yield increases with lo-solids cooking - tappi · lo-solids cooking is a family of cooking...

53
Yield Increases with Lo-Solids ® Cooking Bertil Stromberg Andritz Inc.

Upload: ngonhu

Post on 21-Aug-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

Yield Increases with Lo-Solids® Cooking

Bertil StrombergAndritz Inc.

Lo-Solids cooking is a family of cooking technology usingdifferent flow-sheet arrangements depending on the individualdigester.

It is currently used in about 60 SW and HW digesters.

In 14 of the HW digesters, significant yield increases have beenconfirmed.

Lo-Solids HW digesters using AQ have realized higher thanexpected yield increases.

Introduction

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Black Liquor SolidsM-P Equation (2 studies)

F 1.6 % Wood Consumption Decrease ( 2 years)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

2.4 % M-P EquationProduction Data

1.5 % Pulp Composition Data

1.5 % Wood Consumption Data (2 years)

3 % M-P EquationWood Consumption Data (2 years)

2 - 3 % Short term trials

2 - 3 % Wood Consumption data (3 years)

1.5 – 2.5 % Black Liquor Solids

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

Mill Yield Increase Method of DeterminationWood

Birch Finland

Mixed Japan

Euca. So. America

Euca. Spain

Mixed Japan

Mixed So. USH

I

J

K

L

M

N

Mixed No. US

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

• Wood Consumption

• Black Liquor Solids

• Recovery Boiler Steam Generation

• Pulp Composition

Yield Determination Methods

Lignin Free TotalKappa Yield Glucan Xylan Galactan Mannan Hemi , %

14.7 54.3% 43.2 9.3 0.19 0.09 18.1

13.2 52.8% 42.9 9.2 0.09 0.11 18.014.6 54.0% 43.0 9.5 0.13 0.11 18.5

14.8 54.8% 43.4 9.4 0.20 0.09 18.2

Lower Yield ? Lower Hemi Fraction in Pulp

Yield loss can not be measured by carbohydrate testing only.

Differences in total yield are to a large part due to differences in cellulose yield.This observation is different than what is reported for softwoods.

Lab Pulping of Eucalyptus with Different Alkali Profiles

Yield Determination by Pulp Composition

45

46

47

48

49

50

51

52

0.25 0.27 0.29 0.31 0.33 0.35

17 - 23% EAon wood

17% EA w/AQ

Hemi Fraction in Pulp

Lign

in F

ree

Yiel

d, %

on

BD

Woo

dYield Determination by Pulp Composition

45

46

47

48

49

50

51

52

10 12 14 16 18 20

Kappa

Lign

in F

ree

Yiel

d,

% o

n B

D w

ood

23 % EA

21 % EA

17 % EA

17% EA w/AQ

Alkali Charge

M-P Calibration Curve Example, HWYield Determination by Pulp Composition

4546474849505152

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1

Log (V)/(G'2)

Lign

in F

ree

Yiel

d,

% o

n B

D w

ood

17 - 23% EA

17% EA w/AQ

Alkali Chargey = 3.6528x + 36.382R2 = 0.9544

M-P Calibration Curve Example, HWYield Determination by Pulp Composition

4546474849505152

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1

Log (V)/(G'2)

Lign

in F

ree

Yiel

d,

% o

n B

D w

ood

Mill Pulp

Lab Pulps

M-P Calibration Curve Example, HWYield Determination by Pulp Composition

44

46

48

50

52

54

56

2 2.5 3 3.5 4 4.5 5

log(V)/(G')2

Lign

in-F

ree

Yiel

d,

% o

n w

ood

S.USS.USS.USS.USS.USN.USN.USN.USN.USN.USEuc.Euc.BirchJap.

y=3.6x

M-P Calibration CurvesFor Different Hardwoods

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

9092949698

100102

92 93 94 95 96 97 98

Fiscal Year

Rela

tive

Woo

d Us

age

(% R

elat

ive

to 1

992)

Conv. Cook1-v. steam EMCC

1-v. hyd.

