web viewyou will name those compounds according to the acid rules explained later. 1: mono; 2. di....

23
AP Chemistry Summer Work Welcome to the Wonderful World of AP Chemistry! Your class begins now but don’t worry. This first part is just about making sure you have all your basic Chemistry foundations. It is very important that you complete this work and are prepared for the start of AP Chemistry in the fall. TO COMPLETE IN MAY ( immediately when you receive this packet): 1. Email me at [email protected] In the email include the following: a) Tell me a little about yourself (what year you are going to be, what you like to do with your free time, etc) b) Did you take Honors Chemistry or Regular Chemistry? c) Who was your teacher and what grade did you receive (both semesters)? d) What math did you just complete and what grade did you receive? e) How many other AP classes are you taking? What are they? 2. You are going to sign up for a service called REMIND101 . It is free and you can either sign up to receive emails or text messages on your phone (if you have free texting, they are included). I RECOMMEND THAT YOU SIGN UP FOR TEXTS so you get them faster!! This service allows me to be able to send you text messages or emails during the summer to let you know about opportunities or errors. In August, I will send out a message letting you know of a time to come ask any questions you have on the material so you can be 100% ready for the test on the first day back at school. THIS SERVICE DOES NOT USE YOUR PHONE NUMBER OR EMAIL FOR ANY OTHER PURPOSE. You can read more about it at remind101.com. Here is how you sign up for TEXT ALERTS: Text the number 619-821-2777 with this in the message area: @apch2014 You will receive a text message back to confirm enrollment Here is how you sign up for EMAIL ALERTS: Send a blank email to the following address: [email protected] 3. Over the summer, there will be videos posted on my website (they will be available starting in July) that will go through the topics in this packet. They are not mandatory but you are encouraged to watch them as a quick review.

Upload: donhu

Post on 30-Jan-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

AP Chemistry Summer WorkWelcome to the Wonderful World of AP Chemistry! Your class begins now but don’t worry. This first part is just about making sure you have all your basic Chemistry foundations. It is very important that you complete this work and are prepared for the start of AP Chemistry in the fall.

TO COMPLETE IN MAY ( immediately when you receive this packet): 1. Email me at [email protected]

In the email include the following:a) Tell me a little about yourself (what year you are going to be, what you like to do with your free

time, etc)b) Did you take Honors Chemistry or Regular Chemistry?c) Who was your teacher and what grade did you receive (both semesters)?d) What math did you just complete and what grade did you receive?e) How many other AP classes are you taking? What are they?

2. You are going to sign up for a service called REMIND101. It is free and you can either sign up to receive emails or text messages on your phone (if you have free texting, they are included). I RECOMMEND THAT YOU SIGN UP FOR TEXTS so you get them faster!! This service allows me to be able to send you text messages or emails during the summer to let you know about opportunities or errors. In August, I will send out a message letting you know of a time to come ask any questions you have on the material so you can be 100% ready for the test on the first day back at school. THIS SERVICE DOES NOT USE YOUR PHONE NUMBER OR EMAIL FOR ANY OTHER PURPOSE. You can read more about it at remind101.com.

Here is how you sign up for TEXT ALERTS: Text the number 619-821-2777 with this in the message area: @apch2014 You will receive a text message back to confirm enrollment

Here is how you sign up for EMAIL ALERTS: Send a blank email to the following address: [email protected]

3. Over the summer, there will be videos posted on my website (they will be available starting in July) that will go through the topics in this packet. They are not mandatory but you areencouraged to watch them as a quick review.

If you have questions about any of this work, please email me at [email protected]. I will be checking my email all summer. I usually respond within 24 hours but please realize that I will be going on vacation a few times during the summer so it may take me longer during the months of June and July.

