yvette h. spitz oregon state university, ceoas carin j. ashjian (1), robert g. campbell (2), michael...

26
Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1) , Robert G. Campbell (2) , Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic Institution (2) University of Rhode Island, GSO (3) University of Washington Applied Physics Laboratory http://psc.apl.washington.edu/zhang/BIOMAS/index.html Western Arctic Ocean Primary Productivity Changes over the Last Three Decades and in the Future: not a Simple Story.

Upload: oswin-paul

Post on 14-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Yvette H. SpitzOregon State University, CEOAS

Carin J. Ashjian(1), Robert G. Campbell(2), Michael Steele(3) and Jinlun Zhang(3)

(1) Woods Hole Oceanographic Institution(2) University of Rhode Island, GSO

(3) University of Washington Applied Physics Laboratory

http://psc.apl.washington.edu/zhang/BIOMAS/index.html

Western Arctic Ocean Primary Productivity Changes over the Last Three Decades and in

the Future: not a Simple Story.

Page 2: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Ice Extent (Sept 1979)

Ice Extent (Sept 2011)

Page 3: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

NSIDC Courtesy Irina Overseem, University of Colorado Boulder.

Open Water Days in the Beaufort Sea , 1980 to 2009

Page 4: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009 (Fiona A. McLaughlin and Eddy C. Carmack)

Salinity

Depth of 33.1 salinity

Page 5: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic
Page 6: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

How will this large scale ice melting and

changes of water properties (light,

temperature, mixing, etc) affect the

ecosystem?

Page 7: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

BIOMAS’ Circulation Model and Grid

physical open boundary conditions imposed from a global model run

Parallel ocean and sea ice model (Zhang/Rothrock 2003).

=> Multi-category thickness and enthalpy distribution sea ice model.

=> POP (parallel ocean program) ocean model (Smith et al. 1992).

Page 8: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

DOM

Small Zoo (ZS)

Copepods (ZL)

Detritus

Flagellates (PF)Diatoms (PD)

NO3NH4DOM

NH4

SinkingVertical Migration

Predators (ZP)

Si(OH)4

opal

Schematic of BIOMAS’ Pelagic Ecosystem Model

Zhang et al. (2010) – based on Nemuro

Page 9: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Changes in PP and planktonin the Arctic Ocean

Satellite derived PP values are from Pabi et al. 2008 and Arrigo et al. 2008

Is the trend the same for all the Seas?

Is that due to a longer growing season? If not,

then why?

Page 10: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Arctic Regions for Analysis Purpose

Page 11: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Start and End of Growing Season (10% above Phytoplankton Winter Value)

Beaufort Sea

Chukchi Sea

Diatom Flagellate Chlorophyll

Year1988 2010

Day

Page 12: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Change in Spring Mean Primary Productivity

(01-06) – (88-00) (07-11) – (88-00)

Integrated PP (mg C m-2 d-1 ) April – June, 1988-2000

PP and its increase over the years are small in the spring

Page 13: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Change of mean PAR (%) at the water

surface(01-06) – (88-00) (07-11) – (88-00)

PAR (W m-2) – April-June. 1988-2000 Spring Mean PAR

Page 14: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Trend of Yearly Maximum (day (black), magnitude (red)) for the Beaufort Sea

Page 15: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Maximum of Biomass and Primary Productivity, and Minimum of Nitrate – Change in Day from 1988 to 2010

Change in timing of the secondary producer biomass is largest in deep basin, especially for the predatory zooplankton

Nitrate minimum happens earlier at the surface but later at depth in the Beaufort Sea and Deep Basin

Change in timing of max. PP is the largest in the Chukchi Sea and the largest change in timing of phytoplankton happens in the Beaufort Sea

Page 16: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Maximum of Biomass and Primary Productivity, and Minimum of Nitrate – Change in value from 1988 to 2010

Change in the secondary producer biomass is the largest in deep basinNitrate is decreasing at the surface (except in the Chukchi Sea) and over the first 100m

Change in flagellate biomass and PP is the largest in the deep basin. Decrease of diatom biomass in Beaufort and Deep Basin

Page 17: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Summer Mean Int. Primary

Productivity (100m or bottom)

(01-06) – (88-00) (07-11) – (88-00)

Integrated PP (mg C m-2 d-1 ) July – September, 1988-2000

• Decrease significantly in the Beaufort Gyre

• Increase on the shelves (almost double on the western Chukchi Sea shelf

Page 18: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Change of mean PAR (%) at the water

surface

(01-06) – (88-00) (07-11) – (88-00)

PAR (W m-2) – July-September. 1988-2000 Summer Mean PAR

Significant especially in the Beaufort Sea

Page 19: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Summer Mean Int. Total Nitrogen (100m or bottom)

(01-06) – (88-00) (07-11) – (88-00)

Int. Total Nitrogen (mmol N m-3) July – September, 1988-2000

• Decrease significantly in the Beaufort Gyre (close to be depleted at the center of the Gyre)

• Increase on the shelves (almost triple on the western Chukchi Sea shelf

Page 20: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Summer Mean Int. Chlorophyll

(100m or bottom)

(01-06) – (88-00) (07-11) – (88-00)

Int. Chlorophyll (mg Chl m-3) July – September, 1988-2000

• Decrease significantly in the Beaufort Gyre (almost zero at the center

• Increase on the shelves (almost double on the western Chukchi Sea shelf

Page 21: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Summer Mean Int. Zooplankton (100m or bottom)

(01-06) – (88-00) (07-11) – (88-00)

Int. Zooplankton (mmol N m-3) July – September, 1988-2000

• Decrease in the Beaufort Gyre

• Increase on the shelves, especially on shelf break/slope

Page 22: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Summer Mean Int. Kinetic Energy (100m or bottom)

(01-06) – (88-00) (07-11) – (88-00)

Int. Kinetic Energy (cm2 s-2) July – September, 1988-2000

• Reduction of KE on the shelves

• Acceleration of the Beaufort Gyre

• Note the change at the Bering Strait

Page 23: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Conclusions and future research

•While we found that the maximum of productivity occurs earlier and reaches higher values in general, we did not find a significant trend in the start and end of the growing season.

But•The timing, magnitude and pattern of cycles are changing differently from region to region. Flagellate increase is larger than diatom increase in general. Grazer increase is larger in the Deep Basin.

•There is increase of primary productivity and total nitrogen over the shelves (especially Western Chukchi Sea) and shelfbreak but decrease at the center of the Beaufort Gyre. This decrease of nitrate is accompanied of a reduction of primary productivity. On the edge of the gyre, there seems to be an increase of plankton biomass and primary prodiuctivity.

•While trends can be found, the complex nature of the Arctic Seas call for cautions when analyzing observations. High resolution models are needed to resolve the present and future changes in the Western Arctic

Page 24: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic

Surface Chlorophyll-a (mg Chl m-3) – July 04 - ICESCAPE

2003 2011Constant Chl:N

Chl:N from ICESCAPE regression of Chl and PON

Page 25: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic
Page 26: Yvette H. Spitz Oregon State University, CEOAS Carin J. Ashjian (1), Robert G. Campbell (2), Michael Steele (3) and Jinlun Zhang (3) (1) Woods Hole Oceanographic