0) spring 2010 1.12) 34)56) !#$%&'()*+,-%./)0)brandta/teaching/sp2010/hw/hw5-sol.pdf9....

4
1. 62 3""4 57 2. 72 3""4 58 3. 4. Modern Physics 3313 Spring 2010 HW 5

Upload: dothu

Post on 22-Apr-2018

218 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: 0) Spring 2010 1.12) 34)56) !#$%&'()*+,-%./)0)brandta/teaching/sp2010/HW/HW5-sol.pdf9. Chapter 6 Quantum Mechanics II 14. a) We know the energy values from Equation (6.35). The energy

1.

!"#$%&"'()*+,-%./)0)

)

))

12) 3""4)56))

)62) 3""4)57))

)72) 3""4)58)

)92) 3""4)5:)

)

)

2.

!"#$%&"'()*+,-%./)0)

)

))

12) 3""4)56))

)62) 3""4)57))

)72) 3""4)58)

)92) 3""4)5:)

)

)

3.

!"#$%&"'()*+,-%./)0)

)

))

12) 3""4)56))

)62) 3""4)57))

)72) 3""4)58)

)92) 3""4)5:)

)

)4.

!"#$%&"'()*+,-%./)0)

)

01) 2""3)456)

)71) 2""3)458)

)

Modern Physics 3313Spring 2010

HW 5

Page 2: 0) Spring 2010 1.12) 34)56) !#$%&'()*+,-%./)0)brandta/teaching/sp2010/HW/HW5-sol.pdf9. Chapter 6 Quantum Mechanics II 14. a) We know the energy values from Equation (6.35). The energy

5.

!"#$%&"'()*+,-%./)0)

)

01) 2""3)456)

)71) 2""3)458)

)

!"#$%&"'()*+,-%./)0)

)

01) 2""3)456)

)71) 2""3)458)

)

Modern Physics 3313Spring 2010

HW 5

Page 3: 0) Spring 2010 1.12) 34)56) !#$%&'()*+,-%./)0)brandta/teaching/sp2010/HW/HW5-sol.pdf9. Chapter 6 Quantum Mechanics II 14. a) We know the energy values from Equation (6.35). The energy

6.

!"#$%&"'()*+,-%./)0)

)

12) 3""4)567)

)82) 3""45)96)

))72) 3""45)90)

)

7.

Chapter 6 Quantum Mechanics II

Normalization: � π

−πψ∗ψ dx = 4A2

� π

−πcos2 (x) dx = 4A2π = 1

Thus A =1

2√

πand the probability of being in the interval [0,π/8] is

P =� π/8

0ψ∗ψ dx =

� π/8

0cos2 (x) dx =

�x

2+

14

sin(2x)�����

π/8

0

=116

+1

4π√

2= 0.119

11. � π

0ψ∗ψ dx = A2

� π

0sin2 (x) dx = A2 π

2= 1

so A =�

and the probability of being in the interval [0,π/4] is

P =� π/4

0ψ∗ψ dx =

� π/4

0sin2 (x) dx =

�x

2− 1

4sin(2x)

�����π/4

0

=2π

�π

8− 1

4

�=

14− 1

2π= 0.091

12.

En =n2π2h2

2mL2En+1 =

(n + 1)2 π2h2

2mL2

∆En = En+1 − En =π2h2

2mL2

�(n + 1)2 − n2

�=

π2h2

2mL2(2n + 1)

Computing specific values

∆E1 =π2h2

2mL2(3)

∆E8 =π2h2

2mL2(17)

∆E800 =π2h2

2mL2(1601)

* 13. The wave function for the nth level is ψn(x) =�

2L

sin�nπx

L

�so the average value of the

square of the wave function is

�ψ2

n(x)�

=� L0 ψ∗ψ dx� L0 dx

=1L

� L

0ψ∗ψ dx =

2L2

� L

0sin2

�nπx

L

�dx

=2L2

L

2=

1L

This result for the average value of the wave function is independent of n and is the same asthe classical probability. The classical probability is uniform throughout the box, but this is

not so in the quantum mechanical case which is2L

sin2 (knx).

74

8.