You will have a test over this material on Monday, August 11th.This packet has 6 sections that will be tested the first day of school. There are also a number of sections that are denoted “For Your Information Only” that will review some other topics that you must have a full understanding of coming into AP Chem. For example, scientific notation is something that we use every day and you should be able to use scientific notation. I will not be testing over it specifically but I do expect that you can use it if given it so I have given you a review of the topic (along with a review of density, the metric system, and dimensional analysis) The exam are broken into six sections. You must earn an 80% or higher on each section. If you do not earn a minimum score of 80% on one or more of the sections, you will be required to attend one or more review sessions AFTER SCHOOL to cover the material and you will begin the class at a disadvantage. It is very important to do well on this exam the first time. Study this review material and you will do well.

This packet is also available on my website under the AP Chemistry tab.

Page 2: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

Please note that surface understanding of these concepts is not acceptable. This is an intense course and, without these basics, you will be lost.

Section 1 - Significant Figures

Measuring Significant Figures from Instruments(Rulers, Graduated Cylinders, etc.)

Significant Figures (sig figs) – the certain digits and the one estimated digit of a measurement

Example: For this measurement, the number 4 can be read off the ruler directly. There are only markings for the one’s place. The first decimal (the tenths place) needs to be estimated since there are no markings for it. Therefore a correct measurement would be 4.5 cm.

Answers of 4.4 or 4.6 would also be acceptable since the last digit was an estimate. The certain digits, however, do not change from reader to reader, only the last digit.

This is a diagram of a graduated cylinder. Try to determine what volume of water is in this graduated cylinder using the correct number of significant figures. The answer is written below. Remember, record the certain digits first. The estimate just ONE LAST DIGIT. Don’t forget the unit!

Answer: The answer is 36.5 mL in my opinion but if you had 36.4 mL or 36.6 mL, your answer is also correct because the last digit was an estimate by the reader.

Determining the Number of Significant Figures When Given a Number

RULES FOR SIG FIGS:Rule #1 – All non-zero digits are significant

Example: 3695.4 cm has 5 sig figs

Rule #2 – All zeros located anywhere between significant digits are significant (also called the “Sandwich Rule”)Example: 3001grams has 4 sig figs. The three and the one are significant because they

are non-zero numbers (rule #1). Then both zeros are significant because they fall somewhere between two significant digits (rule #2).

Rule #3 – If there is a significant digit before the decimal, any zero after the decimal will be significantExample: 85.0 m has 3 sig figs

92.30 has 4 sig figs 0.0045 sec has 2 sig figs. The zeros in this one are not significant

because there is not a significant figure before them.

Rule #4 – Any zero appearing after the decimal and after another significant figure is significantExample: 0.004670 mm has 4 sig figs. The three zeros at the beginning of the number

are not significant because there is not a

Page 3: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

significant figure before them. The last zero is significant because it is after the decimal place and is after another significant figure.

Rule #5 – Zeros at the end of a number that does not contain a decimal are NOT significantExample: 5000 mm has 1 sig fig

1350 cm has 3 sig figs. In both cases, the zero(s) are at the end of the number and there are no decimal places

RULES FOR CALCULATING WITH SIG FIGS:Rule #1 – Exact Number Rule

If an exact number is being used, that number does not affect the number of significant figures in the final answer.Example: Conversion factors are exact numbers because they do not ever

change. An example would be 1 ft = 12 in.

Rule #2 – Multiplication/Division RuleThe measurement with the smallest number of sig figs determines how many sig figs

will be in the final answer.Example: 4.3 x 1.23 = 5.289 but this answer has 4 sig figs and that is not

correct. According to the rule, 4.3 has 2 sig must have 2 sig figs. Therefore the answer is 5.3. We had to round the 2 to a 3 since the second decimal place was higher than 5.

Rule #3 – Addition/Subtraction RuleThe measurement with the smallest number of decimal places determines the number of

decimal places in the final answer.Example: 67.0/4.35534 = 71.35534 This is an unrounded answer. The answer

should have one decimal place so it should be 71.4. Remember to look at the number past the last digit to determine if you need to round.

