01 lpd introduction

21
[email protected] Universidad Politécnica de Madrid Power management for electronic systems – low power design Pedro Alou ([email protected] ) Teresa Riesgo ([email protected] )

Upload: ishtiaq0109

Post on 15-Jul-2016

221 views

Category:

Documents


0 download

DESCRIPTION

sdfsd

TRANSCRIPT

Page 1: 01 LPD Introduction

ce

i@u

pm

.es

Universidad Politécnica de Madrid

Power management for electronic

systems – low power design

Pedro Alou ([email protected] )

Teresa Riesgo ([email protected])

Page 2: 01 LPD Introduction

2

Power management of electronic systems

Goals

Powerconverter

Electronicload

W

Page 3: 01 LPD Introduction

3

Power management of electronic systems

Goals

Understand the importance of power consumption in electronic

systems

Learn how and why the circuits consume power

Low power design techniques (at design time, at run time)

Power sources for energy aware systems

Power converter design for low power consumption

Page 4: 01 LPD Introduction

4

Power management of electronic systems

Outline of the course

Introduction Structure of the subject

Evolution of power consumption in digital systems

Power consumption basics How an electronic system consumes power – CMOS technology

Challenges in technology scaling and in (low) power supplies

Optimizing power in digital systems Low power design techniques at different levels (circuit, logic, RTL, system…)

Optimizing power at run time

Power estimation Dynamic and static techniques

Different abstraction levels

Power sources Battery powered devices

Energy harvesting

Low power supplies and converters Voltage regulators

Dynamic Voltage Scaling

Page 5: 01 LPD Introduction

5

Power management of electronic systems

Activities

3 ECTS

~28 lecture hours (equivalent to 2 hours/week)

Lab sessions

Personal work … up to ~75 hours of student effort

Assignments

Lab work (TBD)

Research work

Final evaluation

Based on all the activities + final exam

Page 6: 01 LPD Introduction

6

Power management of electronic systems

Calendar

lectures

2/02

11/02

23/02

25/02

11/02

25/02

01/03

03/03 03/03

08/03

10/03 10/03

9/02

18/02 18/02

Page 7: 01 LPD Introduction

7

Power management of electronic systems

Information comes from…

…and many scientific/technical papers

Page 8: 01 LPD Introduction

ce

i@u

pm

.es

Universidad Politécnica de Madrid

Power management for electronic systems –

low power design

1. Introduction

Page 9: 01 LPD Introduction

9

Power management of electronic systems

Some history

Kilby1958

Bardeen, Brattain, Shockley

1947Nobel

56

Nobel 2000

transistor

Integrated circuit

https://www.fairchildsemi.com/about/history-heritage/

https://www.youtube.com/watch?v=yLNh4UY5ohw

Page 10: 01 LPD Introduction

10

Power management of electronic systems

More history

Intel 4004 (1970) 1.500 trs.

Pentium II (1996) 10.000.000 trs.

Intel Xeon-Phi (2012) 5.000.000.000 trs.nVIDIA GK110 (2012)7.000.000.000 trs.

microprocessors

Page 11: 01 LPD Introduction

11

Power management of electronic systems

Moore’s law

In 1965, Gordon Moore predicted that the number of transistors per chip would double every 18 months it is true!

40048008

80808085 8086

286386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010

Year

Tra

nsis

tors

(M

T)

2X growth in 1.96 years!

Microprocessors https://www.youtube.com/watch?v=f3IUVvJ2XgI

Page 12: 01 LPD Introduction

12

Power management of electronic systems

Moore’s law

1,000,000

100,000

10,000

1,000

10

100

1

1975 1980 1985 1990 1995 2000 2005 2010

8086

80286i386

i486Pentium®

Pentium® Pro

K1 Billion

Transistors

Source: Intel

Projected

Pentium® II

Pentium®

III

Page 13: 01 LPD Introduction

13

Power management of electronic systems

Moore’s law

40048008

80808085

8086286

386486Pentium ® proc

P6

1

10

100

1970 1980 1990 2000 2010

year

Die

siz

e (

mm

2)

~7% growth per year

~2X growth in 10 years

Die size growth

Page 14: 01 LPD Introduction

14

Power management of electronic systems

Performance evolution…

P6

Pentium ® proc486

38628680868085

8080

80084004

0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010

year

freq

(M

Hz)

The operating frequency of microprocessors doubles

every two years

Doubles every

2 years

Page 15: 01 LPD Introduction

15

Power management of electronic systems

… and the power consumption…

P6Pentium ® proc

486

386

2868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000

year

Po

wer

(Watt

s)

The power consumption is unaffordable!!

Page 16: 01 LPD Introduction

16

Power management of electronic systems

The power consumption will be (is) THE problem…

5KW 18KW

1.5KW

500W

40048008

80808085

8086286

386486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008

year

Po

ten

cia

(W

att

s)

Power supply and dissipation id prohibitive

Page 17: 01 LPD Introduction

17

Power management of electronic systems

Power / Frequency

ITRS_2013SysDrivers_Summary.pdf

www.itrs.net

Page 18: 01 LPD Introduction

18

Power management of electronic systems

Power density

40048008

8080

8085

8086

286386

486Pentium® proc

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

year

Po

wer

den

sit

y (

W/c

m2)

Power density does not allow to maintain the PN junctions at low temperature

Page 19: 01 LPD Introduction

19

Power management of electronic systems

Is power consumption so important?

Year 2005 2006 2007 2010 2013 2016

Feature Size/nm 80 70 65 45 32 22

MTransistors/chip 1286 1620 2041 4081 8163 16326

Max Clock/GHz 5.2 5.6 6.7 11.5 19.3 28.8

Main Voltage/V 1.0 1.0 0.9 0.8 0.7 0.6

Power (high)/W 170 180 190 218 251 288

Power (battery)/W 3.2 3.5 3.5 3.0 3.0 3.0

Source: Borker, De Intel

Page 20: 01 LPD Introduction

20

Power management of electronic systems

Is power consumption so important?

It is foreseen that the average battery life will increase by 30-40% over the next five years

Page 21: 01 LPD Introduction

21

Power management of electronic systems