x-ray imaging and spectroscopy of individual nanoparticles a. fraile rodríguez, f. nolting swiss...

19
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann Dept of Surface Chemistry and Catalysis Universität Ulm, Germany A. Kleibert Institut für Physik, Universität Rostock, Germany U. Wiedwald Dept of Solid State Physics Universität Ulm, Germany 1 2 3 1 2 3 D 8 nm

Upload: geraldine-robertson

Post on 16-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

X-ray Imaging and Spectroscopy of Individual Nanoparticles

A. Fraile Rodríguez, F. NoltingSwiss Light Source

Paul Scherrer Institut, Switzerland

J. BansmannDept of Surface Chemistry and Catalysis

Universität Ulm, Germany

A. KleibertInstitut für Physik,

Universität Rostock, Germany

U. WiedwaldDept of Solid State PhysicsUniversität Ulm, Germany

1

2

3

1

2

3

D8 nm

Page 2: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Magnetism in reduced dimensions

Intrinsic properties

Finite-size effects

Surface effects

Interparticle interactions

Nanomagnetism

Size, aspect ratio distribution

Page 3: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Magnetism in reduced dimensions

Superparamagnetism

TkVK Bparticleani

Superparamagnetic limit: time and thermal stability

Shape-dependent Thermal Switching Superparamagnetic Nanoislands

M. Bode et al. Phys. Rev. Lett. (2004) 92 067201

Page 4: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Magnetism in reduced dimensions

Surface effects

• lower coordination number

• broken magnetic exchange bonds

• frustrated magnetic interactions

• surface spin disorder

• reduced M in ferri-, antiferro- systems

• enhanced M in metallic ferro- systems

Surface and core magnetic orders

spin glass?dead magnetic layer?

bulk-like?

• high-field irreversibilities

• high saturation fields

• shifted hysteresis loops

Page 5: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Single Particle experiments:

Correlate the electronic, magnetic and structural properties with the size, aspect ratio, crystalline structure, and chemical composition of each individual particle.

The ability to manipulate a single nanoparticle has an increased potential in device manufacturing

Ensembles vs Single-Particle Properties

Ensembles:

Distributions with respect to nanoparticle size, aspect ratio crystalline structure, defect distribution and chemical composition

Courtesy of M. Farle, Uni Duisburg

Page 6: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Single Particle Detection: Techniques Available

Technique x

(nm)

E-resolution

(eV)

SP-STM 0.5 < 0.2

EELS 0.5 0.5

Optical Fluorescence

< 5 0.02

Technique x(nm)

System (Individual Particles)

XPEEM 50 • InAs (D~50 nm), E/E=0.2 eV, Heun et al.• Fe2O3 (D ~ 10 nm), E/E=0.5 eV, Rockenberger et al.

Page 7: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Surface and interface sensitivity

e-hn

Soft x-ray SpectromicroscopySoft x-ray Spectromicroscopy

Chemical Selectivity

700 800 900Photon Energy (eV)

Co NiFe

Inte

nsity

(a.

u.)

chemical bondingelectronic properties

atomic magnetic moments

Magnetic Contrast: XMCD

S

Inte

nsity

(a.

u.)

Magnetic Contrast: XMLD

antiferromagnets

Page 8: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Soft x-ray SpectromicroscopySoft x-ray Spectromicroscopy

Element specific imaging: PEEM

Substrate

Py

Co

Co islands, 778.1 eV Py film, 852.7 eV

5 m

S

Magnetization Direction

Page 9: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

XX-ray -ray PPhotohotoEEmission mission EElectron lectron MMicroscopyicroscopy

• probing secondary/Auger/photoemission

• spatial resolution: 50 nm

• electron energy resolution: 0.1 eV

• HA~ 30 mT

• 100 K < T < 1500 K

• ultra high vacuumMagnetic Lenses

Energy Analyzer

20kV

Sample

MCPPhosphor

x-rays

Page 10: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Cobalt particles: Arc ion cluster source

• particle size tunable between 4-15nm

• size distribution: D/D ~10-15%

• in situ deposition

R. P. Methling et al., R. P. Methling et al., EPJD EPJD 1616, 173 (2001), 173 (2001)

Collaboration with J. Bansmann, Uni Ulm,

and A. Kleibert, Uni Rostock

Page 11: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Particle Size: Scanning Electron Microscopy

• deposition of Co particles on Si substrates

• coverage: 5-10 particles/m2

• lithographic markers on substrates

• low percentage dimers/trimers

• crystalline structure

Co particles, Al capping layerCo particles, no capping layer

100 nm

D ~10 nmD ~10 nm

1 µm

D ~ 8 nmD ~ 8 nm

Lithographic markers: L. J. Heyderman, PSI

Page 12: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Elemental Contrast: X-ray PEEM

Co particles D 13 nm oxidized in air

Image (778 eV)÷ Image (770 eV)

2 m

Photon energy 778 eV Photon energy 770 eV

2 m 2 m

Page 13: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

X-ray Imaging of Individual Nanoparticles

The lithographic markers are essential to correlate unambiguously the PEEM observations with the size of the particles imaged by the SEM

Co particles D 8 nm / 8 nm Al capping layer

Scanning Electron MicroscopyPEEM Elemental Contrast

1 µm

1 µm1 µm1 µm

Lithographic markers: L. J. Heyderman, PSI

Page 14: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

770 775 780 790 795 800 805 810

Photon Energy (eV)

Movie: 159 images

Total acquisition time: 12 hours.

Individual Particles: X-ray Absorption Spectra

Co particles D 8 nm, no capping layer

particle

particle/blank

blank

1 m

765 770 775 780 785 790 795 800 805 810

Photon Energy (eV)

Inte

nsity

(a.

u.)

Page 15: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

X-ray Absorption: Particle-to-particle variation

Co particles D 8 nm, no capping layer

Inte

nsity

(ar

b.un

its)

A

B CD

E

Reference CoO thin film

Adapted from Regan et al. PRB 64 (2001) 214422

A

B CD

E

Particle 1Particle 2Particle 3

Page 16: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

X-ray Absorption: Single-Particle vs Ensembles

Co particles D 8 nm, no capping layer

Inte

nsity

(ar

b.un

its)

Particle 1Particle 2Particle 3Ensemble

A

B CD

E

Reference CoO thin film

Adapted from Regan et al. PRB 64 (2001) 214422

A

B CD

E

Page 17: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

• alloy systems, e.g. FexCo1-x , FexPt1-x

• Magnetic transition temperatures on the nanoscale

• in situ Fe clusters (~ 9 nm) supported on ferromagnetic thin films

Future: XMCD of individual nanoparticles

Fe, 708 eV

1 m

Co, XMCD, 778 eV

Co film

Fe clusters

Page 18: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Conclusions

• X-ray absorption spectra of individual Co particles as small as 8 nm

• Differences in oxide-related features between individual particles were observed

• Changes between the spectra of an individual particle and the ensemble were observed

1

2

3

1

2

3

D8 nm

Page 19: X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann

Collaborators

F. Nolting, Swiss Light SourcePaul Scherrer Institut, Switzerland

J. Bansmann, Dept of Surface Chemistry and CatalysisUniversität Ulm, Germany

A. Kleibert, Institut für Physik,Universität Rostock, Germany

U. Wiedwald, Dept. Solid State Physics, Universität Ulm, Germany

L. J. Heyderman,Laboratory for Micro- and Nanotechnology Paul Scherrer Institut, Switzerland