Remember, only the final answer is rounded to the correct sig figs/decimal places. If a problem has multiple steps, only determine the number of sig figs at the end of the problem. If you round along the way, the number will be very different from the actual value.

Section 2 – Polyatomic ionsYou need to have the following polyatomic ions memorized. These are very important when it comes to naming. I suggest you make notecards to study them and WORK ON THEM ALL SUMMER!!! You need to know the name, the formula, and the charge. Starred ones can be more easily memorized using the modifications shown below the polyatomic ion list.

Acetate C2H3O2-1 Iodate IO3

-1

Ammonium NH4+1 Iodite* IO2

-1

Bicarbonate* HCO3-1 Hypoiodite* IO-1

Perbromate* BrO4-1 Nitrate NO3

-1

Bromate BrO3-1 Nitrite* NO2

-1

Bromite* BrO2-1 Oxalate C2O4

-2

Hypobromite* BrO-1 Permanganate MnO4-1

Carbonate CO3-2 Manganate MnO4

-2

Perchlorate* ClO4-1 Phosphate PO4

-3

Chlorate ClO3-1 Phosphite* PO3

-3

Chlorite* ClO2-1 Sulfate SO4

-2

Page 4: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

Hypochlorite* ClO-1 Sulfite* SO3-2

Chromate CrO4-2 Thiocyanate SCN-1

Dichromate Cr2O7-2 Cyanate OCN-1

Hydroxide OH-1 Peroxide O2-2

Periodate* IO4-1

Below are two ways to reduce the amount of memorization needed:

Modification #1 to oxyanions:Oxyanions are polyatomic ions that contain oxygen

The prefixes and suffixes of oxyanions can be changed to reflect a change in the number of oxygens in the polyatomic ion. The charge on the polyatomic ion DOES NOT CHANGE!!

Prefix Suffix Meaning-ate Standard form of the polyatomic ion-ite One less oxygen than standard form

hypo- -ite Two less oxygens than standard formper- -ate One more oxygen than standard form

Example:ClO3

-1 is chlorate ClO-1 is hypochloriteClO2

-1 is chlorite ClO4-1 is perchlorate

Modification #2 to oxyanions:We can also add a hydrogen to the front of oxyanions and slightly modify their names. The charge on the polyatomic ion does change is this case. To name these, simply place the word “hydrogen” in front of the polyatomic ion or add the prefix “bi” to the polyatomic ion.

Examples:CO3

-2 is carbonate PO4-3 is phosphate

HCO3-1 is hydrogen carbonate HPO4

-2 is hydrogen phosphate or bicarbonate or biphosphate

Section 3 – naming ionic, covalent, and acidic compounds

Naming compounds is one of the most important skills in AP Chemistry. Without this knowledge, you will have a difficult time in EVERY unit of the course because nomenclature is a part of each of every unit!

Nomenclature is the process of naming chemical compounds. There are three systems of naming compounds depending on the type of compound (ionic, covalent, or acidic).

First, you must know whether your compound is ionic, covalent, or acidic:IONIC - consists of a metal and a nonmetel(s)COVALENT - consists of all nonmetalsACIDIC - first element listed in the compound is H (except for H2O, which is just water)

How to name IONIC compoundsBinary ionic compounds are compounds that consist of only one type of metal and one type of nonmetal.

Page 5: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

When given the formula for a binary ionic compound, the name will consist of two parts:1. Write the name of the cation in the formula (the cation is the one that appears first).2. Write the name of the anion but change the ending to –ide.

Examples:a. NaCl is sodium chlorideb. BaI2 is barium iodidec. MgO is magnesium oxide

How to write the formula of an Ionic compound when given its name: 1. Write the symbol for the cation showing its charge. 2. Write the symbol for the anion (could be an element or a polyatomic ion) showing its charge. 3. Use the criss-cross method to balance the charges. Divide by their largest common factor to give the smallest whole-number ratio of ions.

