carrying capacity: maximum number of organisms that can be sustained by available resources over a...

27

Upload: roberta-henry

Post on 31-Dec-2015

223 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 2: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Carrying Capacity: Maximum number of organisms that

can be sustained by available resources over a given period of time

Is dynamic as environmental conditions are always changing

Fecundity: The potential for a species to produce

large numbers of offspring in one lifetime.

Page 3: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 4: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Birth (natality), death (mortality), immigration, emigration

Population growth of any given population is calculated mathematically[(births +immigration) - (deaths + emigration)]

population change = x 100initial population size(n)

[(b + i) - (d + e)]population change = x 100

(n)

Page 5: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Open population – Population in which change in number and density determined by births, deaths, immigration, emigration

Closed population – Change in size determined by natality and mortality alone

Biotic Potential – Maximum reproductive rate (r) under ideal

conditions (intrinsic rate of natural increase) eg. E. Coli...if doubled, unchecked for 24hrs they would cover the earth 1m deep!!

Page 6: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 7: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Geometric growth () – pattern of population growth where organisms reproduce at fixed intervals at a constant rate.

Eg. Animals with a specific breeding season.

= N(t +1) N (t)

= fixed growthN = Population in year (t + 1)t = year

 

Page 8: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

2000 seals give birth to 950 pups in May. During the next 12 months, 150 pups die. Assuming geometric growth, what will the harp seal population be in two years? Eight years?

First Calculate Growth rate: N(0) = 2000 N(1) = 2000 + 950 -150 = 2800

After 2 years: After 8 years: N(t + 1) = N(t) N(8) = N(0) 8

N(2) = 2800 x 1.4 = 2000 x (1.4)8

= 3920 = 29520 OR N (2) = N (0) 2

= 3920

N(t + 1) 2800 = = 1.4

N(t) 2000

Page 9: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 10: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

A pattern of population growth where organisms reproduce continuously at a constant rate

Ecologists are able to determine instantaneous growth rate of the population expressed in terms of the intrinsic (per capita) growth rate (r).• difference between per capita birth rate, b, and per

capita death rates, d, where r = (b – d)• population growth rate given by the expression...

dN/dt = instantaneous growth rate of population r = growth rate per capita N = population size

= dN

rNdt

Page 11: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

For populations growing exponentially, the time needed for population to double in size is a constant...

0.69 = dt r

Page 12: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

A population of 2500 yeast cells in culture is growing exponentially with an intrinsic growth rate r is 0.0575 per hour.

1. What is the initial instantaneous growth rate of the population?

 Given: r = 0.0575, N = 2500

  

dN/dt = (0.0575)(2500) = 144 per hour

2. What time will it take for the population to double in size?  

td = 0.69 0.0575

= 12 hours

= dN

rNdt

Page 13: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

3. What will the size of the population be after each of four doubling periods?

Doubling Times Time in hours Population size

0 0 2500

1 12 5000

2 24 10000

3 36 20000

4 48 40000

Page 14: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 15: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 16: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 17: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Food, water, light, and space within an ecosystem are factors that limit population growth as resources are consumed as the population nears the ecosystem’s carrying capacity

The growth rate drops below rmax in this case 

Stable equilibrium (births=deaths) is often reached 

Population number at carrying capacity is represented by K.

Page 18: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Logistic growth is most common growth pattern seen in nature as it represents the effect of carrying capacity on the population’s growth

Logistic growth equation is as follows

max

K NdNr N

dt K

max

population growth rate at a given time

r maximum intrinsic growth rate

N = population size at a given time

K = carrying capacity of the environment

dN

dt

Page 19: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

A population is growing continuously. The carrying capacity of the environment is 1000 individuals and its r max (max growth rate) is 0.50.

Determine pop growth rates based on pop sizes of 100 , 500, 900, 1000

max

K NdNr N

dt K

Page 20: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

r Max Pop Size N (K-N)N

Pop Growth Rate

0.50 100 900/1000 45

0.50 500 500/1000 125

0.50 900 100/1000 45

0.50 1000 0/1000 0

Question :What is the relationship between population size and growth rate?

Answer: When the pop is small the growth rate is slow. It increases as the pop increases, then as it approaches carrying capacity, the growth rate declines and eventually stops!!

Page 21: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 22: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 23: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental
Page 24: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

Lag phase occurs when population is small and increasing slowly

Log phase occurs when population undergoes rapid growth

As available resources become limited, population experiences environmental resistance and stationary phase occurs in which the population is at dynamic equilibrium (b=d)

Page 25: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

A population of spotted butterflies exhibits logistic growth. The carrying capacity of the population is 500 butterflies, and the maximum growth rate (rmax)is 0.1. [I]

• a) determine the population growth rates based on a population size of 50, 100, 200, 250, 480, 500 and 525 butterflies.

• b) describe the relationship between population size and the growth rate.

The human population is currently doubling ever 40 years. Based on what you have learned about population growth rates and carrying capacity, what question should we be asking of our society? [A]

It has been a wet warm summer in Northern Ontario, and a small population of mosquitoes is exhibiting exponential growth. The initial population size is 650, and the intrinsic growth rate is 0.450 per day.

• a) calculate the initial instantaneous growth rate for the mosquito population. • b) calculate the doubling time for the population.• c) how many doubling times would have to occur for the population to exceed 1 000 000?

How many days does this represent?

Page 26: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

A white-tailed deer population in a provincial park was estimated to be approximately 4000, with a carrying capacity of 30 000. Other than natural predators, the deer were left alone. Hunting was prohibited. After a winter in which the predators decimated the deer population, a deer population management plan was put in place. It was decided to remove the predators through hunting and trapping. Initially, the deer population flourished. Eventually, however, the deer population started to decrease. [I][C]

• a) Graph the population changes over the 35-year period using the data below.

(more questions on the next slide)

Year Deer Population

1 3 000

5 8 000

10 25 000

15 55 000

20 70 000

25 24 000

30 10 000

35 2 000

Page 27: Carrying Capacity: Maximum number of organisms that can be sustained by available resources over a given period of time  Is dynamic as environmental

• b) using a different colour, draw a horizontal line across the graph at the carrying capacity.

• c) why do you think the deer population decreased after year 20, despite the fact that the predators had been removed?

• d) Did the management plan initially seem to be effective? Why?• e) Without human interference and the deer management plan, what do

you think would have happened to the deer population?