141-164_tech_info

24
• Basic Tap Types • Geometries • Surface Treatments and Coatings • Other Abbreviations • Chamfer Forms and Lead Taper Forms • Cooling and Lubrication Agents • Tolerance Charts • Tolerance Zones of the Pitch Diameter • Recommended Tap Drill Sizes for Tapping and Cold-forming Internal Threads • Conversion Table SFM to RPM for Taps • Decimal Equivalents for Drill Selection • Troubleshooting Guide for Tapping Technical Information Technical Information 141 Tech Info

Upload: smallik3

Post on 12-Nov-2014

35 views

Category:

Documents


6 download

DESCRIPTION

tapping

TRANSCRIPT

Page 1: 141-164_Tech_Info

• Basic Tap Types

• Geometries

• Surface Treatments and Coatings

• Other Abbreviations

• Chamfer Forms and Lead Taper Forms

• Cooling and Lubrication Agents

• Tolerance Charts

• Tolerance Zones of the Pitch Diameter

• Recommended Tap Drill Sizes for Tapping and Cold-forming Internal Threads

• Conversion Table SFM to RPM for Taps

• Decimal Equivalents for Drill Selection

• Troubleshooting Guide for Tapping

TechnicalInformation

Technical Information

141

Tech

Info

Page 2: 141-164_Tech_Info

Description of the constructional designs (examples)

142

General Technical Information

Tech

Info

EMUGE designation

Short machine tapsRekord A

Machine taps with reinforced shank

Machine taps with reduced shank

Rekord 1A

Rekord 2A

Tap description

Machine taps with extra long shank

Rekord 1A-LS

Rekord 2A-LS

General technical information regarding EMUGE threading toolsEMUGE threading tools are made exclusively of high-performance high-speedsteels according to EMUGE specifications. Our modified tool steels are basedon the material alloy group HSSE acc. DIN ISO 11054.

As for tools which are designed for a special application, these generally used tool materials do not come up to our requirements. In such cases we use special high-speed steel alloys and carbide materials which are speciallyselected for the work case in question. A rigorous quality control of thesematerials forms the basis of our high-quality tools. Research and developmentwork is carried out in a specially equipped laboratory, and serves as anindispensable precondition for the further development of cutting geometriesand other parameters necessary for thread production. Extensive tests andtrials on CNC machines, conventional drilling and thread cutting machinesguarantee the performance and economic efficiency of our tools.

Dimensions and technical sales conditionsThe dimensional specifications of our threading tools are adjusted to the currently valid standards, with the exception of special tools made to EMUGE standards.

The DIN standards for taps are based on the General Plans of Dimensions for Taps acc. DIN 2184-1 and -2.

Please read the notes in this catalogue and in the technical introductioncarefully.

The technical sales conditions for taps acc. DIN 2197 and roll form taps acc. DIN 2175 have been taken into account.

The manufacturing tolerances for the thread part are in accordance with DIN EN 22857 and DIN 802.

All specifications, illustrations and dimensions are subject to change due to technical progress and possible changes of the standards, and areconsequently without obligation.

Page 3: 141-164_Tech_Info

143

Special Tap Types (Examples)

Tech

Info

Special taps to customers’ specificationsEMUGE produces special taps to customers’ drawings and proper specifications.

S

Metric buttress thread (one-start and multi-start) acc. DIN 513-1 to -3

30°3°

MFS

ISO Metric thread for tight fit acc. DIN 8141-1

60°

Tr

Flat ISO metric trapezoidal thread (one-start and multi-start) acc. DIN 380-1 and -2

30°

Thread for wire release connection acc. DIN 19004

30°

Tripod connection thread acc. DIN 4503

60°

A

B

E

Electrical thread acc. DIN 40400

M

Metric tapered external thread acc. DIN 158-1

1:16

60°

Special threads (examples)

GL

Cylindrical round thread acc. DIN 168-1

30°

60°

Vg

Valve thread acc. DIN 7756

60°

FG

Bicycle thread acc. DIN 79012

60°

ST

Sheet metal screw thread acc. DIN EN ISO 1478

60°

GEWI

Special profile

90°

Page 4: 141-164_Tech_Info

144

Description of the Basic Types of our EMUGE Taps

Tech

Info

Rekord C

-TI-NI

• 8-15° left-hand spiral flutes

• Chamfer form D (4-5 threads)

• For through hole threads

Note:The left-hand spiral flutes push the chipsahead. As opposed to the spiral-point design(Rekord B), the rake angle remains constantover the complete length of the chamfer. Thismeans extremely stable chamfer teeth for high-strength materials.

Rekord A

-MG-MS-GAL-GJV-FK-H-HCUT-Z-S-OKO

• Straight flutes

• Chamfer form C (2-3 threads)

• Chamfer form E (1.5-2 threads)

• For blind hole and through hole threads

Note:Especially for short-chipping material.The flutes can hold only a part of the chips.There is practically no chip transport in an axial direction. We do not recommend using this tap type in deep blind hole or through hole threads in long-chipping material.

Rekord B

-AL-MULTI-VA-Z-AERO-SYNCHRO-SPEED-OKO

• Straight flutes with spiral point

• Chamfer form B (4-5 threads)

• For through hole threads

Note:Typical tool for through hole threads in long-chipping material. The spiral point pushes the tightly rolled chips ahead and preventsclogging of the flutes. Coolant-lubricant canflow freely. Do not use this tap type for a reverse cut!

Rekord D

-GAL-PVC-VA-TI-Z-S-OKO

• 10-15° right-hand spiral flutes

• Chamfer form E (1.5-2 threads)

• Chamfer form C (2-3 threads)

• For blind hole threads

Note:Especially to be recommended on automaticlathes and multi-spindle machines. The slowspiral flutes will be especially helpful in threadholes beginning with an increased diameter(counterbore or enlarged bore). Provided with internal coolant-lubricant supply, this tap type will help to solve chip problems onCNC machines.

Page 5: 141-164_Tech_Info

145

Description of the Basic Types of our EMUGE Taps

Tech

Info

Robust 2X

-VA• Provided with a hollow face

• Chamfer form C (2-3 threads)

• For blind hole and through hole threads

Note:The special crown-shaped front portion of this tool provides excellent accuracy even in the first stage of the cutting process. Extraclean and accurate threads can be cut in thisway. The swarf is collected in the hollow face of the tap (swarf chamber) when cutting blindhole threads.For this tool, we recommend usingpaste lubrication wherever possible. Pleasemake sure to cover not only the tool but alsothe walls of the hole with paste! Oil lubricationis possible only in vertical machining, if theblind hole can be completely filled with oil.

GFU Druck-S

-BL-AL-W-GAL-VA-H-Z-OKO

• Roll form tap for the chipless production ofinternal threads

• Lead taper form E (1.5-2 threads)

• Lead taper form C (2-3 threads)

• Lead taper form D (4-5 threads)

• For blind hole and through hole threads

Note:Depending on the workpiece material, theessential advantages of the cold-forming ofthreads are not only excellent surface qualitybut also higher static and dynamic strength of the thread. The length of the thread to beproduced is not limited by chips which must be removed. The tools feature an excellent stability, especially with small thread sizes.All ductile materials can be cold-formed.Sufficient lubrication is essential. We generallyrecommend using oil grooves for through holethreads and horizontal machining (exception:very short through hole threads, e.g. sheetmetal components). Sometimes, it is necessaryto adjust the recommended drill diameter towork conditions.

InnoForm

Enorm

-AL-W-W-AL-MULTI-VA-Z-SYNCHRO-S-OKO

• 35-50° right-hand spiral flutes

• Chamfer form E (1.5-2 threads)

• Chamfer form C (2-3 threads)

• For blind hole threads in long-chipping materials

Note:Typical tool for blind hole threads in long-chipping materials. The fast spiral flutes provide good chip removal from the blind hole. Depending on design and size,threads up to 3 x d1 can be cut. Not to berecommended for threads beginning with an increased diameter.

Rekord DF

-PVC-VA-TILEG-NI

• 10-15° right-hand spiral flutes

• Additional helix correction “F”

• Chamfer form E (1.5-2 threads)

• Chamfer form C (2-3 threads)

• For blind hole threads

Note: Especially to be recommended on automaticlathes and multi-spindle machines. The slowspiral flutes will be especially helpful in threadholes beginning with an increased diameter(counterbore or enlarged bore). The additionalhelix correction “F” (relief) produces smaller,and tightly rolled chips. Provided with internalcoolant-lubricant supply, this tap type will helpto solve chip problems on CNC machines.

Page 6: 141-164_Tech_Info

146

Description of our EMUGE Geometries

Tech

Info

TIfor titanium and CrNi alloys

These alloys are usually very strong, long-chipping and clamping. Small rakeangles and very high relief angles are necessary.Often, it is necessary also to specially adjust the tool to the individual alloyand the specific work conditions.