Examples:aluminum oxide Al+3 O-2 Al2O3

sodium nitrate Na+1 NO3-1 NaNO3

How to name COVALENT compoundsThe system we use to name molecular compounds is different from ionic since we cannot predict the formulas of most molecular substance since they do not form ions. This system for naming covalent molecules (nonmetal and nonmetal compounds). The exception to this rule is compounds containing hydrogen (when it is listed first). Hydrogen is a nonmetal that takes the charge of +1. You will name those compounds according to the acid rules explained later.

When naming molecular substances, we will use the following prefixes

Steps for Naming Molecular Compounds:1. Name the element that appears first. Attach the prefix based on

the subscript of that element (exception - do not use mono if there is just one atom of the first element).

2. Name the second element, changing the ending to –ide. Attach the prefix that corresponds with the subscript.

Naming Ternary Ionic CompoundsTernary ionic compounds are compounds that consist of one type of metal and a polyatomic ion. It is important for you to know all your polyatomic ions.

When given the formula for a ternary ionic compound, the name will consist of two parts:1. Write the name of the cation in the formula (the cation is the one that appears first).2. Write the name of the polyatomic ion (DO NOT CHANGE THE ENDING!!!)

Examples:a. CaCO3 is calcium carbonateb. K2SO4 is potassium sulfatec. Be(ClO3)2 is beryllium chlorate

3. If the cation is ammonium (NH4+1), the first part of the name is ammonium then change the ending of

the anion to –ide.Examples:

1 mono2 di3 tri4 tetra5 penta6 hexa7 hepta8 octa9 nona

10 deca

Page 6: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

a. NH4Cl is ammonium chlorideb. NH4F is ammonium fluoride

Cations with Variable ChargesIf a metal can form cations of different charges, the positive charge is given by a roman numeral in parentheses following the name of the metal (this happens mostly with transition meals and metal below the imaginary stair case in the p-block).

List of common metals with variable charges (you must memorize these five metal as being the ones that need roman numerals):

Element Cation NameCopper Cu+1

Cu+2Copper(I)Copper(II)

Chromium Cr+2

Cr+3Chromium(II)Chromium(III)

Iron Fe+2

Fe+3Iron(II)Iron(III)

Lead Pb+2

Pb+4Lead(II)Lead(IV)

Tin Sn+2

Sn+4Tin(II)Tin(IV)

Writing Formulas from NamesConversely, we can also write formulas of an ionic compound when given its name.Examples:

Cl2O - dichlorine monoxideNF3 - nitrogen trifluoride

How to name ACIDIC compoundsThere are two types of acids:

1. Binary Acids - acid containing two elements; one is hydrogen and the other is a different element2. Oxyacids - acids that contain hydrogen, oxygen, and a third element

The name of each acid is based on the name of its anion (the cation is always hydrogen):1. Binary acids are named by adding the prefix hydro- and changing the suffix fo -ide to -ic and adding

the word acid to the end.2. Oxyacids are named based on the ending of the polyatomic ion it contains. If the ending is -ate,

change the ending to -ic acid. If the ending is -ite, change it to –ous acid.

Examples: HCl (binary) Hydrochloric acid HF (binary) Hydrofluoric acid HClO3 (oxyacid) Chloric acid HClO (oxyacid) Hypochlorous acid

Page 7: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

Section 4 – DIatomics

There are 7 elements on the periodic table that cannot exist as single neutral atoms so their neutral state is shown as diatomic. You should know all 7:

Hydrogen (H2), Oxygen (O2), Fluorine (F2), Chlorine (Cl2), Bromine (Br2), Iodine (I2), and Nitrogen (N2)

Section 5 – matter

Terms you should already know:Element – substances that are composed of only one type of atom and can all be found on the periodic tableAtom – smallest particle of an element that retains the characteristics of that elementCompound – two or more different elements chemically combinedPure Substance (or simply Substances) – any element or compounds (NOT a mixture)Mixture – two or more substances in a mixture that do not chemically combineHomogeneous Mixture – two or more substances that are uniformly combined (example: sugar in water)Solution – a homogeneous mixtureHeterogeneous Mixture – two or more substances that are unevenly mixed (example: chicken noodle soup)

Units of TemperatureTemperature – a measurement of the movement (kinetic energy) of the molecules in a substance

There are three units of temperature:1. Celsius (oC)2. Fahrenheit (oF)3. Kelvin (K)

The size of a Kelvin and a Celsius degree are the same but the size of a Fahrenheit degree is smaller. It is easy for us to convert from K oC or from oC K but not between the two and Fahrenheit because of this.