Chapter 6 Quantum Mechanics II

Normalization: � π

−πψ∗ψ dx = 4A2

� π

−πcos2 (x) dx = 4A2π = 1

Thus A =1

2√

πand the probability of being in the interval [0,π/8] is

P =� π/8

0ψ∗ψ dx =

� π/8

0cos2 (x) dx =

�x

2+

14

sin(2x)�����

π/8

0

=116

+1

4π√

2= 0.119

11. � π

0ψ∗ψ dx = A2

� π

0sin2 (x) dx = A2 π

2= 1

so A =�

and the probability of being in the interval [0,π/4] is

P =� π/4

0ψ∗ψ dx =

� π/4

0sin2 (x) dx =

�x

2− 1

4sin(2x)

�����π/4

0

=2π

�π

8− 1

4

�=

14− 1

2π= 0.091

12.

En =n2π2h2

2mL2En+1 =

(n + 1)2 π2h2

2mL2

∆En = En+1 − En =π2h2

2mL2

�(n + 1)2 − n2

�=

π2h2

2mL2(2n + 1)

Computing specific values

∆E1 =π2h2

2mL2(3)

∆E8 =π2h2

2mL2(17)

∆E800 =π2h2

2mL2(1601)

* 13. The wave function for the nth level is ψn(x) =�

2L

sin�nπx

L

�so the average value of the

square of the wave function is

�ψ2

n(x)�

=� L0 ψ∗ψ dx� L0 dx

=1L

� L

0ψ∗ψ dx =

2L2

� L

0sin2

�nπx

L

�dx

=2L2

L

2=

1L

This result for the average value of the wave function is independent of n and is the same asthe classical probability. The classical probability is uniform throughout the box, but this is

not so in the quantum mechanical case which is2L

sin2 (knx).

74

Modern Physics 3313Spring 2010

HW 5

Page 4: 0) Spring 2010 1.12) 34)56) !#$%&'()*+,-%./)0)brandta/teaching/sp2010/HW/HW5-sol.pdf9. Chapter 6 Quantum Mechanics II 14. a) We know the energy values from Equation (6.35). The energy

9.Chapter 6 Quantum Mechanics II

14. a) We know the energy values from Equation (6.35). The energy value En is proportional ton2 where n is the quantum number. If the ground state energy is 4.3 eV , then the next threelevels correspond to: 4E1 = 17.2 eV for n = 2; 9E1 = 38.7 eV for n = 3; and 16E1 = 68.8 eVfor n = 4.b) The wave functions and energy levels will be like those shown in Figure 6.3.

* 15. a) Starting with Equation (6.35) and using the electron mass and the length given, we have

En = n2 π2h2

2mL2= n2 π2 (hc)2

2 (mc2) L2

= n2 π2 (197.3 eV · nm)2

2 (5.11× 105 eV) (2000 nm)2= n2

�9.40× 10−8 eV

Then the three lowest energy levels are: E1 = 9.40 × 10−8 eV; E2 = 1.88 × 10−7 eV; andE1 = 2.82× 10−7 eV;

b) Average kinetic energy equals32kT =

32

��1.381× 10−23 J/K

� �1 eV

1.602× 10−19 J

��13 K

which equals 1.68 × 10−3 eV. Substitute this value into the equation above as En and solvefor n. We find n = 134.

16. For this non-relativistic speed we have E = 12mv2 = 1

2

�mc2

�β2 = 0.002555 eV. Using

E =n2h2

8mL2we find

n2 =8mL2E

h2=

8mc2L2E

h2c2=

8�511× 103 eV

�(48.5 nm)2 (0.002555 eV)

(1240 eV · nm)2= 16.0

and therefore n = 4.

17. The ground-state wave function is ψ1 =�

2L

sin�πx

L

�.

P1 =� L/3

0ψ2

1dx =2L

� L/3

0sin2

�πx

L

�dx =

2L

�x

2− L

4πsin

�2πx

L

������L/3

0

= 2

�16−√

38π

�= 0.1955

P2 =� 2L/3

L/3ψ2

1dx =2L

�x

2− L

4πsin

�2πx

L

������2L/3

L/3

= 2

�16

+√

34π

�= 0.6090

P3 =� L

2L/3ψ2

1dx =2L

�x

2− L

4πsin

�2πx

L

������L

2L/3

= 2

�16−√

38π

�= 0.1955

Notice that P1 + P2 + P3 = 1 as required.

75

10.