TILEGfor titanium alloys of higher tensile strength

High relief-angle values reduce friction between tool and workpiece, which inthis case is made of a tough and gripping material. A special helix variation inthe chamfer area produces “little” chips only.

for brass (short-chipping)

A relatively small rake angle guarantees high accuracy of the threads.The straight flutes are perfectly sufficient for short-chipping brass. Tool lifecan be improved by using a hard chrome coating (CR) or a chrome-nitridecoating (CRN).

MS

for cast aluminium (short-chipping)

Tools are generally given a surface treatment in order to achieve acceptabletool life in this very abrasive material.For blind holes, we recommend using a Rekord D design, in order to transportthe swarf from the bottom of the hole to the outside.

GALfor wrought aluminium alloys (long-chipping)

In the machining of long-chipping aluminium, it is absolutely necessary toprovide chip transport in an axial direction. In addition to the large rake angle,these tools are made with a reduced no. of flutes so that there is even moreroom for the swarf. This helps to avoid clogging of the flutes.

AL

MGfor magnesium

This workpiece material is gaining more and more importance, especially in the automotive industry. The special geometry, in combination with an anti-friction layer, makes it possible to use this tool for dry machining as well as for oil and emulsion lubrication.

PVCfor long-chipping synthetics

Long-chipping synthetics are elastic, and tend to contract after the drilling job.This geometry has been specially adjusted in the pitch diameter, in the rakeangle, and most of all in the chamfer relief angle.

GJVfor cast iron alloys

The machining of cast iron alloys, and of cast iron with special grain structure (GJV, ADI etc.) demands special qualities from the tool technologyused. Specially adjusted flute numbers and rake and relief angle values, and a special choice of cutting material have helped meet these requirements.

FKfor short-chipping and fibre-reinforced synthetics

A specially adjusted rake angle in combination with high relief angles will yieldlong tool life in abrasive materials. With cutting material HSSE, the tools willmachine synthetics with a fibre content lower than 30%, with carbide allshort-chipping materials.

VAfor stainless materials and steels of higher tensile strength

With tough and long-chipping materials, the swarf must be transported axially in one direction in order to prevent chip clogging.An increased profile relief angle reduces friction, and with it, cold-weldingeffects.

Page 7: 141-164_Tech_Info

147

Description of our EMUGE Geometries

Tech

Info

for (almost) all materials

One tool design for a large number of workpiece materials. Stocking costs can be considerably reduced in this way.

MULTI

for soft materials

A high rake angle yields clean thread flanks and good chip formation.For low-carbon steels, we recommend using a steam treatment (NE2).

Wfor short-chipping, hard materials

Relatively large relief angles in combination with a suitable surface treatment (NT or TICN) yield very long tool life in abrasive materials.

H

NIfor nickel alloys

Ni alloys are usually very tough, clamping and of high tensile strength,e.g. Inconel 718. Negative rake angles, very high relief angles and a hard surface coating (TICN) are an unconditional necessity.Lubrication with paste or oil is essential.

for dry machining and minimum-quantity lubrication (MQL)

Often it is necessary to cut threads with very “dry” emulsions, or to go entirelywithout coolant-lubricants. The reason may be the high costs for the wastedisposal of coolant-lubricants or for the cleaning of the cut threads. In largeseries production, however, we see a steadily growing preference for mini-mum-quantity lubrication.

OKO

Sfor high-speed cutting

CNC machines, especially in combination with tapping attachments, makevery high speeds possible. The special geometry of these tools, combined with a hard surface coating, offers you the chance to do your machining at the highest speeds your machine can manage.

HCUTfor hardened steel

This geometry with its specially adjusted flute profiles and its special rake and relief angles makes thread cutting in hardened steel possible.Made of cutting material HSSE-PM, these tools are suitable for a materialhardness of 44-55 HRC, while solid carbide tools will work in a hardness of 55-63 HRC.

Zfor CNC-controlled machines

This keen-cutting geometry with increased rake and relief angles wasdesigned especially for CNC-controlled machines. In order to prevent axialmiscutting in soft materials, we recommend programming a “minus pitch”in the use of our Enorm-Z taps.

SYNCHROfor machines with synchronous spindle

This is a geometry specially designed for use on modern CNC machines with synchronous spindle. The full performance can only be realised incombination with our tap holders, series KSN/Synchro, KSN/Softsynchro®

and KSN/Softhydro.

Page 8: 141-164_Tech_Info

148

Description of our EMUGE Surface Treatments and Coatings

Tech

Info

Nitriding

By exposing the tools to nitrogen and to special salts in a tenifer bath, the toolsurface is hardened to a depth of approx. 0.03 to 0.05 mm and to a hardnessof 1000-1250 HV. Since the surface becomes very hard and brittle in thisprocess, nitrided tools are suitable for blind hole threads and reverse cuts in a rather restricted way only. In abrasive materials like cast iron, spheroidalcast iron, cast aluminium or duroplastics, tool life can be drastically increased.

NT

Nitriding and steam treatment

The surface of the tools is first nitrided and then steam-treated (NT + NE2). This yields a combination of increased surface hardness and better lubricant-carrying properties.

NT2Hard chrome plating

The hard chrome surface reaches a hardness of 1200 to 1400 HV, and shows excellent anti-friction properties. The thickness of the coating is 2-4 µm.Tool life can be considerably increased, especially in non-ferrous metals andthermoplastics. However, we do not recommend the use of this surfacetreatment in steel materials. Here, temperatures of 480 °F (250 °C) are oftenexceeded, and that might cause the hard chrome plating to come off the tools.

CR

NE2Steam treatment or oxidisation

In a special installation, the tools are exposed to hot steam. This leads to theformation of a dark oxide layer on the tool surface. This oxide layer protectsthe surface, and acts as a good carrier of lubricants. Cold welding whichoccurs especially with low-carbon, soft steels, can be prevented in this way.

CRNChromium nitride (silver-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-6 µm can berealised. The hardness is approx. 1750 HV. This mono-layer coating willremain resistant up to approx. 1300 °F (700 °C). Good coating adhesion and oxidation resistance are a great performance feature of this coating,especially when used in copper, aluminium, magnesium and titanium.

TINTitanium nitride (gold colour)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can berealised. The hardness of approx. 2300 HV, the good sliding properties and the coating adhesion yield considerable tool life increase. This mono-layercoating will remain resistant up to approx. 1100 °F (600 °C).

TIN-T1Titanium nitride (gold colour)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can berealised. The hardness of approx. 3000 HV is achieved by the multi-layercoating structure, among other factors.

TICNTitanium carbonitride (blue-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can berealised. The hardness is approx. 3000 HV. The TICN coating will resist up to approx. 750 °F (400 °C).

TIALN-T3Titanium aluminium nitride (violet-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can be realised. The hardness is approx. 3500 HV. This mono-layer coating will remainresistant up to 1470 °F (800 °C). The high hardness and the excellent oxidationresistance are the reason why TIALN-T3 is a preferred solution for especially“hard” work conditions. This coating is suitable only for carbide tools.

TIALN-T4Titanium aluminium nitride (violet-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can be realised. The hardness is approx. 3300 HV. This nano-structure coating willremain resistant up to approx. 1650 °F (900 °C), and can be put on HSSE and carbide tools. It is an excellent choice for really dry thread cutting in cast iron.

GLT-1Hard surface coating with anti-friction layer (dark-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can berealised. The combination of a hard surface coating (approx. 3000 HV) with a superimposed anti-friction layer yields decisive tool life advantages. Also,the chip flow can be very positively influenced.

GLT-8Diamond-like, amorphous carbon coating (black-grey)

In a CVD process a coating thickness of 1-2 µm can be realised. The hardness is approx. 2500 HV. This mono-layer coating is an excellent choicefor the machining of non-ferrous metals and aluminium with a low siliconcontent (< 9% Si). Thanks to the low friction, material adhesion is drasticallyreduced. This coating will remain resistant up to approx. 660 °F (350 °C).

GLT-7Hard surface coating with anti-friction layer (black-grey)

In a PVD process (930 °F / 500 °C) a coating thickness of 2-4 µm can be realised. The hardness is approx. 3000 HV. The combination of a multi-layer-graded hard surface coating with a superimposed anti-frictionlayer provides excellent chip flow and wear resistance, especially in deepblind holes. This layer will remain resistant up to approx. 750 °F (400 °C).

Page 9: 141-164_Tech_Info

149

Description of other EMUGE Abbreviations

Tech

Info

With alternating teeth

AZ

Internal coolant-lubricant supply, axial

(DIN designation: KA)

IKZ

XWith back taper

Solid carbide

Thread diameter < 1/2 in. (12.7 mm) of solid carbide (thread part and shank).

VHM

IKZNInternal coolant-lubricant supply, axial, with coolant exiting in the flutes

(DIN designation: KR)

In threads produced with taps/roll form taps, e.g. in cases where the nut threadis coated or the workpiece is heat-treated after the thread is produced.

Oversize

KHMSolid carbide head

Thread diameter ≥ 1/2 in. (12.7 mm) thread part of solid carbide, shank of toolsteel.