K = oC + 273In science, the Kelvin scale is the preferred scale because it is based on absolute zero and never has a negative value.

Absolute zero – the temperature at which all molecular movement stops. This is the lowest possible temperature.

Page 8: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

Properties of MatterPhysical Properties – properties that can be observed without changing what the substance is

Examples: color, state, melting point, boiling point, density, solubility, conductivity, malleability, and ductility

Chemical Properties – properties that can only be observed by a change in the chemical make-up of the substance

Examples: reactivity, combustability and flammability

Changes of MatterPhysical Change – a change in the physical properties of a substance that does not result in a substance that is chemically different from the original

Examples: A phase change – when ice melts into liquid water, only the phase is changed…it is still H2OTearing – if you rip a piece of magnesium ribbon, it is still magnesium…just two pieces

Chemical Change – a change in the chemical properties of a substance that results in a chemically change substance

Example: Burning – if you light a piece of paper on fire, the paper changes to ash (chemically different)

States of Matter Gas moelcules move around very rapidly and

have almost no attraction for each other. Liquid molecules move slower than gas particles

and have some attraction to each other (this is why liquids “flow”)

Solid molecules barely move at all. They actually vibrate in a fixed position.

Gas molecules take the shape and volume of their container because they move so freely.

Liquid molecules conform to the shape of their container but have a specific volume.

Solid particles have a specific shape and volume.

Section 6 – Atomic StructureSubatomic ParticlesThere are three types of subatomic particles:

1. Protons – positively charged; located in the nucleus2. Neutrons – neutrally charged; located in the nucleus3. Electrons – negatively charged; located outside the nucleus

Page 9: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

By definition, an atom has to be neutral in charge. Therefore it must have the same number of protons and electrons in order for the positive and negative charges to balance out.

Most of the mass of an atom resides in the nucleus where the protons and neutrons are. This is because protons and neutrons have a far greater mass than electrons. Electrons are over 10,000 times smaller (in mass) than protons and neutrons. The masses of each particle are shown below but do not need to be memorized.

Subatomic Particle Mass (g) Relative Charge Proton 1.67 x 10-24 +1Neutron 1.67 x 10-24 0Electron 9.11 x 10-28 -1

The Periodic TableGroups (also called families) – vertical columns on the periodic table

Periods – horizontal rows on the periodic table (there are seven rows)

You should be familiar with the group numbers show in the diagram below:

1A 8A 2A 3A 4A 5A 6A 7A 3B 4B 5B 6B 7B 8B 8B 8B 1B 2B

Other common names for the groups on the periodic table:1A – alkali metal 7A - halogens2A – alkaline earth metals 8A – noble gases

Main Group Elements – elements in the “A” groups

Transition Elements – elements in the “B” groups

Metals, Nonmetals, and Metalloids

Properties of Metals: Solids at room temperature (except for Hg) Conduct electricity Are ductile Are malleable

Properties of Nonmetals: Do not conduct electricity Are not ductile Are not malleable

Page 10: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

3

Li6.941

Metalloids have some characteristics of metals and some characteristics of nonmetals. It varies from metalloid to metalloid.The NumbersEach box on the periodic table contains a plethora of information. You must be able to extract as much information as possible from the periodic table.

Atomic Number – the number of protons in the nucleus of an atom of an element

Mass Number – the number of protons and neutrons in the nucleus of an atom of an element (to determine the number of neutrons, subtract the atomic number from the mass number). This is this number but rounded to a whole number.

