1 apuntes de tubomáquinas / 2014-2 ing. hipólito rodríguez b2.2.4 hydropower system design...

61
1 B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC) Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez

Upload: savion-hodgkin

Post on 22-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

1

B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC)

Apuntes de Tubomáquinas / 2014-2Ing. Hipólito Rodríguez

2

B2.2.4 Hydropower system design Turbines:Mesopotamian Saquia (c. 1200 AD)

the Book of Knowledge of Ingenious Mechanical Devices of al-Jahazi

3

B2.2.4 Hydropower system design Turbines: Water wheels (c. 1800)1-50kW

4

B2.2.4 Hydropower system design Turbines: Fourneyron’s turbine (1832)

5

B2. Hydropower Seminars A206a

• Read summary of case studies– Nepal– Peru

• Discussion– What were the good and bad projects– What makes a “good project”– What were the social benefits of the projects?

Were these valued? – Who benefits and who loses

6

B2. ReservoirsSeminar groups

Group 1 (14:00) Group 2 (14:30)

Gunjan Dhingra

Mike Farrow

Hannah Jones

Matt Knight

Paul Knowles

Peter Adams

Elizabeth Aldridge

Jonathan Bailey

Khesraw Bashir

Christopher Baxter

Richard Buckland

Dafydd Caffery

Samuel Carter

Nedim Dzananovic

Philip Hallgarth

Neil Harding

Martin Hill

Karen Hockey

Ching Hong

Adam Ithier

Peter Jordan

Jan Jozefowski

Rob Morford

Chris Swinburn

Kate Taylor

Celia Way

Marie Wells

Matt Whitley

Eral Kahveci

Imra Karimn

Martin Kendrick

Shua Lii

Beth Mcdowall

Adil Munir

Roger Palmer

Anthony Pearson

Gareth Pilmoor

Ann Ruthven

Matthew Scott

Ben Sheterline

Melanie Sim

Nicholas Thompson

Daniel Tkotsch

Christopher Tompkins

Ian Yeung

7

B2.2.4 Hydropower system design Turbines: Power conversion

P Q gh P T

8

B2.2.4 Hydropower system design Turbines: Power conversion

T Fr

F M

m v

Q v

9

vr1

vr2

B2.2.4 Hydropower system design Turbines: Power conversion:Velocity triangles

Rotation

u1

u2

v1

v2

R1

R21

1

1

2

10

B2.2.4 Hydropower system design Turbines:

• Impulse– Pelton wheel– Turgo– Crossflow

• Reaction– Radial (e.g. Francis)– Axial (e.g. propeller, bulb, Kaplan)

11

B2.2.4 Hydropower system design Turbines: Pelton wheel (1889)

12

B2.2.4 Hydropower system design Turbines: Pelton wheel

13

B2.2.4 Hydropower system design Turbines: Pelton wheel

14

B2.2.4 Hydropower system design Turbines: Pelton wheel

15

B2.2.4 Hydropower system design Turbines: Pelton wheel

Rotation

v1 (jet velocity)= vr1

u1R1

u2 = u1

v2

vr2

R2 = R1

16

B2.2.4 Hydropower system design Turbines: Pelton wheel

17

B2.2.4 Hydropower system design Turbines: Pelton wheel:Jet

2jet j penstockv C gh v

0.94-0.98

18

B2.2.4 Hydropower system design Turbines: Pelton wheel

19

B2.2.4 Hydropower system design Turbines: Pelton wheel: Multi jet

20

B2.2.4 Hydropower system design Turbines: Pelton wheel: Multi jet

• Higher rotational speed

• Smaller runner

• Simple flow control possible

• Redundancy

• Can cope with a large range of flows

But

• Needs complex manifold

• May make control/governing complex

21

B2.1.4 Fundamentals of Hydro power Yields and economics: Flow-duration curve

0.01

0.05

0.10.2

0.5 1 2 5

10

30

50

70

90

95

9899

99.8

99.9

99.95

99.99

0.02

99.98

0.1

1

10

Percentage of discharge exceeding

Dis

char

ge

(m3/s

)

8,500 kWh/mhead

4,000 kWh/mhead

17,000 kWh/mhead

22

B2.2.4 Hydropower system design Turbines: Pelton wheel: Sri Lankan

23

B2.2.4 Hydropower system design Turbines: Turgo (1904)