Lo-SolidsCooking

Mill “A” Wood Usage

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

45

46

47

48

49

50

51

52

10 12 14 16 18 20Kappa

Lign

in F

ree

Yiel

d, %

on

BD

woo

d

Unbl. Mill Pulps

Unbl. Lab Pulps

Mill “A” Pulp YieldM-P Equation

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

80

90

100

110

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

W eek (p rio r to an d fo llo w in g tran sitio n)

Relative W

ood U

sage (%)

E M C C

L o-S olids

Mill “B” Wood Usage

Baseline Yield Results Green chips after screening 100.0 Bone dry chips assuming 40% moisture 60.0 Bone dry unbleached pulp 28.2 Bone dry screened pulp 27.8 Bone dry bleached pulp 26.9 Green chips / bleached pulp: 3.72 Lo-Solids Yield Results Green chips after screening 100.0 Bone dry chips assuming 40% moisture 59.4 Bone dry unbleached pulp 30.6 Bone dry screened pulp 30.4 Bone dry bleached pulp 29.4 Green chips / bleached pulp: 3.40

Mill “B” Wood Usage

3.40 = 8.6 % 3.72 Decrease inwood usage

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

Mill Yield Increase Method of Determination

A 4 - 5 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 - 5 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

G 1 - 2 % M-P Equation

Batch Lo-Solids Lo-Solids Mill Pulps Feb. 1997 Sept. 1997 (average) (average) (average)

Kappa 15.8 13.3 13.0 Log(V)/(G’)2 3.28 3.48 3.47 Lignin-Free Yield (Y’) 49.0† 49.9† 49.9†

Mill “C” Pulp YieldM-P Equation

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

EMCC Lo-Solids Mill Pulps Mill Pulps Avg Avg Kappa 10.2 10.6 Log(V)/(G’)2 3.36 3.58 Lignin-Free Yield (Y’) 49.4† 50.2†

Mill “D” Pulp YieldM-P Equation

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Liquor Solids (Mill data) M-P Equation(2 studies)

F 1.6 % Wood Consumption Decrease ( 6 mo. ave)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

49

50

51

52

53

54

55

56

10 12 14 16 18 20Kappa

Lign

in F

ree

Yiel

d, %

on

BD

woo

d

Unbl. Mill Pulp

Unbl. Lab Pulps

Mill “E” Pulp YieldM-P Equation

Mill Yield Increase Method of Determination

A 4 % Wood Consumption Decrease (4 years) M-P Equation (4 studies)

B 4 % Wood Consumption Decrease ( 3 years)

C 2 % M-P Equation (3 studies)

D 1 % M-P Equation (2 studies)

E 2 - 3 % Black Liquor SolidsM-P Equation (2 studies)

F 1.6 % Wood Consumption Decrease ( 2 years)

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

G 1 - 2 % M-P Equation

Wood

Mixed So. US

Mixed No. US

Mixed So. US

Euca. So. America

Mixed Ea. Canada

Mixed So. US

Birch Finland

2.4 % M-P EquationProduction Data

1.5 % Pulp Composition Data

1.5 % Wood Consumption Data (2 years)

3 % M-P EquationWood Consumption Data (2 years)

2 - 3 % Short term trials

2 - 3 % Wood Consumption data (3 years)

1.5 – 2.5 % Black Liquor Solids

Hardwood Yield IncreaseMeasured Mill Data, Lo-Solids® Cooking

Mill Yield Increase Method of DeterminationWood

Birch Finland

Mixed Japan

Euca. So. America

Euca. Spain

Mixed Japan

Mixed So. USH

I

J

K

L

M

N

Mixed No. US

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

14 digesters operating on hardwood report higher pulp yield

All use post-impregnation extraction

Operating Conditions

Lo-Solids DigesterPost-Impregnation Extraction

Impregnation Zone

To Recovery

Lo-Solids Cooking:

100 120 140 160

Conv

Temperature, °C

Lo-Solids

0 10 20 30

Conv

Alkali Conc, EA NaOH g/l

Lo-Solids

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

0

5

10

15

20

25

0 50 100 150 200 250 300 350Time, minutes

EA, g/l (NaOH)

0

20

40

60

80

100

120

140

160

180Temp, C

BC

Alkali Profile

Lab Study 1Alkali and Temperature Profiles

A

48

50

52

54

56

58

10 15 20 25 30 35Kappa Number

Tota

l Yie

ld, %

on

BD

woo

d

C

B

A

Alkali Profile

153 ºC

Lab Study 1Effect of Alkali Profile on Yield

0

5

10

15

20

25

0 50 100 150 200 250 300 350Time, minutes

EA, g/l (NaOH)

