zni vzn first-principles modeling of defects and …dpc.nifs.ac.jp › dkato › mod-pmi2019 ›...

22
First - principles modeling of defects and hydrogen in oxides Chris G. Van de Walle Materials Department, University of California, Santa Barbara, USA with Minseok Choi (Inha U., South Korea), Justin Weber (Intel), Anderson Janotti (U. Delaware), John Lyons (NRL) Supported by ONR and SRC International Workshop on Models and Data for Plasma-Material Interaction in Fusion Devices (MoD -PMI 2019) National Institute for Fusion Science, Tajimi, Japan June 18-20, 2019 Zn i c V Zn

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

First-principles modeling of defects and hydrogen in oxides

Chris G. Van de WalleMaterials Department, University of California, Santa Barbara, USA

with Minseok Choi (Inha U., South Korea), Justin Weber (Intel), Anderson Janotti (U. Delaware), John Lyons (NRL)

Supported by ONR and SRC

International Workshop on Models and Data for Plasma-Material Interaction in Fusion Devices (MoD -PMI 2019) National Institute for Fusion Science, Tajimi, JapanJune 18-20, 2019

Zni

⊥c

VZn

Page 2: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Van de Walle Computational Materials Groupwww.mrl.ucsb.edu/~vandewalle

Nitrides• Doping• Surfaces• Interfaces• Efficiency, loss

Ga

N N

First-principles calculationsDensity functional theory, many-body perturbation theory

Hydrogen as a fuel• Kinetics• Complex hydrides• Metal hydrides• Proton conductors

Oxides• Transparent

conductors• Dielectrics• Thermal barriers• Complex oxides

Quantum computing with defects

• Qubits• Single photon emitters

Page 3: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Computational Approach

• Traditional density functional theory approach–Local or semi-local density approximation • Hard to interpret due to band-gap problem• Major problem when addressing defects or

surface/interface states• Our approach: Hybrid functional calculations–The HSE hybrid functional• A fraction of screened Hartree-Fock exchange• Accurate band gaps and defect levels• 120-atom supercell, 400 eV cutoff energy,

2x2x1 k-point mesh

J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys 118, 8207 (2003).

Page 4: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect Formation Energy

− +VO

Al2O3: VO Al2O3

+

½ O2

12

− +

O chemical potential

Determine defect concentrations: [D]=NO exp(-Ef/kT)

Page 5: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect Formation Energy

− +VO

Al2O3: VO Al2O3

+

½ O2

12

− +e-

e− @ εF

εF+ +

O chemical potential

Determine defect concentrations: [D]=NO exp(-Ef/kT)

Page 6: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect Formation Energy

− +VO

Al2O3: VO Al2O3

+

½ O2

12

− +e-

e− @ εF

εF-

O chemical potential

Determine defect concentrations: [D]=NO exp(-Ef/kT)

“First-principles calculations for point defects in solids”, C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

Page 7: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect Formation Energies

O-Rich

Al-Rich

• Plotted for extreme Al-rich and O-rich limits• Very wide range given by

ΔHf (Al2O3)= -17.36 eV•Actual chemical potential is somewhere in between

• Slope indicates charge• Kinks: charge transition levels• Information used to study fixed

charge and defect levels

Fermi level (eV)

Form

atio

n E

nerg

y (e

V)

example: VO

Page 8: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Native point defects in α-Al2O3

Fermi level (eV) Fermi level (eV)

O-Rich Al-Rich

Form

atio

n E

nerg

y (e

V) VO

VAl

Ali

Oi

Page 9: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect level positions in α-Al2O3

Conduction band

Valence band

Ener

gy (e

V) VOVAl Ali Oi

(0/2-)

(3+/+)

(+/0)

(2+/+)

(+/0)

(0/-)

(0/-)

(2-/3-)(-/2-)

Page 10: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Ali0VO

0

e−

O

Al

VAl0

h+

Local geometry and charge densities

Oi0

VO

VAl

Ali

Oi

Page 11: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Defect levels in κ- and α-Al2O3

κ: J. R. Weber, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. 109, 033715 (2011).α: M. Choi, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. 113, 044501 (2013).

