1graduate institute of precision engineering, national

32
1 A miniature pneumatic energy generator using Kármán vortex street Hai-Dang Tam Nguyen 1 , Huy-Tuan Pham 2 and Dung-An Wang 1 1 Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 40227, Taiwan, ROC 2 Faculty of Engineering and Technology, HCM city Nong Lam University, Linh Trung ward, Thu Duc dist., HCM city, Vietnam Abstract A proof-of-concept of a miniature pneumatic energy generator for harnessing energy from Kármán vortex street behind bluff bodies is presented. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. The tandem arrangement of the bluff bodies is designed to enhance the amplitude of the pressure fluctuation in the vortex street, which vibrates the piezoelectric film. Prototypes of the energy generator are fabricated and tested. Experimental results show that an open circuit output voltage of 14 p mV and an average output power of 0.59 nW are generated when the pressure oscillates with an amplitude of nearly 70 Pa and a frequency of about 872 Hz. This energy harvesting approach has the potential of converting the flow energy of compressed air in a pipeline into electricity for powering wireless sensing devices. Future design guidelines for increasing the electrical power output are suggested based on analyses. Keywords: Pneumatic energy generator; Kármán vortex street; Piezoelectric ____________ * Corresponding author. Tel.:+886-4-22840531; fax:+886-4-22858362 E-mail address: [email protected] (D.-A. Wang).

Upload: others

Post on 19-Apr-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1Graduate Institute of Precision Engineering, National

1

A miniature pneumatic energy generator using Kármán vortex street

Hai-Dang Tam Nguyen1, Huy-Tuan Pham2 and Dung-An Wang1

1Graduate Institute of Precision Engineering, National Chung Hsing University,Taichung 40227, Taiwan, ROC

2Faculty of Engineering and Technology, HCM city Nong Lam University, Linh Trungward, Thu Duc dist., HCM city, Vietnam

Abstract

A proof-of-concept of a miniature pneumatic energy generator for harnessing energy

from Kármán vortex street behind bluff bodies is presented. It converts flow energy into

electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. The

tandem arrangement of the bluff bodies is designed to enhance the amplitude of the

pressure fluctuation in the vortex street, which vibrates the piezoelectric film. Prototypes

of the energy generator are fabricated and tested. Experimental results show that an open

circuit output voltage of 14 pmV and an average output power of 0.59 nW are generated

when the pressure oscillates with an amplitude of nearly 70 Pa and a frequency of about

872 Hz. This energy harvesting approach has the potential of converting the flow energy

of compressed air in a pipeline into electricity for powering wireless sensing devices.

Future design guidelines for increasing the electrical power output are suggested based on

analyses.

Keywords: Pneumatic energy generator; Kármán vortex street; Piezoelectric

____________

* Corresponding author. Tel.:+886-4-22840531; fax:+886-4-22858362

E-mail address: [email protected] (D.-A. Wang).

Page 2: 1Graduate Institute of Precision Engineering, National

2

1. Introduction

A considerable amount of energy can be generated by converting fluid kinetic

energy to electrical energy. Unsteady or turbulent flows provides a unique opportunity to

produce substantial pressure fluctuations which in turn may be utilized by energy-

converting materials for generating electricity. Recently, development of wireless sensor

network (WSN) for industrial process monitoring and control, machine health monitoring

(Okamoto et al., 2009), environment and habitat monitoring, healthcare applications,

home automation, and traffic control demands an economical source of energy without

supply of fuel and replacement of finite power sources. Combination of miniature

pneumatic power systems with WSN systems may provide a solution to this need,

because in some plants pneumatic power is available as long as air flows through the

pipelines.

