

  79.2% 73.1% 54.4% 86.0% 98.3% 86.3%

  83.7% 79.0% 87.5% 81.7% 52.7% 90.9%

77.5% 63.2% 81.3% 80.5% 77.7% 89.9%

Page 16: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Long-term Monitoring of White Pine Blister Rust Infection and Survival at 10 Sugar Pine Evaluation SitesR.A. Sniezko1, R. Danchok1, S. Long1, D.P. Savin1, A. Kegley1, J. Mayo1, J. Hill2

1 Dorena Genetic Resource Center, 34963 Shoreview Road Cottage Grove, OR 97424, 2 National Park Service, Southeast Utah Group, 2282 S. West Resource Blvd. Moab, UT 84532

MATERIALS AND METHODSSugar pine seedlings from 53 families were planted in randomized complete block designs at six sites in southwest Oregon in 1982 and 1983 (Table 1; Figure 1). The families were distributed between two Sets and the Sets planted in separate adjacent trials at each site at 2.4 x 2.4 m spacing. Up to 40 seedlings per family were planted at each site in 10 tree row plots (except at Poker where single tree non-contiguous plots were used). The parent trees for all progenies originated from southern OR (Figure 1). 31 families were common to all sites. Based on seedling screening, the families were expected to represent a range in resistance from highly susceptible to partial resistant to major gene resistance (Cr1). The sites were rated for blister rust hazard in the mid-1980’s – and represented a range from low to high rust. Rust hazard was based on infection levels of 50 sampled trees from natural regeneration and the number of Ribes plants per 1/100th acre plot within the sample area. The sites were assessed for height, survival, blister rust, and other damage at approximately 5, 10, 15 and 25 years after planting. DBH was recorded at the latest assessment (2006 to 2010, depending on the site, so tree age varied from 24 to 29).

Figure 1. Location of test sites and parents represented in six progeny tests

SITE Elevation (m)

Slope (%) Aspect Rust

HazardYear

SownYear

PlantedYear of Last Inspection

# of Trees in Studya

# of Families Represented

Anchor 1143 10 West Medium 1982 1983 2006 1669 49Boulder 1097 20 East Medium 1981 1982 2008 1750 48Hayes 869 50 South High 1982 1983 2010 1827 49

Jamison 853 20 South Low 1981 1983 2010 1387 42Poker 1280 35 West Medium 1982 1983 2010 924 36Rocky 975 35 North High 1982 1983 2010 1761 49

aExcludes filler/replaced trees

Table 1. Descriptions of progeny test sites

.

Figure 3. Mean and range of family survival at age ‘25’ at each site and averaged over all sites.

ACKNOWLEDGMENTSWe gratefully acknowledge BLM (and SIS NF) personnel for their insight and lead in establishing, maintaining and assessing these valuable trials since the early 1980’s. For help with the latest assessments, we thank BLM Medford District personnel, notably Jim Brimble and the silviculture group, and Paul LeBlanc and Dave Russell; and Paula Trudeau and Brian Luis (FS). Partial funding of this project was provided FS’s Forest Health Monitoring grant WC-F-09-01. This proposal was sponsored by Ellen and Don Goheen. Jennifer Christie produced the map.

FUTURE ACTIVITIES• Several sites have had brush removal and/or been

retagged to greatly facilitate future evaluations of these trials. • Begin breeding work with the progeny selections.• More detailed analysis and summary including:• Examination of family variation in blister rust

resistance, including whether there is evidence of a virulent vcr1 strain of blister rust, and whether efficacy of resistance varied by site or rust hazard.

• Further examination of potential family variation in non-rust related mortality and possible maladaptation.

• Comparative growth of trees with and without cankers.

• Examination and mapping of rust hazard estimates for 265 plots from the BLM’s 1980s surveys.

Figure5. Height (mean and range) at latest assessment (24-29 years) of surviving trees at each site. Height of cankered (red) and non-cankered (green) shown.

Large natural sugar pine near Boulder test site

INTRODUCTIONSugar pine (Pinus lambertiana) is an important long-lived conifer in forest ecosystems in California and Oregon. Unfortunately, it is extremely susceptible to the white pine blister rust (WPBR), caused by the non-native fungal pathogen Cronartium ribicola. WPBR has caused high mortality of sugar pine in many areas of Oregon, reducing its incidence in many ecosystems as well as its use in reforestation and restoration. Fortunately, there is some genetic resistance to WPBR. The USDA Forest Service (FS) and USDI Bureau of Land Management (BLM) have been working together since the mid-1960’s to select candidate trees and test their progeny for resistance. The resistance screening is done at Dorena Genetic Resource Center (DGRC).

