11/8/2000 1 sensitivity of spectroscopic scatterometry: sub-100nm technology sfr workshop november...

9
11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001 GOAL: To fully characterize the capabilities of scatterometry in fulfilling the metrology needs of the 100nm technology node.

Upload: natalie-dalton

Post on 13-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

1

Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology

SFR WorkshopNovember 8, 2000

Ralph Foong, Costas SpanosBerkeley, CA

2001 GOAL: To fully characterize the capabilities of scatterometry in fulfilling the metrology needs of the 100nm

technology node.

Page 2: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

2

Motivation• Capabilities of scatterometry and required equipment specifications

need to be formalized for 100nm metrology.– Commercial ellipsometers have been identified as being able to perform

spectroscopic scatterometry. Hence, the focus of this study is on these equipment.

– Precision of current generation commercial ellipsometers in measuring profiles consistent with 100nm technology node has to be confirmed.

• Scalability of scatterometry towards 70nm and 50nm metrology has to be explored.– Minimum commercial ellipsometer specifications necessary to successfully

implement 70nm and 50nm metrology need to be determined.

Page 3: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

3

Overall Framework of Sensitivity Analysis

Commercial Equipment Analysis

Profile Parameters

Simulations for variation in parameter X

[X(-),X(Nominal), X(+)]Cos

Lambda

Tan

Lambda

Determine Noise Contributions

Tan , Cos Noise Spectrum

Are Variations Detectable?

NoYes

EM Response Variations

Which part of the spectrum contains the

most information?

Page 4: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

4

Methodology• Electromagnetic simulations

are conducted for small changes in profile parameters to measure variations in EM response.

• Noise analysis of commercial ellipsometers is carried out to determine detectability of EM response variations.

d(Beam Divergence)

d(ISource)

d(Polarizer)

d(Analyzer)

d(IDetector)

Sample

PR

ARC

Poly-Si

RoundingSlopeAngle

Height CDFooting

Si

Page 5: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

5

Signal-to-Noise Ratio for SOPRA EllipsometerSignal-to-Noise Ratio vs Lambda

1

10

100

1000

10000

100000

1000000

10000000

100000000

0.19

0.23

0.27

0.31

0.35

0.39

0.43

0.47

0.51

0.55

0.59

0.63

0.67

0.71

0.75

lambda (nm)

Cts

/s (

Sig

nal

, N

ois

e),

SN

R

Intensity (cts/s)

Noise (cts/s)

S.N.R

• Signal averaged over 30 measurements

• Noise represents 1 standard deviation for each wavelength

• Empirical formula for signal-to-noise ratio:

Noise = 0.412(Intensity)0.632

(R2 Value = 0.937)

• Intensity fluctuation is the main contributor of measurement noise in ellipsometers.

• Monte-Carlo simulations incorporating intensity fluctuations are used to determine the final distributions of Tan and Cos

• The ‘Minimum Detectable Variation’ lines represent the sum of the 3 errors of each of the 2 profiles measured to obtain the variation.

• The graphs demonstrate a trend toward significant information contained in a narrow band in the lower wavelength spectrum.

Page 6: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

6

100nm Technology Simulations

Variation of Tan Psi for CD Variation vs Lambda

0.0001

0.001

0.01

0.1

1

10

100

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

Undetectable (Below yellow

line)

Detectable (Above yellow

line)

Variation of Cos Del for CD Variation vs Lambda

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Tan Psi for CD Variation vs Lambda

0.001

0.01

0.1

1

10

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Cos Del for CD Variation vs Lambda

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Detectable (Above yellow

line)

Undetectable (Below yellow

line)

100nm Dense Lines (ASIC) 65nm Isolated Lines (MPU)

spectrum of information

content

Page 7: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

7

70nm Technology Simulations70nm Dense Lines (ASIC) 45nm Isolated Lines (MPU)

Variation of Tan Psi for CD Variation vs Lambda

0.0001

0.001

0.01

0.1

1

10

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Cos Del for CD Variation vs Lambda

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Tan Psi for CD Variation vs Lambda

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Cos Del for CD Variation vs Lambda

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Detectable (Above yellow

line)

Undetectable (Below yellow

line)

Page 8: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

8

Variation of Tan Psi for CD Variation vs Lambda

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

50nm Technology Simulations50nm Dense Lines (ASIC) 30nm Isolated Lines (MPU)

Detectable (Above yellow

line)

Undetectable (Below yellow

line)

Variation of Tan Psi for CD Variation vs Lambda

0.001

0.01

0.1

1

10

Lambda(nm)

Tan

Psi

Var

iati

on Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Cos Del for CD Variation vs Lambda

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Variation of Cos Del for CD Variation vs Lambda

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

Lambda(nm)

Co

s D

el V

aria

tio

n Variation(-)

Variation(+)

Minimum DetectableVariation

Page 9: 11/8/2000 1 Sensitivity of Spectroscopic Scatterometry: Sub-100nm Technology SFR Workshop November 8, 2000 Ralph Foong, Costas Spanos Berkeley, CA 2001

11/8/2000

9

2002 & 2003 Goals• Study the feasibility of building 100nm capable profile

extraction using small footprint, in-line spectroscopic ellipsometry, by 9/30/2002

• Implement lithography controller that merges full profile in-line information with available metrology, by 9/30/2003

Profile Diagnostics

DUV Photolithograph

yPR Deposition,

Focus, Exposure, Bake Time,

Development Time, etc

Process Flow

In-Line Scatterometr

y

Process Flow

Wafers

Feedback Control Loop