Molar Mass – the number of grams per mole at atoms of an element(round this number to 1 decimal place)

By simply looking at the periodic table, you can determine the number of protons, electrons, and neutrons in an atom. Here is how:

1. Look at the atomic number. That is the number of protons.2. Since it is an atom, the charge has to be neutral so the number of electrons has to be the same as

the number of protons.3. To get the number of neutrons, subtract the atomic number from the mass number (remember to

use the rounded version of the decimal).

Sometimes it will be important to be able to not only write the symbol for an element but to represent its atomic number and mass number, as well. You will need to use the following to do so:

Li37

IsotopesMost elements on the periodic table occur in nature in various forms having various mass numbers.

Isotopes – atoms with the same atomic number but different mass numbers (therefore having a different number of neutrons)

Example: There are two different forms of boron (B):

B511 and B5

10

It has been tested that 19.91% of the boron on Earth is boron-10 and 80.09% of the boron on Earth is boron-11.

This is the reason why the mass number on the periodic table is not a whole number even though it represents the number of protons and neutrons in an atom and you cannot have part of a proton or neutron.

The mass number (decimal number) on the periodic table is a decimal because it is an average of the isotopes and abundances of those isotopes on Earth. This gives us a more realistic number to work with when we use it as molar mass.

Back to our example:Look at boron’s mass number…10.811

Page 11: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

Do you see how it is closer to 11 than to 10? That tells you that there is more boron-11 on Earth than boron-10. Just as our percentage above shows.

The MoleMole – 6.02 x 1023 of anything (but in Chemistry it is usually atoms, molecules, particles, etc)

We use the mole as a way to make our calculations reasonable on the scale we are used to. Atoms and molecules are sooooo small that it would be silly to speak of them individually. Instead, we group in a large group called a mole. It is similar to how donuts are sold. You usually do not buy just one donut…you buy a dozen!

Molar Mass – the mass (in grams) of one mole of atoms of any element - the mass (in grams) of 6.02 x 1023 atoms of any element

Some examples of molar mass:Molar mass of sodium (Na) = mass of 1 mole of Na atoms

= 23.0 g/mol = mass of 6.02 x 1023 Na atoms

Note: When rounding the mass number on the periodic table to use for molar masses, always round to ONE DECIMAL PLACE!!!!

Mass Moles Conversions To convert from mass to moles or moles to mass of a substance, use dimensional analysis (other forms of work will not be accepted)!!

Use molar massMoles of substance Mass of substance

in g/mol

Example Problem #1:How many moles of Zn are in 5.87 grams of Zn?

5.87 grams Zn x 1mol Zn65.4 gZn = 0.0898 mol Zn

Example Problem #2:How many grams of Fe are in 1.92 moles of Fe?

1.92 grams Fe x 1mol Fe55.8 g = 0.0344 mol Fe

Page 12: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

For Your Information Only: Scientific notationScience can deal with very large and very small numbers. Remember, there are 602,000,000,000,000,000,000,000 molecules in a mole. We use scientific notation to simplify these large (and also small) numbers.

Scientific Notation contains three parts:1. a number greater than or equal to 1 but less than 10. The number usually contains a decimal2. a multiplication sign3. a power of 10 (Ex: 104)

Instead of writing 602,000,000,000,000,000,000,000 we can write 6.02 x 1023 . . . making the number MUCH easier to deal with.

To determine how to write the number in scientific notation, follow these steps:1. To determine what digits should appear in Part 1, write all the digits from the number that are

significant, placing a decimal immediately after the first number. For the above number, that would be the 6.02 without any of the zeros (they are at the end of a number with no decimal place so they are not significant).

2. Then place a multiplication sign after the number … 6.02 x3. To determine the power of ten, see how many times you needed to move the decimal so it would fall

immediately after the first number from Part 1. For the above example, we had to move the decimal place 23 times to left.

i. Moving the decimal to the right makes the exponent negative.ii. Moving the decimal to the left makes the exponent positive.