Miniature pneumatic power systems using turbines can be used to convert

mechanical energy from air flow into electricity (Holmes et al., 2005; Herrault et al.,

2008; Krähenbühl et al., 2009; Lyshevski, 2011). These devices require elaborate

techniques for fabrication of their stator-rotor subcomponents and high rotation speeds

for efficient energy harvesting. A device with simpler structure design and ease of

application is needed to extract energy from fluid motion. The installation of bluff bodies

in pipe-line systems may provide an alternative for harvesting small scale fluid flow

energy. Sanchez-Sanz et al. (2009) accessed the feasibility of using the unsteady forces

generated by the Kármán street around a micro-prism in the laminar flow regime for

energy harvesting. They presented design guidelines for their devices, but fabrication

Page 3: 1Graduate Institute of Precision Engineering, National

3

and experiments of the proposed device are not shown in their work. Allen and Smits

(2001) used a piezoelectric membrane placed behind the Kármán vortex street formed

behind a bluff body to harvest energy from fluid motion (see Fig. 1(a)). They examined

the response of the membrane to vortex shedding. The power output of the membrane is

not presented. Taylor et al. (2001) developed an eel structure of piezoelectric polymer to

convert mechanical flow energy to electrical power (see Fig. 1(b)). They have focused

on characterization and optimization of the individual subsystems of the eel system with

a generation and storage units in a wave tank. Design and deployment of the eel system

need further investigation. Tang et al. (2009) designed a flutter-mill to generate

electricity by extracting energy from fluid flow (see Fig. 1(c)). Their structure is similar

to the eel systems of Allen and Smits (2001) and Taylor et al. (2001). They investigate

the energy transfer between the structure and the fluid flow through an analytical

approach. These authors utilized the flow-induced vibrations of fluid-structure

interaction system to extract energy from the surrounding fluid flow (Blevins, 1990).

The eel structures of Allen and Smits (2001), Taylor et al. (2001) and Tang et al. (2009)

have the potential to generate power from milli-watts to many watts depending on system

size and flow velocity.

Akaydin et al. (2010) investigated energy harvesting from unsteady air flows

using a piezoelectric cantilever beam in the wake of a circular cylinder (see Fig. 1(d)).

The beam is oriented parallel to the incoming flow and fixed at its downstream end.

They demonstrated that the distance of the beam from the vortices and their circulation

affect the output power. The maximum output power was about 4 μW with a value of

Reynolds number of 14800 at the resonance frequency of the beam structure. Zhu et al.

Page 4: 1Graduate Institute of Precision Engineering, National

4

(2010) attached an aerofoil to a cantilever which is placed behind a bluff body in a wind

tunnel (see Fig. 1(e)). Their electromagnetic generator can operate at a wind speed of 2.5

m/sec with a corresponding electrical output power of 470 μW , and an initial

displacement of the aerofoil is required for its operation. One method of increasing

pressure fluctuation amplitudes in a vertex street is to use multiple bluff bodies in tandem

arrangement (see Fig. 1(f)). Fu and Yang (2001) and Peng et al. (2004) reported that dual

bluff body in tandem arrangement can enhance the hydrodynamic vibration generated by

the vortex shedding. Another advantage of the dual bluff body over single bluff body is

the regularity of the vortices (Venugopal et al., 2010).

In this paper, a device for pneumatic energy harvesting from pressure fluctuation

in Kármán vortex street is developed. As shown in Fig. 2(a), the device has a flexible

diaphragm installed on the wall of a flow channel. Two bluff bodies in tandem

arrangement are placed in the flow channel. A piezoelectric film of a cantilever type is

glued to a bulge affixed to the top surface of the flexible diaphragm. The piezoelectric

film can oscillate with the flexible diaphragm due to the vortices shed from the bluff

bodies in an air flow. As illustrated in Fig. 2(b), the flow channel is connected to a flow

source. Pressure in the flow channel behind the bluff bodies may fluctuate with the same

frequency as the pressure variation caused by the Kármán vortex street. As shown in Fig.

2(b), the pressure in the channel causes the diaphragm and the piezoelectric film to

deflect in the upward direction. As the pressure increases to the maximum, the

diaphragm reaches its highest position (Fig. 2(c)). When the pressure drops, the

diaphragm and the piezoelectric film deflect downward (Fig. 2(d)). As the pressure

decreases to the minimum, the diaphragm reaches its lowest position (Fig. 2(e)). Thus,

Page 5: 1Graduate Institute of Precision Engineering, National

5

by connecting the energy generator to a flow source, the oscillating movement of the

diaphragm with the cantilever piezoelectric film attached to it makes the energy

harvesting possible.