LHLeft-hand thread

Page 10: 141-164_Tech_Info

150

Description of Chamfer Forms and Lead Taper Forms

Tech

Info

Chamfer length 3.5-5.5 threads

Chamfer length 3.5-5 threads

Chamfer length 2-3 threads

Form B

Form D

Form C

for straight flutes

for straight flutes with spiral point

for straight or spiral flutes

Chamfer length 1.5-2 threads

Form Efor straight or spiral flutes

for straight or spiral flutes

Chamfer length 6-8 threads

Form A

Chamfer forms and chamfer lengths for taps acc. DIN 2197

Chamfer length 1-1.5 threads is called “Form F”.

The chamfer length of our EMUGE taps is adjusted to the workpiece material in each individual case.

Lead taper length 3.5-5.5 threads

Form D

Lead taper length ≤ 2 threads

Form E

Lead taper length 2-3.5 threads

Form C

Lead taper forms and lead taper lengths for roll form taps acc. DIN 2175

Page 11: 141-164_Tech_Info

151

Description of Cooling and Lubrication Agents

Tech

Info

Lubricants are often, if not generally, given too little consideration. If you wantto get the best performance out of your tool you have to take care to use thebest coolant-lubricant available.

In general, we distinguish the following types of cooling and lubrication:

ADry machining, pressurized air, cold pressurized air

“Real” dry machining is mostly used only in cast iron. Pressurized air,sometimes cooled, is used in some cases for chip removal.

EEmulsion

The most common type of coolant-lubricant on machining centres.

MMinimum-quantity lubrication (MQL)

Due to the more and more common option of supplying aerosol through thespindle on modern machining centres, this type of cooling and lubrication isgaining more and more popularity.

OThread cutting oil

With these oils which are perfectly adjusted to specific materials, excellentthread surfaces and tool life can be achieved.

PThread cutting paste

Perfect choice for thread cutting and cold-forming in tough and difficultmaterials. Especially useful in horizontal machining.

Page 12: 141-164_Tech_Info

152

Tolerance Charts

Tech

Info

UNC Thread Tap Limit

3B (Tap) 2B (Tap)

H1 / H2H1 / H2H1 / H2

H2H2H2H2

H2 / H3H2 / H3

H3H3

H3 / H4H3 / H4

H4H4H4

H4 / H5H4 / H5

H5H5

H5 / H6H6H6

H6 / H7H7

H2 / H3H2 / H3H2 / H3H2 / H3H2 / H3H3 / H4H3 / H4H3 / H4H3 / H4H4 / H5H4 / H5H4 / H5H4 / H5H5 / H6H5 / H6H5 / H6H6 / H7H6 / H7H6 / H7H7 / H8H7 / H8H7 / H8H7 / H8H8 / H9H8 / H9

Tolerance Chart – UNC/UNFEMUGE has determined that the tolerance of the tap should be manufacturedas close as possible to the finished internal thread tolerance.

This practice ensures that the threads produced will comply to the gagetolerances providing that the working conditions such as machine, chuckingtools, and workpiece match the application.

EMUGE taps are marked with the appropriate tolerance class for theirintended use. The U.S. GH thread class numbers are not marked on the tap.

Tolerances for the various GH numbers are shown in the chart opposite.

Classification for the tolerance 1B can be provided upon request.

Taps for cast iron and titanium tapping are designed one GH class higher toprovide better tool life.

Class 1B

1BTap 2B

Tap 3BTap

Basis

Class 2B

Class 3B

No. 1 - 64No. 2 - 56No. 3 - 48No. 4 - 40No. 5 - 40No. 6 - 32No. 8 - 32No.10 - 24No.12 - 24

1/4 - 205/16 - 18

3/8 - 167/16 - 14

1/2 - 139/16 - 12

5/8 - 113/4 - 107/8 - 9

1 - 81 1/8 - 71 1/4 - 71 3/8 - 61 1/2 - 61 3/4 - 52 - 4 1/2

UNF Thread Tap Limit

3B (Tap) 2B (Tap)

H1H1 / H2H1 / H2H1 / H2

H2H2H2H2H2

H2 / H3H2 / H3

H3H3H3H3

H3 / H4H3 / H4

H4H4

H4 / H5H4 / H5H4 / H5H4 / H5H4 / H5

H1 / H2H2 / H3H2 / H3H2 / H3H2 / H3H2 / H3H2 / H3H2 / H3H2 / H3H3 / H4H3 / H4H3 / H4H3 / H4H4 / H5H4 / H5H4 / H5H5 / H6H5 / H6H5 / H6H5 / H6H6 / H7H6 / H7H6 / H7H6 / H7

No. 0 - 80No. 1 - 72No. 2 - 64No. 3 - 56No. 4 - 48No. 5 - 44No. 6 - 40No. 8 - 36No.10 - 32No.12 - 28

1/4 - 285/16 - 24

3/8 - 247/16 - 20

1/2 - 209/16 - 18

5/8 - 183/4 - 167/8 - 14

1 - 121 1/8 - 121 1/4 - 121 3/8 - 121 1/2 - 12

Page 13: 141-164_Tech_Info

153

Tolerance Charts

Tech

Info

Metric Coarse Tap Tolerance

3B (Tap) 2B (Tap)

Tolerance Chart – Metric Coarse/FineThe approved tap tolerance system for metric ISO threads is InternationalStandard ISO 2857.

4H tap corresponds to ISO 16H tap corresponds to ISO 26G tap corresponds to ISO 3

4H and 6G taps can be supplied upon request. 6G taps are Oversize.Please refer to the Au “G” values table below.

The U.S. GD tap class numbers are not marked on our taps.

Taps for cast iron and titanium tapping are designed one GH class higher toprovide better tool life.

For the special tolerance “7G”, an oversize of approx. 2 x Au “G” has beentaken into account.

Tolerance Chart – Oversize 6G TapsAu “G” Values for Oversize Taps “6G Taps”

4HTap

6HTap

Au “G”

6GTap

Basis

Class 4H

Class 5H

Class 6H

Class 7HClass 6G

M 1.6M 1.8M 2.0M 2.2M 2.5M 3.0M 3.5M 4.0M 4.5M 5.0M 6.0M 7.0M 8.0M 10.0M 12.0M 14.0M 16.0M 18.0M 20.0M 22.0M 24.0M 27.0M 30.0M 33.0M 36.0M 39.0M 42.0M 45.0M 48.0M 52.0

Pitch

0.350.350.400.450.450.500.600.700.750.801.001.001.251.501.752.002.002.502.502.503.003.003.503.504.004.004.504.505.005.00

Thread

D2D2D2D2D2D2D2

D2 / D3D2 / D3D2 / D3D2 / D3D2 / D3

D3D3

D3 / D4D3 / D4D3 / D4

D4D4D4

D4 / D5D4 / D5D4 / D5D4 / D5

D5D5D5D5

D5 / D6D5 / D6

D2 / D3D2 / D3

D3D3D3D3

D3 / D4D3 / D4D3 / D4D3 / D4D4 / D5D4 / D5D4 / D5D4 / D5D5 / D6D5 / D6D5 / D6D6 / D7D6 / D7D6 / D7D7 / D8D7 / D8D7 / D8D8 / D9D8 / D9D8 / D9D8 / D9D8 / D9D9 / D10D9 / D10

Metric Fine Tap Tolerance

4H Tap 6H Tap

M 3 x 0.35M 4 x 0.50M 6 x 0.50M 6 x 0.75M 8 x 0.75M 8 x 1.00M 12 x 1.00M 10 x 1.25M 14 x 1.25M 12 x 1.50M 20 x 1.50M 24 x 1.50M 42 x 1.50M 18 x 2.00M 24 x 2.00M 42 x 2.00M 36 x 3.00M 42 x 3.00M 52 x 3.00

Thread (choice)

D2D2

D2 / D3D2 / D3D2 / D3

D3D3D3D3

D3 / D4D3 / D4D3 / D4D3 / D4D3 / D4

D4D4

D4 / D5D4 / D5D4 / D5

D3D3

D3 / D4D4D4

D4 / D5D4 / D5D4 / D5D4 / D5D5 / D6D5 / D6D5 / D6D5 / D6D6 / D7D6 / D7D6 / D7D7 / D8D7 / D8D7 / D8

Pitch Tap Tolerance

mm inch

0.35 - 0.400.45 - 0.50

0.600.70 - 0.75

0.801.001.251.501.752.002.503.003.504.004.505.00

0.0190.0200.0210.0220.0240.0260.0280.0320.0340.0380.0420.0480.0530.0600.0630.071

.00075

.00079

.00083

.00087

.00094

.0010

.0011

.0013

.0013

.0015

.0017

.0019

.0021

.0024

.0025

.0028

Page 14: 141-164_Tech_Info

154

Tolerance Zones of the Pitch Diameter (Graphic Representation)

Tech

Info

+µm

0

4H

ISO

1

4H

4HX

6H

6G

6H

6HX6G

6GX7G

7GX

7G

ISO

2

ISO

3

+µm

0

3B

3B

3BX

2B

1B

2B

2BX

1B

Internal Metric thread

Internal Unified thread

Pitch diameter tolerance of the no-go thread plug gauge acc. DIN ISO 1502

Pitch diameter tolerance of the go thread plug gauge acc. DIN ISO 1502

Pitch diameter tolerance of the tap acc. DIN EN 22857 (7G acc. DIN 802-4)

Pitch diameter tolerance of the tap acc. EMUGE standards

Nominal pitch diameter (basis)

Nominal pitch diameter (basis)

Pitch diameter tolerance of the internal thread acc. DIN ISO 965-1

Pitch diameter tolerance of the no-go thread plug gauge acc. ANSI/ASME B1.2

Pitch diameter tolerance of the go thread plug gauge acc. ANSI/ASME B1.2

Pitch diameter tolerance of the tap acc. EMUGE standards

Pitch diameter tolerance of the internal thread acc. ASME B1.1

Page 15: 141-164_Tech_Info

155

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

DNominal

size

Unified coarse thread UNC ASME B1.1, Table 2

P[T.P.I.]