This example has the decimal moving to the left therefore making it a positive exponent. The final answer is 6.02 x 1023

Quick Calculator Lesson (for any of the TI calculators): 1. Type in part 1 of the number2. Press the “second” key and hit the comma key. A small upper case “E” will appear.3. Then type in the power of the 10 (do not type the 10, just the number of its superscript)

For Your Information Only: DensityDensity – how closely packed together molecules are in a substance

Density = massvolume =

mV

The unit for density depends on the units being used for mass and for volume. The unit will be the mass’s unit over the volume’s unit. Some examples, g/mL or kg/L or cg/mm3.

Sample Density Problem:Determine the density of a piece of metal that has a mass of 340 g and a volume of 5.6 L

D = m/V = 340g/5.6L = 64.1500943 … with the correct sig figs … 64 g/L is the density

Page 13: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

For Your Information Only: The metric systemThe United State is the only country in the world that does not use the Metric System. In order for American scientists to be able to communicate with other scientists, we must all use the same system

so we use the Metric System in science.

There are seven SI Base Units (with the unit and symbol):

Base Unit Unit SymbolMass Kilogram kg

Length Meter mTime Second s

Quantity Mole molTemperature Kelvin K

Electric Current Amphere ÅLuminous Intensity Candela cd

These are the base units. Each of these units can be made larger or smaller with the use of prefixes.

How do I read this chart?When using this chart to convert between two units, simply find where your original unit is and where the unit you are trying to find is. Each step represents one move of the decimal place, either to the right (down) or two the left (up).

The following are the prefix conversions we use most often:1 m = 100 cm 1 g = 100 cg1 m = 1000 mm 1 g = 1000 mg 1000 m = 1 km 1000 g = 1 kg

This is a way to remember the prefixes:

King Henry Died Drinking Chocolate Milk

Page 14: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

For Your Information Only: dimensional analysisDimensional analysis is a method used to solve problems that helps to organize information in a logical manner.

The key to dimensional analysis is to take the problem one step at a time!

The best way to demonstrate dimensional analysis is through an example so …

Sample Problem:How many days are in 4.2 years?

Step 1: Write down the given number and unit from the problem4.2 years

Step 2: We know the conversion from years to days is 1 yr = 365 days. Now multiply the conversion factor by the original number. Set up the conversion factor so the unit that is the original problem is on the bottom. This will cancel the unit out and you will be left with the unit on the top.

4.2 years x 365days1 year = 1533 days = 1500 days (with correct sig figs)

You can use as many conversion factors as you need to in a row.

Another Sample Problem:How many hours are in 4.2 years?

4.2 years x 365days1 year x

24hours1day = 36792 hours = 37000 hours (with correct sig figs)

Page 15: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

AP Chemistry Practice: It is in your best interest to go back to your Honors Chemistry notebook and try more problems than just these here. This is just a SHORT worksheet.

Section 1 – Sig Figs: How many significant figures does each of the following contain?

1. 50.9 __________ 3. 0.0028 __________ 5. 6050 __________ 2. 5009 __________ 4. 95.00 __________Perform the following operations. Make sure all your final answers are in scientific notation and contain the correct number of significant figures.

6. (32500) + (7900) _______________________ 8. (3.3 x 10-3) x (6.6 x 10-6) _________________

7. (564000) – (4256.89) ___________________ 9. (5.9 x 10-4) / (3.333 x 102) _______________

Section 3 – Naming and Formula Writing:Name each of the following compounds.