The proposed device is similar to a flowmeter used extensively in industries. The

focus is to explore the potential of pneumatic energy harvesting from pipeline systems

using a diaphragm installed on the pipe wall. In order to access the feasibility of the

proposed energy generator, numerical simulations are carried out to estimate the pressure

fluctuations behind the bluff bodies. The performances of single and dual bluff body

arrangement are compared in terms of the pressure amplitude. A prototype of a device

with dual bluff body in tandem arrangement is fabricated. Experimental setup used to

measure the pressure in the flow channel, the deflection and voltage output of the device

is reported. The experimental results are compared with the results of the simulations.

2. Design and Analysis

2.1 Design

Our design of the miniature pneumatic energy generator is based on the pressure

variation induced by the formation of the Kármán vortex street behind bluff bodies in an

air flow channel. The variation of the air pressure in the channel drives a

polydimethylsiloxane (PDMS) diaphragm and a cantilever piezoelectric film into

vibration. The vibration energy is converted to electrical energy by the piezoelectric film

(Howells, 2009). A schematic of the piezoelectric energy generator is shown in Fig. 3(a).

Fig. 3(b) is an exploded view of the energy generator. It consists of a flow channel, two

triangular bluff bodies, a PDMS diaphragm bonded to the channel, and a piezoelectric

Page 6: 1Graduate Institute of Precision Engineering, National

6

film attached to the PDMS diaphragm through a bulge made of acrylic blocks. The

triangular bluff body is selected due to its performance in terms of pressure fluctuation

amplitude. Venugopal et al. (2011) reported that triangular and trapezoidal bluff bodies

give higher wall pressure amplitudes than conical, ring-type and circular bluff bodies.

This harvesting of flow energy via the formation of Kármán vortex street behind

bluff bodies is related to the response of a flexible diaphragm to a periodical pressure

variation of air in a flow channel. Flow past a bluff body creates an unstable wake in the

form of alternating vortices and induces the periodic pressure variation (Violette et al.,

2007). An increase in the amplitude of pressure fluctuation can occur in the downstream

of the bluff bodies in tandem arrangement, as compared to that of a single bluff body (Fu

and Yang, 2001). The frequency at which the vortices are shed from the triangular bluff

body is given by the Strouhal number, St (Chung and Kang, 2000)

UfD /St (1)

where f is the frequency of oscillating flow, D is the characteristic length, and U is

the free-stream velocity. The base length, D , of the isosceles triangular cylinder and the

height of the flow channel, H , are denoted in Fig. 3(a). The separation length of the

bluff bodies, L , is indicated in Fig. 3(b). The triangular cylinder is selected to ensure

that the flow is separated at its sharp edges irrespective of Reynolds numbers (Miau and

Liu, 1990).

The flow considered in this investigation is bounded by the flexible structure and

rigid walls. If the diaphragm has small inertia and is flexible enough to be able to

respond rapidly to the fluctuating pressure field set up by the vortex shedding, one may

expect that the diaphragm may oscillate with a frequency similar to the vortex shedding

Page 7: 1Graduate Institute of Precision Engineering, National

7

frequency. When the fluctuating pressure is applied on the bottom surface of the

diaphragm, the piezoelectric film with one end attached to the diaphragm and the other

end fixed to the upper wall of the flow channel strains laterally. The normal strain causes

electrical charge to accumulate on the piezoelectric electrode, resulting in a voltage in the

thickness direction of the piezoelectric film.

2.2 Model

In order to obtain the pressure fluctuation of the flow behind the bluff bodies,

two-dimensional flow analyses are carried out using a commercial software ANSYS

FLUENT. The dimensions of the device considered in this investigation are indicated in

Fig. 3(b). In the simplified simulations, it is assumed that the flow is bounded by fixed

walls. The effects of the fluid-structure interaction are ignored. Here, the simulations

serve the purposes of estimating the pressure amplitude applied on the flexible diaphragm

and testing the feasibility of the design.