No. 1 64 0.0561 0.0622 0.0595No. 2 56 0.0667 0.0737 0.0700No. 3 48 0.0764 0.0845 0.0820No. 4 40 0.0849 0.0939 0.0890No. 5 40 0.0979 0.1062 0.1015No. 6 32 0.1040 0.1140 0.1110No. 8 32 0.1300 0.1390 0.1360No. 10 24 0.1450 0.1550 0.1520No. 12 24 0.1710 0.1810 0.1770

1/4 20 0.1960 0.2070 0.20405/16 18 0.2520 0.2650 0.26103/8 16 0.3070 0.3210 0.31607/16 14 0.3600 0.3760 0.36801/2 13 0.4170 0.4340 0.42199/16 12 0.4720 0.4900 0.48445/8 11 0.5270 0.5460 0.53133/4 10 0.6420 0.6630 0.65637/8 9 0.7550 0.7780 0.7656

1 8 0.8650 0.8900 0.87501 1/8 7 0.9700 0.9980 0.98431 1/4 7 1.0950 1.1230 1.10941 3/8 6 1.1950 1.2250 1.22051 1/2 6 1.3200 1.3500 1.33861 3/4 5 1.5330 1.5670 1.55512 4 1/2 1.7590 1.7950 1.78122 1/4 4 1/2 2.0090 2.0450 2.03122 1/2 4 2.2290 2.2670 2.25002 3/4 4 2.4790 2.5170 2.50003 4 2.7290 2.7670 2.7500

Minor Thread dia. of the internal thread

(Tol. 2B)D1 min. D1 max.

Drill orcounter-sink dia.

DNominal

size

Unified fine thread UNF ASME B1.1, Table 2

P[T.P.I.]

No. 0 80 0.0465 0.0514 0.0480No. 1 72 0.0580 0.0634 0.0595No. 2 64 0.0691 0.0752 0.0730No. 3 56 0.0797 0.0865 0.0827No. 4 48 0.0894 0.0968 0.0945No. 5 44 0.1004 0.1079 0.1063No. 6 40 0.1110 0.1190 0.1181No. 8 36 0.1340 0.1420 0.1378No. 10 32 0.1560 0.1640 0.1614No. 12 28 0.1770 0.1860 0.1820

1/4 28 0.2110 0.2200 0.21655/16 24 0.2670 0.2770 0.27173/8 24 0.3300 0.3400 0.33467/16 20 0.3830 0.3950 0.38981/2 20 0.4460 0.4570 0.45289/16 18 0.5020 0.5150 0.51185/8 18 0.5650 0.5780 0.57093/4 16 0.6820 0.6960 0.68907/8 14 0.7980 0.8130 0.8071

1 12 0.9100 0.9280 0.92191 1/8 12 1.0350 1.0530 1.04331 1/4 12 1.1600 1.1780 1.17191 3/8 12 1.2850 1.3030 1.29921 1/2 12 1.4100 1.4280 1.4173

Minor Thread dia. of the internal thread

(Tol. 2B)D1 min. D1 max.

Drill orcounter-sink dia.

DNominal

size

Unified extra fine thread UNEF ASME B1.1, Table 2

P[T.P.I.]

No. 12 32 0.1820 0.1900 0.18751/4 32 0.2160 0.2240 0.22055/16 32 0.2790 0.2860 0.28353/8 32 0.3410 0.3490 0.34657/16 28 0.3990 0.4070 0.40401/2 28 0.4610 0.4700 0.46469/16 24 0.5170 0.5270 0.52365/8 24 0.5800 0.5900 0.58073/4 20 0.6960 0.7070 0.69887/8 20 0.8210 0.8320 0.8268

1 20 0.9460 0.9570 0.95311 1/8 18 1.0650 1.0780 1.07281 1/4 18 1.1900 1.2030 1.20081 3/8 18 1.3150 1.3280 1.31891 1/2 18 1.4400 1.4530 1.4488

Minor Thread dia. ofthe internal thread

(Tol. 2B)D1 min. D1 max.

Drill orcounter-sink dia.

DNominal

size

Unified thread UN ASME B1.1, Table 2

P[T.P.I.]

1 1/8 8 0.9900 1.0150 1.00391 1/4 8 1.1150 1.1400 1.12501 3/8 8 1.2400 1.2650 1.25001 1/2 8 1.3650 1.3900 1.37801 5/8 8 1.4900 1.5150 1.49611 3/4 8 1.6150 1.6400 1.63391 7/8 8 1.7400 1.7650 1.75202 8 1.8650 1.8900 1.87502 1/4 8 2.1150 2.1400 2.12602 1/2 8 2.3650 2.3900 2.38192 3/4 8 2.6150 2.6400 2.62503 8 2.8650 2.8900 2.87403 1/2 8 3.3650 3.3900 3.38194 8 3.8650 3.8900 3.87804 1/2 8 4.3650 4.3900 4.3780

Minor Thread dia. ofthe internal thread

(Tol. 2B)D1 min. D1 max.

Drill orcounter-sink dia.

UNC UNF

UNEF UN-8

American StandardThreads

60°

D D 1

P

Page 16: 141-164_Tech_Info

156

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

DNominal

size

ISO Metric coarse thread DIN 13 and DIN ISO 965-1, ASME B1.13

P[mm]

M 2.0 0.40 1.567 1.679 1.60 0.0630M 2.5 0.45 2.013 2.138 2.05 0.0807M 3.0 0.50 2.459 2.599 2.50 0.0984M 3.5 0.60 2.850 3.010 2.90 0.1142M 4.0 0.70 3.242 3.422 3.30 0.1299M 4.5 0.75 3.688 3.878 3.70 0.1457M 5.0 0.80 4.134 4.334 4.20 0.1654M 6.0 1.00 4.917 5.153 5.00 0.1969M 7.0 1.00 5.917 6.153 6.00 0.2362M 8.0 1.25 6.647 6.912 6.80 0.2677M 9.0 1.25 7.647 7.912 7.80 0.3071M 10.0 1.50 8.376 8.676 8.50 0.3346M 11.0 1.50 9.376 9.676 9.50 0.3740M 12.0 1.75 10.106 10.441 10.20 0.4016M 14.0 2.00 11.835 12.210 12.00 0.4724M 16.0 2.00 13.835 14.210 14.00 0.5512M 18.0 2.50 15.294 15.744 15.50 0.6102M 20.0 2.50 17.294 17.744 17.50 0.6890M 22.0 2.50 19.294 19.744 19.50 0.7677M 24.0 3.00 20.752 21.252 21.00 0.8268M 27.0 3.00 23.752 24.252 24.00 0.9449M 30.0 3.50 26.211 26.771 26.50 1.0433M 33.0 3.50 29.211 29.771 29.50 1.1614M 36.0 4.00 31.670 32.270 32.00 1.2598M 39.0 4.00 34.670 35.270 35.00 1.3780M 42.0 4.50 37.129 37.799 37.50 1.4764M 45.0 4.50 40.129 40.799 40.50 1.5945M 48.0 5.00 42.587 43.297 43.00 1.6929M 52.0 5.00 46.587 47.297 47.00 1.8504

Minor Thread dia. of theinternal thread (Tol. 6H)

D1 min. D1 max.[mm] [mm]

Drill orcountersink

dia.[mm] [inch]

Nominalsize

ISO Metric fine thread DIN 13 and DIN ISO 965-1, ASME B1.13

Pmm

M 4 x 0.50 3.459 3.599 3.50 0.1378M 5 x 0.50 4.459 4.599 4.50 0.1772M 6 x 0.75 5.188 5.378 5.20 0.2047M 8 x 0.75 7.188 7.378 7.20 0.2835M 8 x 1.00 6.917 7.153 7.00 0.2756M 10 x 1.00 8.917 9.153 9.00 0.3543M 10 x 1.25 8.647 8.912 8.80 0.3465M 12 x 1.50 10.376 10.676 10.50 0.4134M 14 x 1.50 12.376 12.676 12.50 0.4921M 16 x 1.50 14.376 14.676 14.50 0.5709M 18 x 1.50 16.376 16.676 16.50 0.6496M 20 x 1.50 18.376 18.676 18.50 0.7283M 22 x 2.00 19.835 20.210 20.00 0.7874M 24 x 2.00 21.835 22.210 22.00 0.8661M 27 x 2.00 24.835 25.210 25.00 0.9843M 30 x 2.00 27.835 28.210 28.00 1.1024M 36 x 3.00 32.752 33.252 33.00 1.2992M 42 x 3.00 38.752 39.252 39.00 1.5354M 48 x 3.00 44.752 45.252 45.00 1.7717M 52 x 4.00 47.670 48.270 48.00 1.8898

Minor Thread dia. of theinternal thread (Tol. 6H)

D1 min. D1 max.[mm] [mm]

Drill orcountersink

dia.[mm] [inch]

M MF

For thread sizes not listed contact EMUGE TechnicalDepartment 800-323-3013

ISO Metric Threads

60°

D D 1

P

Page 17: 141-164_Tech_Info

157

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

NPSM

DNominal

size

Whitworth pipe thread DIN EN ISO 228

P[T.P.I.]