1. AgCl ________________ 4. SnF4 ________________ 7. K3N ________________

2. ZnO ________________ 5. Ba(NO3)2 ____________ 8. CdO ________________

3. CaBr2 ________________ 6. CuCl2 ________________9. AlBr3 ________________

Write the formula for each of the following.1. potassium iodide ________ 6. calcium nitride ________2. magnesium chloride ________ 7. cesium sulfate ________3. sodium sulfide ________ 8. sodium phosphate ________4. copper(II) chloride ________ 9. sodium sulfite ________5. tin(II) fluoride ________ 10. aluminum chloride ________

Name each of the following molecular compounds.1. S2O3 __________ 3. PBr5 __________ 5. XeF4 __________2. ICl3 __________ 4. PF5 __________ 6. CCl4 __________

Write the formula of each of the following molecular compounds.1. dioxygen difluoride __________ 3. carbon dioxide

__________2. carbon tetraiodide __________ 4. dinitrogen pentoxide

__________Name each of the following acids.

1. HNO3 __________ 3. HI __________2. H2SO4 __________ 4. H2SO3 __________

Write the formula for each of the following acids.

Page 16: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

1. perchloric acid __________ 4. hydrosulfuric acid __________

2. phosphoric acid __________ 5. carbonic acid __________

Section 5 – MatterConvert the following:

1. 25.0oC = __________ K 3. 453 K = _________oC2. 123oC = __________ K 4. 235 K = _________oC

Page 17: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

AP Chemistry Practice: It is in your best interest to go back to your Honors Chemistry notebook and try more problems than just these here. This is just a SHORT worksheet.

Section 1 – Sig Figs: How many significant figures does each of the following contain?

1. 50.9 __3________ 3. 0.0028 __2________ 5. 6050 __3________ 2. 5009 __4________ 4. 95.00 __4________Perform the following operations. Make sure all your final answers contain the correct number of significant figures.

6. (32500) + (7900) ___40400___ 8. (3.3 x 10-3) x (6.6 x 10-6) __2.2 x 10 -8 ____

7. (564000) – (4256.89) ___559743_______ 9. (5.9 x 10-4) / (3.333 x 102) __1.8 x 10 -6 __

Section 3 – Naming and Formula Writing:Name each of the following compounds.

1. AgCl _silver chloride_ 4. SnF4 _tin(IV) fluoride_ 7. K3N potassium nitride

2. ZnO _zinc oxide______ 5. Ba(NO3)2 barium nitrate 8. CdO cadmium oxide

3. CaBr2 calcium bromide 6. CuCl2 copper(II) chloride 9. AlBr3 aluminum bromide

Write the formula for each of the following.1. potassium iodide KI 6. calcium nitride Ca3N22. magnesium chloride MgCl2 7. cesium sulfate Cs2SO43. sodium sulfide Na2S 8. sodium phosphate Na3PO44. copper(II) chloride CuCl2 9. sodium sulfite Na2SO35. tin(II) fluoride SnF2 10. aluminum chloride AlCl3

Name each of the following molecular compounds.1. S2O3 disulfur trioxide 3. PBr5 phosphorus pentabromide 5. XeF4

xenon tetrafluoride2. ICl3iodine trichloride 4. PF5 phosphorus pentafluoride 6. CCl4

carbon tetrachlorideWrite the formula of each of the following molecular compounds.

1. dioxygen difluoride O2F2 3. carbon dioxide CO22. carbon tetraiodide CI4 4. dinitrogen pentoxide N2O5

Name each of the following acids.1. HNO3 nitric acid 3. HI hydroiodic acid2. H2SO4 sulfuric acid 4. H2SO3 sulfurous acid

Write the formula for each of the following acids.1. perchloric acid HClO4 4. hydrosulfuric acid H2S

Page 18: Web viewYou will name those compounds according to the acid rules explained later. 1: mono; 2. di. 3. tri. 4. tetra. 5. penta. 6. hexa. 7. hepta. 8. octa. 9. nona. 10. deca. When naming

2. phosphoric acid H3PO4 5. carbonic acid H2CO3

Section 5 – MatterConvert the following:

1. 25.0oC = 298.0 K 3. 453 K = 180oC2. 123oC = 396 K 4. 235 K = -38oC