Fig. 4(a) shows the computational domain for the model. The distances of

upstream and downstream boundaries from the fore and aft bodies are 23.53 D and

44.59 D , respectively. The height of the domain and the distance between the fore and

aft bodies are 3.76 D and 2.47 D , respectively. Fig. 4(b) shows a close-up view of the

mesh near the bluff bodies. A mesh for the case of a single bluff body is also created for

comparison of the pressure fluctuation between the dual and single bluff body

arrangement. Fig. 4(c) is a close-up view of the mesh near the single bluff body. The

elements are about 0.25 mm in size near the bluff bodies. The numbers of triangular cells

for the single and dual bluff body cases are 9153 and 9028, respectively. The static

Page 8: 1Graduate Institute of Precision Engineering, National

8

pressure at the center of the flexible diaphragm, indicated by the symbol S as shown in

Fig. 4(b) and (c), is monitored in the simulations. Point S is located D2 downstream of

the aft bluff body. A grid size sensitivity analysis for the dual bluff body case reveals

that there is only 2% of relative error in the amplitude of the pressure fluctuation at point

S by doubling the number of cells near the bluff bodies.

In the investigation, a uniform velocity profile at the inlet along the direction of

the inlet flow is applied. No-slip (zero velocity) conditions all along the channel walls

and the perimeter of the bluff bodies are specified. The standard wall function is used for

the near-wall treatment. The fluid is considered incompressible. It is assumed that only

the relative value of pressure is important, and a zero pressure is applied at the outlet of

the channel. The Reynolds number is calculated in order to determine if the analysis is in

the turbulent region. The Reynolds number of the flow channel can be determined by

/Re DU (2)

where , 1.225 3kg/m , and , 510789.1 secPa , are the density and dynamic

viscosity of the air, respectively. With an inlet velocity of 20.7 m/sec, the calculated Re

is 6024, which is turbulent. The size of time steps can affect the simulation results in a

flow field with high Reynolds numbers. In this investigation, the time step size is chosen

as about 1/100 of vortex shedding period. The chosen time step is nearly 0.05 cT , where

cT = UD/ is the convective time.

2.3 Analyses

Using the k Realizable turbulent model of ANSYS FLUENT, the vorticity

contours and pressure fluctuations in the flow channel are obtained. Fig. 5(a) shows the

Page 9: 1Graduate Institute of Precision Engineering, National

9

instantaneous vorticity contours behind the bluff bodies. A vortex street with alternating

vortices spaced at nearly equal distances extends downstream of the bluff bodies. The

alternative vortex shedding induces periodical pressure fluctuations in the flow channel.

Fig. 5(b) shows the time history of the pressure at the point S for the single and dual bluff

body cases. The pressure difference minmax PP for the single and dual bluff body case

are 154 Pa and 214 Pa, respectively. The pressure fluctuation of the two bluff bodies in

tandem arrangement is nearly 1.5 times more than that of the single bluff body. The ratio

of the separation length, mm5.10L , to the characteristic length, mm25.4D , is 2.5,

which is comparable to the ratio, 3.9, obtained by Peng et al. (2004) with similar dual

bluff body arrangement for achieving maximum hydrodynamic vibrations.

The fundamental shedding frequency for both the single and dual bluff body cases

are 998 Hz based on the fast Fourier transform. Using Eq. (1), the calculated Strouhal

number is nearly 0.20. Venugopal et al. (2011) reported that the value of Strouhal

number varies with Reynolds number for different bluff body configurations. The flow

velocity, 20.7 m/sec, is comparable to the typical value of the speed of the compressed air

in a pipeline, which may be as high as 30 m/sec. Depending on the operating

environment, a pneumatic energy generator can be designed for the suitable range of its

inlet air velocity.

