1 astronomy 373 introduction to astronomy – stars, galaxies, & universe spring 2015 sachiko...

18
1 ASTRONOMY 373 INTRODUCTION TO ASTRONOMY – Stars, Galaxies, & Universe Spring 2015 Sachiko Tsuruta

Upload: ann-arnold

Post on 13-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

1

ASTRONOMY 373

INTRODUCTION TO ASTRONOMY –

Stars, Galaxies, & Universe

Spring 2015

Sachiko Tsuruta

2

Lec 1

I. INTRODUCTION FK (= Freedman, Geller & Kaufmann 10th Edition) Ch. 1)

II. INTRODUCTION TO CLASSICAL ASTRONOMY

II-1. Stellar Distance and Stellar Motion (Main Ref.: Lecture notes; FK Sec.17-1)

3

II-1a. Stellar Distance

Stellar Parallax: = Apparentmotion of a star due to Earth’s annual motion = Angular size of semi-major axis of the orbit of Earth around Sun

Fig. II-1: Parallax

4 Fig. II-2: Stellar Parallax

5

Units of Distance:

Use mks system: length=meter, mass =kgm, time=sec

Astronomical Unit (AU): Distance from the earth to the sun = semi-major axis of the orbit of Earth around Sun

1 AU = d(sun) = 1.5 x 1011 m

Parsec (PC): Distance at which 1 AU subtends Angle of 1 second

1 pc (parsec) = 206625 AU = 3.086 x 1016 m = 3.262 ly

Light Year (ly): Distance light travels in 1 year1 light year (ly) = 63240 AU = 9.46 x 1015 m

6

DISTANCE

d (pc) = 1 / p(sec.) Eqn (1)

•Distances to the nearer stars can be determined by parallax, the apparent shift of a star against the background stars observed as the Earth moves along its orbit

*****************************************************EX 1: Alpha Centauri

•p = 0.76 sec

•d = 1 / p = 1 / 0.76 = 1.32 pc = 4.29 lys

See class notes for details

7

EX 2: Barnard’s StarBarnard’s star has a parallax of 0.547 arcsec

See class notes for details

8

9Fig. II-3: Stellar Velocity

II-1b Stellar Motion

10

V

11

Doppler shift: see class notes and FK Sec. 5-9, and Box 5-6

d

vr

vT

12

• TRANSVERSE VELOCITY vT vT = 4.74 / p Eqn (2b)

• vT in km/s; in arc second/year; p in arc second

• SPACE VELOCITY v v2 = vr

2 + vT2 Eqn(2c)

Study Examples in FK Box 17-1 (Non-science majors optional)

•RADIAL VELOCITY vr vr / c = ( – 0) / 0 = / 0 Eqn(2a)

Non-relativistic (see FK 5-9)

13

for

14

II-2. Stellar Brightness, Magnitude, and Luminosity

(Main Ref.: Lecture notes; FK Sec.17-2, 17-3)

II-2a. Brightness and Luminosity (Main Ref.: Lecture notes; FK Sec.17-2, Box 17-2) Definitions: Luminosity: L = energy/sec = Power Output

(Watts = W) Brightness: b = Luminosity/surface area (W/m2) Area: A = 4 d2 Eqn (3) d = distance

15

Inverse Square Law

b = L / A = L / (4 d2) 1/d2 Eqn (4)

*************************************

Fig. II-4a: The Inverse-Square Law

16

EX 3: Candle at 10 m and 100 m Ans: At 10m 100 times brighter

See class notes for details

EX 4: Sun

L(sun) = 3.86 x 1026 W ; d(sun) = 1.5 x 1011 m; Use Eqn (4), and get

Ans: b(sun) = 1370 W/m2

See class notes for details

********************************************************

From Eqn (4) L = 4 d2 b Eqn (5a)

17

Divide Eqn(5a) for star by that for sun L / L(sun) = (d / d(sun))2 (b / b(sun)) Eqn (5b)

Do the same for Star *1 and Star *2

L1 / L2 = (d1 / d2 )2 (b1 / b2) Eqn (5c)

*2 d1

d2

21 Fig. II-4b: The

Inverse-Square Law (conti.)

18

EX 5: Sirius A: d = 8.61 ly; L = 26.1 L(sun);

What is brightness b?Ans: 8.79 x 10-11 brightness of Sun (See class notes for details.)

*********************************EX 6: Star *1 and Star *2 (same brightness: b1 = b2 = b)

Star 1: L1 = 1 L(sun); Star 2: L2 = 9 L(sun)

How far is Star 2 compared with Star 1?Ans: 3 times further away.(See class notes for details.)

Study more examples in FK Box 17-2.