Chapter 6 Quantum Mechanics II

14. a) We know the energy values from Equation (6.35). The energy value En is proportional ton2 where n is the quantum number. If the ground state energy is 4.3 eV , then the next threelevels correspond to: 4E1 = 17.2 eV for n = 2; 9E1 = 38.7 eV for n = 3; and 16E1 = 68.8 eVfor n = 4.b) The wave functions and energy levels will be like those shown in Figure 6.3.

* 15. a) Starting with Equation (6.35) and using the electron mass and the length given, we have

En = n2 π2h2

2mL2= n2 π2 (hc)2

2 (mc2) L2

= n2 π2 (197.3 eV · nm)2

2 (5.11× 105 eV) (2000 nm)2= n2

�9.40× 10−8 eV

Then the three lowest energy levels are: E1 = 9.40 × 10−8 eV; E2 = 1.88 × 10−7 eV; andE1 = 2.82× 10−7 eV;

b) Average kinetic energy equals32kT =

32

��1.381× 10−23 J/K

� �1 eV

1.602× 10−19 J

��13 K

which equals 1.68 × 10−3 eV. Substitute this value into the equation above as En and solvefor n. We find n = 134.

16. For this non-relativistic speed we have E = 12mv2 = 1

2

�mc2

�β2 = 0.002555 eV. Using

E =n2h2

8mL2we find

n2 =8mL2E

h2=

8mc2L2E

h2c2=

8�511× 103 eV

�(48.5 nm)2 (0.002555 eV)

(1240 eV · nm)2= 16.0

and therefore n = 4.

17. The ground-state wave function is ψ1 =�

2L

sin�πx

L

�.

P1 =� L/3

0ψ2

1dx =2L

� L/3

0sin2

�πx

L

�dx =

2L

�x

2− L

4πsin

�2πx

L

������L/3

0

= 2

�16−√

38π

�= 0.1955

P2 =� 2L/3

L/3ψ2

1dx =2L

�x

2− L

4πsin

�2πx

L

������2L/3

L/3

= 2

�16

+√

34π

�= 0.6090

P3 =� L

2L/3ψ2

1dx =2L

�x

2− L

4πsin

�2πx

L

������L

2L/3

= 2

�16−√

38π

�= 0.1955

Notice that P1 + P2 + P3 = 1 as required.

7511.

Chapter 6 Quantum Mechanics II

Solving for A we find A =√

2π−1/4α3/4

�x� = A2� ∞

−∞x3e−αx2

dx = 0

because the integrand is odd over symmetric limits.

�x2

�= A2

� ∞

−∞x4e−αx2

dx =34A2π1/2α−5/2 =

32α

∆x =��x2� − �x�2 =

�32α

33.

E =�

n +12

�hω =

�n +

12

�hf =

�4.136× 10−15 eV · s

� �1013 s−1

� �n +

12

=�4.136× 10−2 eV

� �n +

12

For the harmonic oscillator ω2 =k

mso

k = ω2m = 4π2f2m = 4π2�1013 s−1

�2 �3.32× 10−26 kg

�= 131 N/m

34. Taking the second derivative of ψ for the Schrodinger equation:

dx= 5Aαxe−αx2/2 − 2α2Ax3e−αx2/2

d2ψ

dx2=

�5α− 5α2x2 − 6α2x2 + 2α3x4

�Ae−αx2/2

Starting with Equation (6.56), and with the wave function given in the problem, we have

d2ψ

dx2=

�α2x2 − β

�ψ =

�α2x2 − β

�A

�2αx2 − 1

�e−αx2/2

=�2α3x4 + x2

�−2αβ − α2

�+ β

�Ae−αx2/2

Matching our two values of d2ψ/dx2 we see that the Schrodinger equation can only be satisfiedif β = 5α. Then

2mE

h2 = 5�

mk

h2

or E = 52 hω. This is the expected result, because the wave function contains a second-order

polynomial (in x), and with n = 2 we expect E =�n + 1

2

�hω = 5

2 hω.

35. By symmetry �p� = 0. Setting the ground state energy equal to�p2

2mwe find

�p2

2m=

12hω

�p2

�= hωm

Note, however, that a detailed calculation gives�p2

�= 1

2 hωm. The factor of one-half isevidently the difference between the kinetic energy and the total energy, which if taken intoaccount does give the correct result.

79

Modern Physics 3313Spring 2010

HW 5