The simulations are carried out in two dimensions. This may be adequate for the

purpose of testing the feasibility of the design, and the results of these simulations are

used to inform the experimental work. The shortcomings of the two-dimensional

simulations should be expected due to the existence of three-dimensionality of flow in the

wake region at higher Reynolds numbers. The existence of spanwise structure in the

Page 10: 1Graduate Institute of Precision Engineering, National

10

wake region of the flow in not captured by the two-dimensional simulations. Also, the

two-dimensional simulations fail to take into account of the end effects which have a

significant influence on the flow. For example, Sohankar et al. (1999) reported that flow

profiles around a square cylinder differ significantly between their two-dimensional and

three-dimensional simulations.

3. Fabrication, experiments and discussions

3.1 Fabrication

In order to verify the feasibility of the proposed energy harvesting device,

prototypes of the energy generator are fabricated. The PDMS diaphragm is fabricated by

a molding process in an acrylic mold. First, an acrylic mold is carved by a milling

machine (PNC-3100, Roland DGA Co., Japan). Next, the PDMS material is poured over

the mold. The PDMS material is composed of two parts, a curing agent and the polymer.

They are mixed with a volume ratio of 1:10. Before pouring into the mold, the mixture is

degassed under vacuum until no bubbles appear. The PDMS is cured at C80o for 40

minutes. Then, the PDMS is peeled off from the mold.

Fig. 3(b) shows the components of the device. The walls, the top plate and the

bottom plate of the flow channel are manufactured by a milling machine. The top plate

of the flow channel with an embedded PDMS diaphragm is attached to the top surface of

the walls. The triangular bluff bodies are inserted through the opening on the side walls

and secured by an adhesive (3M Scotch). Subsequently, an acrylic bulge is glued to the

center of the PDMS diaphragm, and an acrylic anchor is glued to the top plate to provide

a support of a piezoelectric film. The piezoelectric film (LDT0-028K/L, Measurement

Page 11: 1Graduate Institute of Precision Engineering, National

11

Specialties, Inc., US) is glued to the bulge and the acrylic anchor by applying an adhesive

(3M Scotch) to complete the assembly steps. The PDMS flexible diaphragm has a

thickness of 200 μm . The piezoelectric film is a laminated film including a

polyvinylidene fluoride (PVDF) film, two silver electrode layers and a polyester (PE)

layer. The electrode layers with a thickness of 28 μm are attached to the top and bottom

surfaces of the PVDF film of 24 μm. A 125 μm PE layer is laminated to the top surface

of the top electrode layer. Fig. 6 is a photo of an assembled energy generator.

3.2 Experiments

Fig. 7 is a photo of the experimental apparatus for testing of the fabricated device.

The energy generator is fixed on a table. An inlet pipe, which is connected to the outlet

of a wind tunnel manufactured in England by Woods of Colchester Ltd., is run to the inlet

of the energy generator. Air from the wind tunnel is forced into the inlet of the energy

generator. The outlet of the flow channel is kept open to the atmosphere. Fig. 8 is a

schematic of the measurement apparatus. The oscillating deflection of the piezoelectric

film is measured by a laser displacement sensor (CD4, OPTEX FA Co., Ltd., Japan).

The generated voltage of the piezoelectric film is recorded and analyzed by a data

acquisition unit (USB-9234, National Instruments Co., US), which can retrieve data with

24 bit resolution at a sampling rate of 51200 samples/sec per-channel. The pressure in

the flow channel is measured with an acoustic pressure sensor (103B02, PCB

Piezotronics, Inc., US) embedded in the bottom plate of the flow channel, nearly D2

behind the aft bluff body and opposite to the flexible diaphragm. The pressure sensor has

a resonance frequency of more than 13 kHz and a resolution of 0.14 Pa.

Page 12: 1Graduate Institute of Precision Engineering, National

12

The inlet velocity of the energy generator is set at 20.7 m/sec, measured using an

anemometer (SwemaAir 50, Sweden). The experimental results are shown in Fig. 9. Fig.