G 1/16 28 6.561 6.843 6.80 0.2677G 1/8 28 8.566 8.848 8.80 0.3465G 1/4 19 11.445 11.890 11.80 0.4646G 3/8 19 14.950 15.395 15.25 0.6004G 1/2 14 18.631 19.172 19.00 0.7480G 5/8 14 20.587 21.128 21.00 0.8268G 3/4 14 24.117 24.658 24.50 0.9646G 7/8 14 27.877 28.418 28.25 1.1122G 1 11 30.291 30.931 30.75 1.2106G 1 1/8 11 34.939 35.579 35.50 1.3976G 1 1/4 11 38.952 39.592 39.50 1.5551G (1 3/8) 11 41.365 42.005 41.75 1.6437G 1 1/2 11 44.845 45.485 45.25 1.7815G 1 3/4 11 50.788 51.428 51.00 2.0079G 2 11 56.656 57.296 57.00 2.2441G 2 1/4 11 62.752 63.392 63.30 2.4921G 2 1/2 11 72.226 72.866 72.80 2.8661G 2 3/4 11 78.576 79.216 79.10 3.1142G 3 11 84.926 85.566 85.50 3.3661

Minor Thread dia. of the internal thread

D1 D1min. [mm] max. [mm]

Drill orcountersink

dia.[mm] [inch]

DNominal

size

American Standard straight pipe thread NPSM (for mechanical joints, previously NPS) acc. ANSI B1.20.1

P[T.P.I.]

1/8 27 0.358 0.364 9.10 0.35831/4 18 0.468 0.481 12.00 0.47243/8 18 0.603 0.612 15.50 0.61021/2 14 0.747 0.759 19.00 0.74803/4 14 0.958 0.970 24.50 0.9646

1 11 1/2 1.201 1.211 30.50 1.2008

Minor Thread dia. ofthe internal thread

D1 D1min. max.

Drill orcountersink

dia.[mm] [inch]

NPSF

DNominal

size

American Standard straight pipe thread NPSF (dryseal internal straight pipe thread for fuel,combined with external tapered pipe thread NPTFacc. ANSI B1.20.3 or PTF-SAE-SHORT)

P[T.P.I.]

1/16 27 0.2482 6.35 0.25001/8 27 0.3406 8.75 0.34451/4 18 0.4422 11.30 0.44493/8 18 0.5776 14.75 0.58071/2 14 0.7133 18.20 0.71653/4 14 0.9238 23.50 0.9252

1 11 1/2 1.1600 29.50 1.1614

Minor Thread dia. ofthe internal thread

D1 min.

Drill orcountersink

dia.[mm] [inch]

G

DNominal

size

Cylindrical Whitworth pipe thread where pressure-tight joints are made on thethreads, acc. DIN EN 10226-1 (former DIN 2999),ISO 7-1 (not for DIN 3858)

P[T.P.I.]

Rp 1/16 28 6.490 6.632 6.55 0.2579Rp 1/8 28 8.495 8.637 8.60 0.3386Rp 1/4 19 11.341 11.549 11.50 0.4528Rp 3/8 19 14.846 15.054 15.00 0.5906Rp 1/2 14 18.489 18.773 18.50 0.7283Rp 3/4 14 23.975 24.259 24.00 0.9449Rp 1 11 30.111 30.471 30.25 1.1909

Minor Thread dia. of the internal thread

D1 D1min. [mm] max. [mm]

Drill orcountersink

dia.[mm] [inch]

Rp (BSPP)

Straight Pipe Threads

60°

D D 1

P

55°

D D 1

P

Page 18: 141-164_Tech_Info

158

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

DNominal

size

American tapered pipe thread, taper 1:16,for threads with dryseal material acc. ANSI/ASME B1.20.1

P[T.P.I.] D1 D2 D3 t1

1/16 27 0.2421 0.2343 0.2516 0.47241/8 27 0.3346 0.3248 0.3441 0.47241/4 18 0.4331 0.4232 0.4472 0.68903/8 18 0.5709 0.5551 0.5827 0.69291/2 14 0.7028 0.6890 0.7213 0.90163/4 14 0.9134 0.8937 0.9319 0.9055

1 11 1/2 1.1417 1.1260 1.1689 1.07871 1/4 11 1/2 1.4882 1.4685 1.5138 1.10631 1/2 11 1/2 1.7323 1.7087 1.7528 1.11812 11 1/2 2.2047 2.1850 2.2268 1.1181

NPT

DNominal

size

Tapered Whitworth pipe thread where pressure-tight joints are made on thethreads, taper 1:16, acc. ISO 7-1, DIN EN 10226-2

P[T.P.I.]

D1[mm]

D2[mm]

D3[mm]

t1[mm]

Rc 1/16 28 6.20 6.10 6.56 11.9Rc 1/8 28 8.20 8.10 8.57 11.9Rc 1/4 19 11.00 10.75 11.45 17.7Rc 3/8 19 14.50 14.25 14.95 18.1Rc 1/2 14 18.00 17.75 18.63 24.0Rc 3/4 14 23.50 23.00 24.12 25.3Rc 1 11 29.50 29.00 30.29 30.6

Rc (BSPT)

DNominal

size

American tapered pipe thread, taper 1:16,for threads without dryseal material acc. ANSI B1.20.3

P[T.P.I.] D1 D2 D3 t1

1/16 27 0.2402 0.2343 0.2524 0.47241/8 27 0.3327 0.3248 0.3449 0.47241/4 18 0.4291 0.4232 0.4488 0.68903/8 18 0.5630 0.5551 0.5843 0.69291/2 14 0.6929 0.6890 0.7217 0.90163/4 14 0.9055 0.8937 0.9323 0.9055

1 11 1/2 1.1319 1.1260 1.1701 1.07871 1/4 11 1/2 1.4764 1.4685 1.5150 1.10631 1/2 11 1/2 1.7224 1.7087 1.7539 1.11812 11 1/2 2.1949 2.1850 2.2280 1.1181

NPTF

Drilling cylindricallywithout using a reamer

ø D1

t 1

Drilling cylindrically and reamingconically using a reamer

The minimum drilling depth t1 includes the reach of screw by hand L1 and the effective depth L3 to ANSI/ASME B1.20.1 as well asthe chamfer of the tap. Additional drilling-down has to be determined by the user according to the construction of the workpiece.For series production it is recommended that the minor thread dia. be made as per B. Special taps are required for blind holes wherethe minimum depths t1 as listed in the above table cannot be met. In this case please supply a sketch with blind hole dimensionsalong with the order.

ø D3

ø D2

t 1

1:16

Taper Pipe Threads

1:16

60°P

Page 19: 141-164_Tech_Info

159

Recommended Tap Drill Sizes for Cold-forming Internal Threads

Tech

Info

DNominal

size

Unified coarse thread UNC (Tol. 2B) ASME B1.1

P[T.P.I.]

No. 1 64 0.0657 — 0.0657No. 2 56 0.0772 0.0787 0.0776No. 3 48 0.0890 0.0906 0.0890No. 4 40 0.0996 0.1016 0.1004No. 5 40 0.1126 0.1146 0.1130No. 6 32 0.1224 0.1248 0.1220No. 8 32 0.1484 0.1508 0.1496No. 10 24 0.1689 0.1720 0.1693No. 12 24 0.1945 0.1976 0.1949

1/4 20 0.2244 0.2283 0.22645/16 18 0.2839 0.2878 0.28543/8 16 0.3429 0.3469 0.34457/16 14 0.4000 0.4055 0.40161/2 13 0.4598 0.4657 0.46069/16 12 0.5189 0.5248 0.51975/8 11 0.5772 0.5843 0.57873/4 10 0.6969 0.7047 0.70087/8 9 0.8169 0.8256 0.8189

1 8 0.9343 0.9441 0.9370

Core hole dia.D1 D1

min. max.

Rec.drilldia.