Ener

gy (e

V)

VO VAl AliOi OAlAlOVOVAl Ali Oi

α-Al2O3κ-Al2O3 **GaN

Page 12: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Hydrogen in Al2O3

Fermi level (eV)

Al-rich

Form

atio

n E

nerg

y (e

V)

HO

Hi

O-rich μO = -0.65 eV

O2 gas @ 270 oCand 1 Torr

Page 13: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Hydrogen in Al2O3

Fermi level (eV)

Form

atio

n E

nerg

y (e

V)

HO

Hi

0 2 4 6 8

8

6

4

2

0

-2

-4

-6

+1 -1

+1 -1

• Hydrogen can easily incorporate into Al2O3

• Hydrogen occupies the interstitial site (Hi)• (+/-) impurity level near mid-gap

• Low migration energy• Hi can interact with native

defects or impurities in Al2O3

α-Al2O3

μO = −0.65 eV

O2 gas @ 270 oCand 1 Torr

Page 14: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

H complexes with Al vacancy in Al2O3

Fermi level (eV)

Form

atio

n E

nerg

y (e

V)

0 2 4 6

8

6

4

2

0

-2

-4

-6 κ-Al2O3

• Al vacancy: −3 charge state over most of Al2O3

band gapnegative fixed-charge center

• H captured by Al vacancy:• VAl+nH (n=1,3) complexes lower

the electrical charge of VAl

• VAl+3H complex is electrically inactive

VAl

Hi

VAl+H

VAl+2HVAl+3H

Page 15: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Local geometry and charge density

Ga N

HC

GaAl0 NO

0

CAl0 Hi

0

Page 16: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Gallium in Al2O3

Fermi level (eV)

Ga-rich

Form

atio

n E

nerg

y (e

V)

GaAl

GaO

Gai

O-rich μO = -0.65 eV

O2 gas @ 270 oC and 1 Torr

Page 17: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Nitrogen in Al2O3

Fermi level (eV)

Al-rich

Form

atio

n E

nerg

y (e

V)

NO

NAl

Ni

O-rich μO = -0.65 eV

O2 gas @ 270 oC and 1 Torr

Page 18: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Carbon in Al2O3

Fermi level (eV)

Al-rich

Form

atio

n E

nerg

y (e

V)

CO

CAl

Ci

O-rich μO = -0.65 eV

O2 gas @ 270 oC and 1 Torr

Page 19: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Impurity Levels in Al2O3En

ergy

(eV)

GaN

Al2O3

CAl CiCONAl NiNO HOHi

(+1/-1)

(+1/-1)(0/-1)

(+1/0)

(-1/-2)

(+1/-1)

(+3/+1)

(+4/+3)

(0/-1)

(+3/0)

(+2/+1)

(0/-1)

(+1/0)

(-1/-2)

(0/-1)

(+2/0)

(+3/+2)

(+4/+3)

(0/-1)

(0/+1)

(+4/+3)

(+3/+2)

(0/-1)

EFermi

GaAl GaiGaO

(+2/+1)

(+1/-1)

(+3/+1)

(-1/-3)

(0/-1)

(+1/0)

Page 20: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Diffusion of point defects

Side View

Top View

• Relevant for …– growth

» Defects ‘frozen in’ or not

– Ion implantation» Anneal damage

– Degradation– Irradiation

• Zinc interstitial:– Em=0.57 eV

Page 21: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Annealing temperature of point defects

Eb (eV) T annealing (K)

Zni2+ 0.57 219

VZn2- 1.40 539

VO2+ 1.70 655

VO0 2.36 909

Oi0(split) 0.87 335

Oi2-(oct) 1.14 439

−Γ=Γ

kTEbexp0

1130 s10 −≈Γ 1s1 −≈Γ

A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).

Page 22: Zni VZn First-principles modeling of defects and …dpc.nifs.ac.jp › dkato › MoD-PMI2019 › presentation › I-5_MoD-PMI...First-principles modeling of defects and hydrogen in

Summary

• First-principles calculations provide qualitative insights and quantitative details for point defects

• Native defects and impurities in Al2O3

• References• Defects: C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse,

A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014). • κ-Al2O3: J. R. Weber, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. 109,

033715 (2011).• α-Al2O3: M. Choi, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. 113,

044501 (2013). • ZnO: J. L. Lyons, J. B. Varley, D. Steiauf, A. Janotti and C. G. Van de Walle, J.

Appl. Phys. 122, 035704 (2017).• GaN: J. L. Lyons and C. G. Van de Walle, NPJ Comput. Mater. 3, 12 (2017).