9(a) shows the pressure history at the bottom plate of the flow channel, where the

pressure oscillates with an averaged amplitude of nearly 70 Pa and a frequency of 872 Hz

during the recording period of 30 msec. The measured deflection history of the free end

of the piezoelectric film is shown in Fig. 9(b). The film oscillates with an average

amplitude of about 1 μm and a frequency of 889 Hz. The measured open circuit voltage

generated by the piezoelectric film is shown in Fig. 9(c). The average amplitude and

frequency of the output voltage is nearly 14 pmV and 876 Hz, respectively. Fig. 9(d-f)

are the power spectral density (PSD) corresponding to Fig. 9(a-c), respectively. Fast

Fourier transform is used to compute the power spectral density.

As seen in Fig. 9(d-f), the measured signals are close together in frequency. It is

evident that the flexible diaphragm and the piezoelectric film oscillate with the pressure

fluctuation. The experiments are carried out at an inlet velocity of 20.7 m/sec which

results in a value of Re = 6024. Akaydin et al. (2010) reported that at Re > 5000

turbulent structures are less organized and some minor fluctuations in forcing frequency

are expected. The frequency noise, below 700 Hz, observed in Fig. 9(e) can be attributed

to the fact that the experimental setup is always contaminated by ambient noise sources.

The frequency of the pressure fluctuation is nearly 872 Hz at which the vortices are shed

from the bluff body. Using Equation (1), the corresponding value of St is estimated as

0.18, which is close to the simulated value, 0.20. The average amplitude of the pressure

fluctuations, 70 Pa, is lower than that based on the simulation, 107 Pa. Pressure

measurements are subjected to inevitable uncertainties. As shown in Fig. 9(a), thefluid’s

Page 13: 1Graduate Institute of Precision Engineering, National

13

pressure can not be maintained for long period, unsimilar to the shedding frequency

which depends only on the shape and size of the bluff body (Venugopal et al., 2011).

Similar pressure fluctuations on the walls of the flow channel with single and dual bluff

body are observed by Miau and Liu (1990) and Peng et al. (2008), respectively.

In order to evaluate the harvesting system, experiments on the electrical power

output of the device are carried out by measuring the voltage drop across a load resistor.

A resistor sweep ranging from 250 kOhm to 350 kOhm is performed. The instantaneous

power can be calculated by

R

VP p

2

(3)

where R is the resistance value of the load and pV is the peak value of the voltage drop

across the load. Fig. 10 shows the average power output as a function of the load

resistance. The maximum of the average power output is found to be 0.59 nW . The

output power of the device is extremely low, rendering the current design of the device

not practical. In order to obtain a higher output power of the miniature pneumatic energy

generator, the dimensions and structure of the device should be redesigned to optimize its

power output, and a piezoelectric material with higher piezoelectric constants can be

adopted. Based on the experiments of Akaydın et al. (2010), the device could harvest

more energy if the flexible diaphragm were placed at specific positions relative to the

vortices shed from the bluff body upstream. The simulated wall pressure distribution

along the streamwise direction obtained for the dual bluff body case shown in Fig. 11

reveals that the maximum pressure fluctuation is located near where the minimum mean

pressure occurs. In the figure, the mean and amplitude of the static pressure fluctuations

are taken as the center value of the error bar and one-half of the length of the error bar,

Page 14: 1Graduate Institute of Precision Engineering, National

14

respectively. Miau and Liu (1990) reported that maximum pressure fluctuation occurs

downstream of the location where the minimum mean pressure is measured for a circular

disk bluff body in a circular pipe. The flexible diaphragm of the device may be moved

upstream in order to increase its electrical power output.

From a geometric viewpoint, the base length, D , of the triangular bluff body

should be large enough in order that the unsteady pressure fluctuations in the wake can be

reflected from flow development near the wall. On the other hand, the base length can

not be too large to result in unnecessary momentum loss (Miau and Liu, 1990). Fig. 12

shows the simulated pressure fluctuations at the center of the flexible diaphragm versus

the blockage ratio, defined by the ratio of the base length of the triangular cylinder to the

height of the flow channel ( HD / ), for the dual bluff body case. In the figure, the center

value of the error bar and one-half of the length of the error bar represent the mean and

amplitude of the static pressure fluctuations, respectively. The aspect ratio of the

triangular cylinder is kept as 1.95, the ratio of the base length (4.25 mm) to the altitude