UNC

DNominal

size

Unified fine thread UNF (Tol. 2B) ASME B1.1

P[T.P.I.]

No. 0 80 0.0543 — 0.0543No. 1 72 0.0665 — 0.0669No. 2 64 0.0787 — 0.0787No. 3 56 0.0902 0.0917 0.0906No. 4 48 0.1020 0.1035 0.1024No. 5 44 0.1138 0.1157 0.1142No. 6 40 0.1256 0.1276 0.1260No. 8 36 0.1504 0.1524 0.1516No. 10 32 0.1744 0.1768 0.1752No. 12 28 0.1980 0.2008 0.1988

1/4 28 0.2323 0.2350 0.23235/16 24 0.2917 0.2949 0.29333/8 24 0.3543 0.3575 0.35437/16 20 0.4122 0.4161 0.41341/2 20 0.4744 0.4783 0.47649/16 18 0.5343 0.5382 0.53545/8 18 0.5965 0.6004 0.59843/4 16 0.7181 0.7224 0.72057/8 14 0.8382 0.8437 0.8386

1 12 0.9567 0.9626 0.9567

Core hole dia.D1 D1

min. max.

Rec.drilldia.

UNF

DNominal

size

ISO Metric coarse thread (Tol. 6H) DIN 13

P[mm]

M 2.0 0.40 1.83 1.86 1.85 0.0728M 2.5 0.45 2.30 2.34 2.30 0.0906M 3.0 0.50 2.77 2.82 2.80 0.1102M 3.5 0.60 3.23 3.28 3.25 0.1280M 4.0 0.70 3.68 3.73 3.70 0.1457M 4.5 0.75 4.15 4.21 4.15 0.1634M 5.0 0.80 4.63 4.68 4.65 0.1831M 6.0 1.00 5.51 5.59 5.55 0.2185M 7.0 1.00 6.51 6.59 6.55 0.2579M 8.0 1.25 7.39 7.48 7.40 0.2913M 10.0 1.50 9.25 9.35 9.30 0.3661M 12.0 1.75 11.12 11.25 11.20 0.4409M 14.0 2.00 13.00 13.15 13.00 0.5118M 16.0 2.00 15.00 15.15 15.00 0.5906M 18.0 2.50 16.72 16.90 16.80 0.6614M 20.0 2.50 18.72 18.90 18.80 0.7402M 22.0 2.50 20.72 20.90 20.80 0.8189M 24.0 3.00 20.46 22.70 22.50 0.8858

Core hole dia.D1 D1

min. [mm] max. [mm]

Recommendeddrill dia.

[mm] [inch]

M

DNominal

size

ISO Metric fine thread (Tol. 6H) DIN 13

P[mm]

M 4.0 x 0.50 3.77 3.82 3.80 0.1496M 5.0 x 0.50 4.77 4.82 4.80 0.1890M 6.0 x 0.75 5.65 5.71 5.65 0.2224M 8.0 x 0.75 7.65 7.71 7.65 0.3012M 8.0 x 1.00 7.51 7.59 7.55 0.2972M 10.0 x 1.00 9.51 9.59 9.55 0.3760M 10.0 x 1.25 9.39 9.48 9.40 0.3701M 12.0 x 1.50 11.26 11.36 11.30 0.4449M 14.0 x 1.50 13.26 13.36 13.30 0.5236M 16.0 x 1.50 15.26 15.36 15.30 0.6024M 18.0 x 1.50 17.26 17.36 17.30 0.6811M 20.0 x 1.50 19.26 19.36 19.30 0.7598M 22.0 x 1.50 21.26 21.36 21.30 0.8386M 24.0 x 1.50 23.26 23.38 23.30 0.9173

Core hole dia.D1 D1

min. [mm] max. [mm]

Recommendeddrill dia.

[mm] [inch]

MF

DNominal

size

Whitworth pipe thread DIN EN ISO 228

P[T.P.I.]

G 1/16 28 7.25 7.32 7.25 0.2854G 1/8 28 9.25 9.32 9.25 0.3642G 1/4 19 12.43 12.53 12.50 0.4921G 3/8 19 15.94 16.04 16.00 0.6299G 1/2 14 19.96 20.10 20.00 0.7874G 5/8 14 21.92 22.08 22.00 0.8661G 3/4 14 25.45 25.60 25.50 1.0039G 7/8 14 29.20 29.35 29.25 1.1516G 1 11 31.97 32.15 32.00 1.2598

Minor Thread dia. of the internal thread

D1 D1min. [mm] max. [mm]

Recommendeddrill dia.

[mm] [inch]

G

American StandardThreads

60°

D D 1

P

ISO Metric Threads

60°

D D 1

P

Straight Pipe Threads

55°

D D 1

P

For thread sizes not listed contact EMUGE TechnicalDepartment 800-323-3013

Page 20: 141-164_Tech_Info

160

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

DNominal

size

Unified coarse thread UNC ASME B18.29.1 for wire thread inserts

P[T.P.I.]

STI-No. 2 56 0.0899 0.0961 0.0906STI-No. 3 48 0.1036 0.1104 0.1063STI-No. 4 40 0.1175 0.1252 0.1220STI-No. 5 40 0.1305 0.1373 0.1339STI-No. 6 32 0.1448 0.1527 0.1496STI-No. 8 32 0.1708 0.1781 0.1732STI-No. 10 24 0.1990 0.2080 0.2047STI-No. 12 24 0.2250 0.2340 0.2283STI 1/4 20 0.2608 0.2704 0.2638STI 5/16 18 0.3245 0.3342 0.3307STI 3/8 16 0.3885 0.3987 0.3937STI 7/16 14 0.4530 0.4639 0.4567STI 1/2 13 0.5166 0.5273 0.5236STI 9/16 12 0.5806 0.5918 0.5866STI 5/8 11 0.6447 0.6564 0.6496STI 3/4 10 0.7716 0.7838 0.7776STI 7/8 9 0.8990 0.9119 0.9055STI 1 8 1.0271 1.0421 1.0335STI 1 1/8 7 1.1559 1.1730 1.1614STI 1 1/4 7 1.2809 1.2980 1.2893STI 1 3/8 6 1.4110 1.4310 1.4173STI 1 1/2 6 1.5360 1.5560 1.5453

Minor Thread dia. ofthe internal thread

D1 D1min. max.

Drill orcounter-sink dia.

STI-UNC

DNominal

size

Unified fine thread UNF ASME B18.29.1 for wire thread inserts

P[T.P.I.]

STI-No. 2 64 0.0894 0.0947 0.0906STI-No. 3 56 0.1029 0.1086 0.1063STI-No. 4 48 0.1166 0.1229 0.1181STI-No. 5 44 0.1300 0.1343 0.1319STI-No. 6 40 0.1435 0.1503 0.1457STI-No. 8 36 0.1701 0.1771 0.1732STI-No. 10 32 0.1968 0.2041 0.2008STI-No. 12 28 0.2237 0.2287 0.2244STI 1/4 28 0.2577 0.2646 0.2598STI 5/16 24 0.3215 0.3288 0.3248STI 3/8 24 0.3840 0.3910 0.3858STI 7/16 20 0.4483 0.4561 0.4528STI 1/2 20 0.5108 0.5186 0.5157STI 9/16 18 0.5745 0.5826 0.5787STI 5/8 18 0.6370 0.6451 0.6398STI 3/4 16 0.7635 0.7720 0.7677STI 7/8 14 0.8905 0.8994 0.8957STI 1 12 1.0181 1.0281 1.0236STI 1 1/8 12 1.1431 1.1531 1.1476STI 1 1/4 12 1.2681 1.2781 1.2736STI 1 3/8 12 1.3931 1.4031 1.3976STI 1 1/2 12 1.5181 1.5281 1.5256

Minor Thread dia. ofthe internal thread

D1 D1min. max.

Drill orcounter-sink dia.

STI-UNF

DNominal

size

ISO Metric coarse thread DIN 8140-2 for wire thread inserts

P[mm]

STI-M 2.0 0.40 2.087 2.177 2.10 0.0827STI-M 2.5 0.45 2.597 2.697 2.65 0.1043STI-M 3.0 0.50 3.108 3.220 3.15 0.1240STI-M 3.5 0.60 3.630 3.755 3.70 0.1457STI-M 4.0 0.70 4.152 4.292 4.20 0.1654STI-M 4.5 0.75 4.662 4.812 4.75 0.1870STI-M 5.0 0.80 5.174 5.334 5.25 0.2067STI-M 6.0 1.00 6.217 6.407 6.30 0.2480STI-M 7.0 1.00 7.217 7.407 7.30 0.2874STI-M 8.0 1.25 8.271 8.483 8.40 0.3307STI-M 10.0 1.50 10.324 10.560 10.50 0.4134STI-M 12.0 1.75 12.379 12.644 12.50 0.4921STI-M 14.0 2.00 14.433 14.733 14.50 0.5709STI-M 16.0 2.00 16.433 16.733 16.50 0.6496STI-M 18.0 2.50 18.541 18.896 18.75 0.7382STI-M 20.0 2.50 20.541 20.896 20.75 0.8169STI-M 22.0 2.50 22.541 22.896 22.75 0.8957STI-M 24.0 3.00 24.649 25.049 24.75 0.9744STI-M 27.0 3.00 27.649 28.049 27.75 1.0925STI-M 30.0 3.50 30.757 31.207 31.00 1.2205

Minor Thread dia. ofthe internal threadD1 min. D1 max.[mm] [mm]

Drill orcountersink

dia.[mm] [inch]

STI-M

Screw Thread InsertThreads (STI)

60°D 1

P

D 1

Page 21: 141-164_Tech_Info

161

Recommended Tap Drill Sizes for Tapping Internal Threads

Tech

Info

DNominal

size

Unified SELF-LOCK coarse thread EMUGE standard

P[T.P.I.]