0

20

40

60

80

100

120

140

160

180Temp, CB

C

Alkali Profile

Lab Study 1Alkali and Temperature Profiles

A

46

48

50

52

54

56

58

0 4 8 12 16 20 24 28

Residual EA concentration, g/l as NaOH

Tota

l yie

ld, %

on

woo

d CBA

Alkali Profile

Lab Study 1Effect of final Alkali on Yield

0

5

10

15

20

25

0 50 100 150 200 250 300 350Time, minutes

EA, g/l (NaOH)

0

20

40

60

80

100

120

140

160

180Temp, C

Temp 1Temp 2

Lab Study 1Alkali and Temperature Profiles

48

50

52

54

56

58

10 15 20 25 30 35

Final Kappa Number

Tota

l Yie

ld,

% o

n B

D w

ood

153 C

165 C

Cook 2 Temp

Alkali Profile C

Lab Study 1Effect of Temperature on Yield

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 50 100 150 200 250 300 350

T im e, m inutes

EA conc, g/l NaO

H

0

20

40

60

80

100

120

140

160

180

Temperature

, C

C K

Low E A

H igh E A

Tem p.

Lab Study 2Hardwood Alkali Profile Study

54.0

37.5

13.7

36.1

13.6

35.9

12.3

52.050.3

0

10

20

30

40

50

60

Total Yield, % C ellulose yield, % X ylan yield, %

Yield, %

, correc

ted to

kap

pa 17

Low E A kappa 17.1

C K kappa 18.1

H igh E A kappa 16.6

Lab Study 2Yields, brownstock

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350Time, minutes

Xyla

n an

d EA

, g/l

0

20

40

60

80

100

120

140

160

Tem

pera

ture

, C

XylanEATemp.

Lab Study 2Dissolved xylan profiles,CK

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350Time, minutes

Xyla

n an

d EA

, g/l

0

20

40

60

80

100

120

140

160

Tem

pera

ture

, C

XylanEATemp.

Lab Study 2Dissolved xylan profiles,High EA

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

T im e, m inutes

Xylan

and EA, g

/l

0

20

40

60

80

100

120

140

160

Temperature, C

X ylan

E A

Tem p.

Lab Study 2Dissolved xylan profiles,Low EA

02468

101214161820

0 50 100 150 200 250 300 350Time, minutes

Xyla

n, g

/l

CKLow EAHigh EA

Lab Study 2Dissolved xylan profiles

• Yield Increases Experienced in 14 Hardwood Lo-Solids Digesters

• Yield Determination• Cellulose and Hemi

• Operating Conditions

• Lab Supporting Evidence

• AQ

Presentation Outline

110 °C147 °C

144 °C157 °C

156 °C

143 °C

13m3/t

5m3/t

DF 1.5 m3/t

WHITELIQUOR

3m3/t

6m3/t

Chips + 8 % AA (NaOH)

9 % AA

1.5 %AA

Mill “M”Data for Lo-Solids + Lo-Level operation

110 °C144 °C

142 °C157 °C

156 °C

143 °C

13m3/t

5m3/t

DF 1.5 m3/t

WHITELIQUOR

3m3/t

6m3/t

Chips + 8 % AA + AQ

9 % AA

1.5 %AA

Mill “M”Data for Lo-Solids + AQ operation

Yield Increase 0 % with AQ

Cooking Temperature Decrease

No

Cook Type Conventional Lo-Solids + Lo-Level

Mill “M”Effects of AQ Addition

+ 2 %, no AQ

+ 4 % with AQ

Yes

We believe the larger than normal yield increase with AQ is due to:

• Lower alkali concentration in impregnation

• Lower temperature in impregnation

• Fewer peeling reactions caused by alkali and temperature

The data from mill “M” is consistent with other mill trials and lab work.

Mill “M”Lo-Solids + AQ operation

Lo-Solids cooking has given a yield increase of 1- 4 % in 14hardwood digesters

In addition digester capacity, bleachability and pulp qualityimprove.

All these digesters have post-impregnation extraction and lowalkali concentration in all cook zones

AQ in combination with Lo-Solids cooking give larger than expectedyield improvements.

Conclusions