24

B2.2.4 Hydropower system design Turbines: Turgo

25

B2.2.4 Hydropower system design Turbines: Turgo

26

B2.2.4 Hydropower system design Turbines: Turgo

27

2

B2.2.4 Hydropower system design Turbines: Turgo

Rotation

v1 (jet velocity)

vr2

v2

u2 = u1

u1

R1

R2 = R1

1vr1

1=20

28

B2.2.4 Hydropower system design Turbines: Turgo: MPPU – based on Nepali Ghatta

29

B2.2.4 Hydropower system design Turbines: Crossflow (1941)

30

B2.2.4 Hydropower system design Turbines: Crossflow

31

B2.2.4 Hydropower system design Turbines: Crossflow: Panama

32

B2.2.4 Hydropower system design Turbines: Crossflow

33

B2.2.4 Hydropower system design Turbines: Francis (1849)

34

B2.2.4 Hydropower system design Turbines: Francis

35

B2.2.4 Hydropower system design Turbines: Francis

36

B2.2.4 Hydropower system design Turbines: Francis

37

B2.2.4 Hydropower system design Turbines: Francis

38

vr1

vr2

B2.2.4 Hydropower system design Turbines: Francis

Rotation

u1

u2

v1

v2

R1

R2 = R11

1

1

2

39

B2.2.4 Hydropower system design Turbines: Propeller

40

B2.2.4 Hydropower system design Turbines: Propeller

41

B2.2.4 Hydropower system design Turbines: Propeller

R1

v2

R2 = R1

u1

u2= u1vr2

Rotation

v1

42

B2.2.4 Hydropower system design Turbines: Kaplan (1913)

43

B2.2.4 Hydropower system design Turbines: Kaplan

44

B2.2.4 Hydropower system design Turbines: siting propellers

45

B2.2.4 Hydropower system design Turbines: Water current (1980)

46

B2.2.4 Hydropower system design Turbines: Water current

47

B2.2.4 Hydropower system design Turbines: Characterising turbines

48

B2.2.4 Hydropower system design Turbines: Characterising turbines

49

B2.2.4 Hydropower system design Turbines: Characterising turbines

50

CQ = flow coefficient

CH = head coefficient

CP = power coefficient

Q = dischargeN = rotational speedD = diameterg = gravityH = headP = powerr = density

B2.2.4 Hydropower system design Turbines: Characterising turbines: Dimensionless groups

3

Fluid velocity

Blade velocityQ

QC

ND

2 2H

gHC

N D

3 5PP

CN D

51

Nsp = Specific speed

CH = head coefficient

CP = power coefficient

N = rotational speedP = powerr = densityg = gravityH = head

B2.2.4 Hydropower system design Turbines: Characterising turbines: Dimensionless groups:Specific speed

1 2

5 4

1 2

5 41 2

Psp

H

CN

C

NP

gH

1 2

5 4sp

NPN

H

52

B2.2.4 Hydropower system design Turbines: Characterising turbines: Specific speed: Dimensional specific speedType Typical

headRad Rev Metric British

Pelton >300 <0.2 <0.03 <30 <10

Francis 500-30 0.25-1.3 0.04-0.2 50-250 10-60

Kaplan 50-4 2-6 0.3-1 360-1200

100-300

53

B2.2.4 Hydropower system design Turbines: Characterising turbines

54

B2.2.4 Hydropower system design Turbines: Characterising turbines

55

B2.2.4 Hydropower system design Turbines: Cavitation

56

B2.2.4 Hydropower system design Turbines: Cavitation

57

B2.2.4 Hydropower system design Turbines: Cavitation

58

B2.2.4 Hydropower system design Turbines: L-1 propeller turbine designed for minimal cavitation

59

B2.2.4 Hydropower system design Turbines: L-1 propeller turbine designed for minimal cavitation after 25,000 hours

60

s = Thoma numberpa = atmospheric pressure

pv = vapour pressure

hs = elevation above tailwater

H = total headr = densityg = gravity

B2.2.4 Hydropower system design Turbines: Cavitation: Thoma number

vAs

pph

g g

H

61

B2.2.4 Hydropower system design Turbines: Cavitation: Critical Thoma number