LK-No. 6 32 0.1119 0.1219 0.1217 0.1142LK-No. 8 32 0.1378 0.1468 0.1476 0.1417LK-No. 10 24 0.1544 0.1654 0.1675 0.1575LK-No. 12 24 0.1804 0.1904 0.1935 0.1850LK- 1/4 20 0.2069 0.2179 0.2226 0.2087LK- 5/16 18 0.2644 0.2774 0.2818 0.2677LK- 3/8 16 0.3204 0.3344 0.3400 0.3268LK- 7/16 14 0.3748 0.3908 0.3972 0.3819LK- 1/2 13 0.4323 0.4493 0.4564 0.4375LK- 9/16 12 0.4887 0.5067 0.5148 0.5000LK- 5/8 11 0.5443 0.5633 0.5728 0.5512LK- 3/4 10 0.6609 0.6819 0.6922 0.6693

LK-Core hole dia.

D1 min. D1 max.Line 1 Line 2

D1 BDrilldia.

LK-UNC

DNominal

size

Metric SELF-LOCK coarse thread EMUGE standard

P[mm]

LK-M 2.5 0.45 2.204 2.269 — 2.20 0.0866LK-M 3.0 0.50 2.673 2.745 — 2.70 0.1063LK-M 3.5 0.60 3.111 3.196 — 3.10 0.1220LK-M 4.0 0.70 3.549 3.639 — 3.55 0.1398LK-M 4.5 0.75 3.866 4.056 4.101 3.90 0.1535LK-M 5.0 0.80 4.324 4.524 4.574 4.40 0.1732LK-M 6.0 1.00 5.152 5.388 5.465 5.20 0.2047LK-M 7.0 1.00 6.152 6.388 6.465 6.20 0.2441LK-M 8.0 1.25 6.931 7.196 7.322 7.00 0.2756LK-M 9.0 1.25 7.931 8.196 8.322 8.00 0.3150LK-M 10.0 1.50 8.700 9.000 9.170 8.80 0.3465LK-M 11.0 1.50 9.700 10.000 10.170 9.80 0.3858LK-M 12.0 1.75 10.477 10.812 11.024 10.70 0.4213LK-M 14.0 2.00 12.237 12.612 12.863 12.50 0.4921LK-M 16.0 2.00 14.237 14.612 14.863 14.50 0.5709LK-M 18.0 2.50 15.787 16.237 16.569 16.00 0.6299LK-M 20.0 2.50 17.787 18.237 18.569 18.00 0.7087LK-M 22.0 2.50 19.787 20.237 20.569 20.00 0.7874LK-M 24.0 3.00 31.320 21.820 22.259 21.50 0.8465

LK-Core hole dia.D1 min. D1 max.

Line 1 Line 2[mm] [mm] [mm]

D1 BDrilldia.

[mm] [inch]

LK-M

Drill diameters are not for use with roll form taps.

Self-Locking Threads

Sawtooth Profilefor pitch P ≤ 0.7 mm

P

D 1 m

in.

D 1 B

D 1 m

ax.

With the Sawtooth profile the mentioned drill sizes have to be considered. If the hole diameter becomes too large, safe functioning is jeopardized.

Self-locking taps are produced with an accurate profile.The Metric LK-female thread mates with a Metric ISObolt of grade “6g“. Thread sizes of male fasteners areaccording to DIN 13, part 19.20.

LK Thread Profilefor pitch P > 0.7 mm

P

D 1 m

in.

D 1 B

D 1 m

ax.

For the specification of the maximum core hole minordiameter, as a general rule, use Line 1.For special applications, machining heavy materials forexample, depth of thread is 2 x diameter, or if higher toollife is required, it is possible to use Line 2.The maximum LK-minor core hole diameter listed in Line2 cannot be exceeded as the performance of the EMUGESELF-LOCK system would be negatively affected.Minimum LK-minor diameters should not go below thoselisted.

Page 22: 141-164_Tech_Info

162

Decimal Equivalents for Drill Selection

Tech

Info

0.1 mm0.2 mm0.3 mm

8079

1/640.4 mm

7877

0.5 mm767574

0.6 mm737271

0.7 mm706968

1/320.8 mm

676665

0.9 mm64636261

1.0 mm6059585756

3/64555453

1/165251504948

5/6447

2.0 mm46

Inch-Wiremm

0.00390.00790.01180.01350.01450.01560.01570.01600.01800.01970.02000.02100.02250.02360.02400.02500.02600.02760.02800.02920.03100.03120.03150.03200.03300.03500.03540.03600.03700.03800.03900.03940.04000.04100.04200.04300.04650.04690.05200.05500.05950.06250.06350.06700.07000.07300.07600.07810.07850.07870.0810

DecimalInch

45444342

3/32414039383736

7/6435343332

3.0 mm311/8302928

9/642726252423

5/3222

4.0 mm21201918

11/641716151413

3/161211109

5.0 mm87

13/646

Inch-Wiremm

0.08200.08600.08900.09350.09380.09600.09800.09950.10150.10400.10650.10940.11000.11100.11300.11600.11810.12000.12500.12850.13600.14050.14060.14400.14700.14950.15200.15400.15620.15700.15750.15900.16100.16600.16950.17190.17300.17700.18000.18200.18500.18750.18900.19100.19350.19600.19680.19900.20100.20310.2440

DecimalInch

543

7/3221A

15/646.0 mm

BCD

1/4FG

17/64HI

7.0 mmJK

9/32LM

19/64N

5/168.0 mm

OP

21/64QR

11/32S

9.0 mmT

23/64U

3/8VW

25/6410.0 mm

XY

12/32Z

27/6411.0 mm

7/16

Inch-Wiremm

0.20550.20900.21300.21880.22100.22800.23490.23440.23620.23800.24200.24600.25000.25700.26100.26560.26600.27200.27560.27700.28100.28120.29000.29500.29690.30200.31250.31500.31600.32300.32810.33200.33900.34380.34800.35430.35800.35940.36800.37500.37700.38600.39060.39370.39700.40400.40620.41300.42190.43310.4375

DecimalInch

29/6415/32

12.0 mm31/641/2

13.0 mm33/6417/3235/64

14.0 mm9/16

37/6415.0 mm

19/3239/64

5/816.0 mm

41/6421/32

17.0 mm43/6411/1645/64

18.0 mm23/3247/64

19.0 mm3/4

49/6425/32

20.0 mm51/6413/16

21.0 mm53/6427/3255/64

22.0 mm7/8

57/6423.0 mm

29/3259/6415/16

24.0 mm61/6431/32

25.0 mm63/64

1

Inch-Wiremm

0.45310.46880.47240.48440.50000.51180.51560.53120.54690.55120.56250.57810.59060.59380.60940.62500.62990.64060.65620.66930.67190.68750.70310.70870.71880.73440.74800.75000.76560.78120.78740.79690.81250.82680.82810.84380.85940.86610.87500.89060.90550.90620.92190.93750.94490.95310.96880.98420.98441.0000

DecimalInch

The tap drill sizes shown are reference values and may have to be altered to meet specific tapping requirements. EMUGE shall have no liability or responsibility of any kind resultingfrom the selection of a tap drill size from this chart. Values printed are correct at the time of printing and subject to change without notice.