Using wind-pollinated progeny of some of the earliest selections from the Pacific Northwest Region’s resistance program, BLM and FS established six field tests (‘progeny’ tests) in the early 1980’s in southern Oregon to evaluate long-term growth, survival and field resistance to WPBR. The FS also established five provenance trials of sugar pine to examine range-wide genetic variation in this species. These trials represent ‘permanent’ plots with known genetic composition and planting dates. These are likely the oldest well documented multi-site test series for disease resistance in sugar pine to WPBR (and perhaps in any conifer to any non-native pathogen in western North America).For this FHM poster, we present an overview of growth, survival, and impacts of WPBR at the six progeny test sites through age 25 (for results through age 15 see http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5280654.pdf). Future reports will provide additional summary of this trial series (including examination of family variation in rust resistance) and results of the provenance trials.

SUMMARYAs anticipated, many families from these field selections are highly susceptible or have only low levels of partial resistance. Breeding in seed orchards or clones banks will be needed to increase resistance levels. The seven families with major gene (Cr1) resistance had the lowest infection and mortality levels.

Information on rust hazard can provide land managers with an additional tool for planning sugar pine reforestation or restoration efforts.

Because of the multiple sites, known genetic composition and planting dates, and assessments over ~25 years, these plantings provide the most detailed look at the impact of WPBR on sugar pine to date.

Figure 4. Canker with little or no swelling. Aecia observed in cracks in bark.

RESULTS• Although the sites varied in their rust hazard (low to

high), by age 25, all 6 sites had high to very high levels of blister rust infection and mortality (Fig. 2).• Averaged over all six sites (excludes non-rust

mortality): • 8.9% of the trees are canker-free (742/8340)• 13.5% are alive with cankers• 77.6% are dead from rust

• The sites with lower hazard ratings generally had lower levels of cankering in the early years, but the difference is much less by age 15 or 25. However, sites getting later infections (such as Boulder and Anchor) tended to have much higher survival through age 25 (Fig. 3). • Few new cankers were evident since the 15 year

assessment. • Some cankers produced little or no stem swelling or

were only visible due to presence of aecia at the time of assessment (Fig. 4). Thus, many field assessments of blister rust may somewhat underestimate the level and impact of rust infection.• Most cankers were low (<1.5 m) at age 15,

suggesting that timely branch pruning could complement genetic resistance to increase survival. • Mortality from other biotic and abiotic agents was

low after age 5 (0.2-8.5%) except for at Jamison Gulch (23.1%).• Averaged over the 6 sites, families varied from 40%

to 96% mortality.• Mean height of trees alive at age 25 varied from 5.9

m at Boulder to 10.7 m at Poker (Fig. 5).

Vertical canker, possible expression of partial

resistance

II. Growth and Survival of Sugar Pine through age 25 in Six Progeny Tests of Low to High Blister Rust Hazard in Southwestern Oregon

Living and dead trees at Boulder

5

10

15

25

Year

Figure 2. Temporal dynamics of blister rust infection (on individual trees) over 25 years in 3 of 6 sugar pine progeny tests.

Low HazardJamison

Medium HazardAnchor

High HazardHayes

Alive and free of rust Alive with rust Dead with rust Dead and free of rust Filler/replaced tree

Forest Health Monitoring National Meeting, Tucson, AZ April 2012

Page 17: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Western White Pine

• Rust Testing – 1000’s of parent trees– 8 six-parent half diallels (vcr2 & AVCr2 inoc)– Surviving progeny available

• Seedlots Available – 1000’s of wild OP and CC’s• Field trials– Provenance trial (range-wide)– Diallels and other plantings since 1996

• Orchards, clone banks

Page 18: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest

Service; [email protected])

Page 19: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

WWP Field Trials

Page 20: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

80-2 18034-422 18034-700 18034-401 18034-701 18034-421 18034-703

18034-422   71.9 96.7 67.0 65.2 51.9 70.5

18034-700     92.1 92.1 83.3 81.7 87.3

18034-401       95.8 70.0 100.0 88.6

18034-701       100.0 87.8 86.8 91.5

18034-421           53.1 53.1

18034-703            

71.9 94.4 88.8 76.6 74.7 81.0

80-2 18034-422 18034-700 18034-401 18034-701 18034-421 18034-703

18034-422   57.4 90.0 81.9 63.3 37.7 66.1

18034-700     68.9 78.9 70.4 42.1 65.1

18034-401       83.3 72.7 88.9 81.6

18034-701       100.0 75.0 80.0 85.0

18034-421           70.0 70.0

18034-703            

57.4 79.4 86.0 70.4 63.7 72.5

WWP diallel (example: 1 of 8) in SY1998 – inoculated with [1] vcr2 source of rust, and [2] AVCr2 source of

rust DRAFTvcr2

AVCr2

Page 21: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

(a) (b)

(Maps produced by H.Lintz)

(a) Geographic distribution of parent trees of P. albicaulis families in blister rust testing (inoculated as of 2010); (b) Geographic sources of P. albicaulis with seed collected as of 2009 (P. albicaulis range from Little 1971).

Whitebark Pine

Page 22: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

100’s of Needle spots

Cankers, 13 months post-inoculation .

‘Needle Shed ‘- 50 needle spots at 1st assessment in 2009, but is still canker-free in winter 2010

Bark reaction 23 months after inoculation

Page 23: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service;

[email protected])

Distribution of canker-free seedlings using family means* (DRAFT)WHITEBARK PINE – FAMILY WHITE PINE BLISTER RUST RESISTANCE FREQUENCY

*early data (13 months after inoculation) for one of the two trials at Dorena GRC involving 225 families (using Avcr2 source of rust).

Page 24: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Southwestern white pine

• MGR & Partial Resistance identified from trees in same stand (Sniezko et al. 2008)

• Larger trial underway – 3 NF’s, 40 families

Page 25: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Some recent publications• Hamlin, J.; Kegley, A.; Sniezko, R.A. 2011. Genetic Variation of Whitebark Pine (Pinus albicaulis) Provenances and Families

from Oregon and Washington in Juvenile Height Growth and Needle Color . In: Keane, R.E.; Tomback, D.F.; Murray, M.P.; and Smith, C.M., eds. 2011. The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 133-139. http://www.fs.fed.us/rm/pubs/rmrs_p063/rmrs_p063_133_139.pdf.

• Sniezko, R.A.; Mahalovich, M.F.; Schoettle, A.W.; Vogler, D.R. 2011. Past and current investigations of the genetic resistance to Cronartium ribicola in high-elevation five-needle pines. In: Keane, R.E.; Tomback, D.F.; Murray, M.P.; and Smith, C.M., eds. 2011. The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 246-264. http://www.fs.fed.us/rm/pubs/rmrs_p063/rmrs_p063_246_264.pdf.

• Zamany, A.; Liu, J.J.; Ekramoddoullah, A.; Sniezko, R. 2011. Antifungal activity of a Pinus monticola antimicrobial peptide 1 (Pm-AMP1) and its accumulation in western white pine infected with Cronartium ribicola. Can. J. Microbiology. 57: 667–679 (2011); doi:10.1139/W11-046.

• Liu, J.J.; Sniezko, R. A.; Ekramoddoullah, A. 2011. Association of a novel Pinus monticola chitinase gene (PmCh4B) with quantitative resistance to Cronartium ribicola. Phytopathology 101:904-911.

• Zhang, X.Y.; Lu, Q.; Sniezko, R.A.; Song, R.Q.; Man, G. 2010. Blister rusts in China: hosts, pathogens, and management. Forest Pathology 40:369-381.

Page 26: White Pine Species Resources & Blister Rust Resistance – What Resources are Available for Genomics? PNW Region Strobusphere Mtg- Happy Camp, May 10, 2012

Strobusphere Mtg- Happy Camp, May 10, 2012 (R.Sniezko , USDA Forest Service; [email protected])

Some recent publications (cont’d)

• Sniezko, R.A.; Schoettle, A.; Dunlap, J.; Vogler, D.; Conklin, D.; Bower, A.; Jensen, C.; Mangold, R.; Daoust, D.; Man, G. 2011. Ex situ gene conservation in high elevation white pine species in the United States:a beginning. In: Keane, R.E.; Tomback, D.F.; Murray, M.P.; and Smith, C.M., eds. 2011. The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 147-149. http://www.fs.fed.us/rm/pubs/rmrs_p063/rmrs_p063_147_149.pdf.

• Sniezko, R.A; Hill, J.; Danchok, R.S.; Kegley, A.J.; Long, S.; Mayo, J.B.; Smith, A.J. 2010. White pine blister rust resistance in a seven year old field trial of 28 western white pine (Pinus monticola) families in the Coast Range of Oregon. APS 2010 Meeting, Charlotte, NC. Phytopathology 100:S120. (abstract). http://www.apsnet.org/meetings/Documents/2010_Meeting_Abstracts/a10ma714.htm

• Sniezko, R.A.; Kegley, A.; Danchok, R.; Hamlin, J.; Long, S. 2009. Resistance to Cronartium ribicola in whitebark pine – family variation and effect of inoculum density. APS 2009 Meeting, August 1-5, 2009. Portland, OR. Phytopathology 99:S122 (abstract). http://www.apsnet.org/meetings/Documents/2009_Meeting_Abstracts/a09ma727.htm

• Sniezko, R.A.; Kegley, A.J.; Danchok, R., 2008: White pine blister rust resistance in North American, Asian, and European species – results from artificial inoculation trials in Oregon. Annals of Forest Research 51, 53–66. [Online]. Available: http://www.e-afr.org