Page 23: 141-164_Tech_Info

163

Conversion Table SFM to RPM for Taps

Tech

Info

No. 0No. 1No. 2No. 3No. 4No. 5No. 6No. 8No. 10No. 12

1/45/163/87/161/29/165/8

11/163/47/8

11 1/81 1/41 3/81 1/21 5/81 3/41 7/82

318273212191174147136119101877662504338343228252219171514131211109

1/8–

1/4–

3/8–

1/2–

3/4–1–

63754642438234729427323920117415312310187766864555143383431282523222019

95581963757352144140935830226022918515113011510296837665575146423835333029

1273104688877268261155346640235430624520417515313712211110287766861565147444138

159213081110964853764691583502442382306255219191172153138128109968476696359555148

1910157013331157102391782969960353145836730526222920618316715313111510292837671656157

2546209317771543136412221106

93280470761148940734930527424422220317515313612211110294878176

31832617222119291705152813821165100588476461150943738234230627825521819117015313912711810910296

3820314026652315204618331659139812051061917733611524458410367333305262230204183167153141131122115

44563663310927012387213919351631140612381070856713611535478428389357306268238214194178165153143134

50934186355430862728244522121864160714151222978815698611547489444407350305272244222204188175163153

572947103999347230692750248820971808159213751100917786688616550500458392344306275250229212196183172

6366523344423858341130562766233020091769152812221019873764683611556509437382340305278255235218204191

7003575648864244375133613042256322101945168113451120960840752672611560480420373336306280259240224210

76396279533046294092366733182796241121221833146712221048917820733667611524458407367333305282262244229

82766805577450154434397335953029261223001968158913241135993888794722662568497441397361331306284265248

891373266218540147754278387132622813247621391711142612221070

952856778713611535475428389356329306285267

9549784966625787511645844148349530142653229218331528131011461020

917833764655573509458417382353327306287

Tap Sizes5' 10' 15' 20' 25' 30' 40' 50' 60' 70' 80' 90' 100' 110' 120' 130' 140' 150'

Surface Feet per Minute

Revolutions per MinuteUNCUNF

NPTNPTF

UNC/UNF and NPT/NPTF

Metric TapsM 1.0M 2.0M 3.0M 3.5M 4.0M 5.0M 6.0M 7.0M 8.0M 10.0M 12.0M 14.0M 16.0M 18.0M 20.0M 22.0M 24.0M 27.0M 30.0

4902421621381229781696148403530272422201816

97948432427724319416213812197816961544944403632

146972548641536529124320818214512110491817366615449

19599676475544873883242772431941621391211089788817265

244912098096926084854053463032422021731521351211101019081

2938145197183073058248641536429124320818216214613212110897

3918193412951107

973776647554485388324277243216194176162144129

48972418161913841217970809692606485405347303269243221202180162

587729011942166114601163971830728582486416364323291265243216194

6856338522661938170313571133969849679567485424377340309283252226

78363868259022141946155112951107970776647555485431388353323287259

881543522914249121901745145712461091873728624546485437397364323291

979548353237276824331939161913841213970809693606539485441404359323

10774531935613045267621331781152213341067890763667593534485445395356

11754580338853322292023271942166114551163971832728547582529485431388

127336286420835993163252121041799157712601052901788700631573526467420

137136770453238753406271522661938169813571133

971849754680618566503453

1469272534856415236502909242820761819145412141040

910808728662606539485

For tap sizes not listed, please contact an EMUGE Technical Representative at 800-323-3013.

Page 24: 141-164_Tech_Info

164

Troubleshooting Guide for Tapping

Tech

Info

EMUGE Taps are very free cutting and will easily cutoversize threads if overfed or pushed. For the bestresults, we recommend the use of an EMUGEQuick-Change Tap Holder with built-in tension,compression and overload clutch features. Alwaysutilize your holder’s tension feature by programmingspindle feed to 95-98% of the calculated feed rate.

Call an EMUGE Representative at 800 323 3013if you need assistance.

Problem: Tapping oversized threads(no-go gage too loose)

Problem: Tapping oversized threads(no-go gage loose)

Problem: Tapping bellmouthed hole (first few threads gage oversize)

Possible Cause

■ Improper tap for materialand thread application.

■ Cutting speed to high.

■ Cold welding on the flanksof the tap (loading).

■ Chip packing in flutes.

■ Grinding burr.

■ Incorrect fixturing orpositioning of part.

■ Inconsistent feed of tap.

· Use a suitable tap for the holestyle and material being tapped.Reference the EMUGE TapFinder for proper selection.

· Reduce cutting speed.· Improve coolant/lubrication.

· Use a new tool.· Use surface treated taps.· Improve coolant/lubrication.· Grind away chipped and

damaged teeth.

· Use tap with different flutegeometry/angle.

· Possibly use set of taps.

· Remove burr with soft wire orfiber brush.

· Use tap holders with axial andparallel floating.

· Check clamping of part forcorrect alignment.

· Tap with controlled feed.· Check CNC programs.· Check lead screw for backlash.· Use compensating

tension/compression tap holder.

■ Tap selected too large forclass of thread fit required.

■ Improper reconditioningof tap.

· Review markings on tap anddetermine if it is suitable forthe class of fit required.

· If in doubt, contact an EMUGERepresentative.

· Reconditioning of tap requiresthat all ground surfacesmaintain the orginal geometryput on by the manufacturer.

· Contact an EMUGERepresentative forinstructive information.

■ Wrong initial startingpressure.

■ Axially hard workingspindle.

■ Incorrect fixturing orpositioning of part.

· Work with controlledtap feed.

· Use a tap holder with lengthcompensation.

· Use a tap holder with axial andparallel floating.

· Check clamping of part forcorrect alignment.

Possible Remedy

Problem: Torn and rough threads

Possible Cause

■ Improper selection of tapfor material and threadapplication.

■ Cutting speed too fast orslow.

■ Cold welding on the flanksof the tap (loading).

■ Chips packing in flutes.

■ Grinding burr.

■ Tap drill too small.

■ Insufficientcoolant/ lubrication.

■ Tool overloading dueto coarse pitch,hard materials orshort chamfers.

· Use a suitable tap for the holestyle and material being tapped.Reference the EMUGE TapFinder for proper selection.

· Select proper cutting speed.· Improve coolant selection to

assist the effects of tap speed.

· Use a new tool.· Use surface treated taps.· Improve coolant/ lubrication.· Find away chipped and

damaged teeth.

· Use tap with different flutegeometry/angle.

· Use set of taps.

· Remove burr with soft wire orbrush.

· Use correct size drill.· Reference recommended sizes

listed in EMUGE catalog. Notethat cutting and roll form tapsuse different size tap drills forthe same size thread.

· If in doubt, contact an EMUGERepresentative.

· Selection of suitablecoolant/lubrication for materialbeing tapped.

· Use adequate amounts ofcoolant lubrication.

· Use a set of taps.

Possible Remedy

Problem: Tap life too low

Possible Cause

■ All reasons stated in tornand rough threads.

■ Loss of tap hardness byexcess hear duringregrinding.

■ Loss of surface treatmentfrom regrinding.

■ Work hardened drill holeand hole chamfer.

· See torn and rough threads.

· Change the specification of thegrinding wheel.

· Use coolant while grinding.

· Retreatment of the tap surface.· Check suitability of surface

treatment for material beingtapped.

· Change or regrind tap drill morefrequently.

· Check proper drilling speed andfeed.

· Anneal part before tapping.

Possible Remedy

Problem: Torn and rough threads

Possible Cause

■ Improper selection of tapfor material and threadingapplication.

■ Tap drill too small.

■ Tap hole not deep enough.

■ Missing tap drill hole.

■ Chips packing in flutes.

■ Cutting speed too high orlow.

■ Cold welding on the flanksof the tap (loading).

■ Overload of the chamferteeth.

■ Incorrect fixturing orpositioning of part.

■ Tap hitting the bottom ofhole.

■ Tapping hard or hightensile materials.

· Use a suitable tap for the holestyle and material being tapped.

· Reference the EMUGE TapFinder for proper selection.

· Use correct size drill.Recommended size drills listedin EMUGE catalog. Note thatcutting and roll form taps usedifferent size tap drills for samesize thread.

· If in doubt, contact an EMUGERepresentative.

· Check actual drill depth, drillmay have slipped back intoholder.

· Ensure tap drill hole is present.Common problem in multiplespindle applications on transferlines.

· Use tap with different flutegeometry/angle.

· Use a set of taps.

· Select proper cutting speed.· Improve coolant/lubrication to

assist the effects of the tapspeed.

· Use a new tool.· Use surface treated taps.· Improve coolant/lubrication.· Grind away chipped and

damaged teeth.

· Use longer chamfer.· Increase number of tap flutes to

provide more chamfered teeth.

· Use tap holders withaxial/parallel floating.

· Check clamping of part forcorrect alignment.

· Use tap holder with lengthcompensation and torqueoverload system.

· Check selection of tap, carbidetap may be more suitable thenhigh speed steel taps.

Possible Remedy

Problem: Tapping undersized threads (go gage won’t enter/binds up part way into hole)

Possible Cause

■ Tap selected too smallto do multiple regrinds.

■ Area of wear not removedwhen tap wasresharpened.

■ Improper tap for materialand thread application.

■ Go gage binds up partway into hole.

■ Tap selected too small forclass of thread fit required.

· Limit the number of regrinds atap has.

· Use a new tap.

· Grind tap again.· Use a new tap.

· Use suitable tap for the holestyle and material beingtapped.

· Reference the EMUGE TapFinder for proper selection.

· Tap is dull - recondition orreplace tap.

· Avoid too much axial forceduring tapping operation(this caused the tap to cutout of lead)

· Use tap holders with lengthcompensation.

· Review markings on tap anddetermine if it is suitable forclass of fit required.

· If in doubt, contact an EMUGERepresentative.

Possible Remedy

Possible Cause Possible Remedy

Possible Cause Possible Remedy