(2.18 mm) of the triangular cylinder as shown in Fig. 3(b). The pressure fluctuation

increases with the blockage ratio initially, reaches its maximum at HD / =0.33, then

decreases gradually to nearly zero at HD / =0.42. The presence of the walls can inhibit

the vortex shedding completely for the blockage ratio above certain values (Miau and

Hus, 1992). Venugopal et al. (2010) found that a blockage ratio of 0.30 gives the highest

wall pressure amplitude among the three blockage ratios, namely 0.14, 0.24 and 0.30,

considered in their experiments with a trapezoidal bluff body. The blockage ratio of the

fabricated device, HD / =0.27, is not the optimum choice. The performance of the

miniature pneumatic energy generator can be improved using a blockage ratio of 0.33 and

Page 15: 1Graduate Institute of Precision Engineering, National

15

moving the flexible diaphragm upstream based on the simulations. It is noted that

various shapes of bluff bodies and separation lengths between them can also be

considered in the future in order to stabilize and increase the strength of the growing

vortex and therefore to increase the power generation capacity of the proposed device.

If the flexible diaphragm is moved upstream 6 mm where the maximum pressure

fluctuation occurs (nearly 1.54 folds increase in pressure fluctuation compared to the

fabricated device based on the results in Fig. 11), and the blockage ratio of 0.33 is

selected (nearly 1.42 folds increase in pressure fluctuation compared to the fabricated

device based on the results in Fig. 12), the pressure fluctuation of the optimized device is

2.19 times larger than that of the fabricated device by assuming linear multiplication.

Based on the work of Wang et al. (2012) for a miniature hydraulic energy harvester with

a structure similar to the presented device, the instantaneous power P is proportional to

the square of the pressure fluctuation. Therefore, an estimated 4.80 times more power

could have been produced by the device if the set up had been optimized in terms of

device position and blockage ratio.

Energy harvesting wireless sensor networks should operate in one of the sleep

mode and the active mode. Because of the low power density of the energy harvesters,

the harvested energy needs to be stored in a capacitor during the sleep mode of the sensor

and dissipated during the active mode. Typically, the wireless sensor node requires tens

of mW to operate, which is much more than the power output of the presented device.

One to two orders of magnitude reduction in power dissipation of sensor networks are

required for the sensor networks to operate off of energy harvesters. Hempstead et al.

(2005) reported that with selection of process technology and novel circuit design, event-

Page 16: 1Graduate Institute of Precision Engineering, National

16

driven sensor devices can be developed to provide a total active power of ~25 μW and

idle power of ~70 nW . With a duty cycle of 0.1 or less, the average power of their

device may drop to less than 2 μW . To account for the power requirement of the sensor

networks, an energy harvester with an array of structures with resonance frequencies

tuned to the pressure fluctuation frequency can be utilized. The other possible route is to

adopt a piezoelectric film with very high piezoelectric constants to increase power output

of the device. Kuwata et al. (1982) reported a piezoelectric constant of 1500 pC/N of the

0.91PZT-0.09PT material, which is two orders larger than that of the piezoelectric film,

23 pC/N, used in this investigation.

4. Conclusions

A miniature pneumatic energy generator based on pressure fluctuation in a vortex

sheet is developed. The energy is harvested from Kármán vortex street behind two bluff

bodies in tandem arrangement in an air flow. The pressure oscillation due to the Kármán

vortex street in the flow channel of the generator results in a periodical deflection of the

piezoelectric film and therefore the voltage generation. The dual bluff body in tandem

arrangement is found to have a higher pressure fluctuation behind the bluff bodies than

that of the single bluff body case, which is beneficial to the design of the energy

generator considered in this investigation. The open-loop output voltage and average

power of the fabricated device are approximately 14 pmV and 0.59 nW , respectively,

when the pressure oscillates with an amplitude of nearly 70 Pa and a frequency of about

872 Hz. The performance of the miniature pneumatic energy generator can be improved

by using a blockage ratio of 0.33 and placing the center of the flexible diaphragm at a

Page 17: 1Graduate Institute of Precision Engineering, National

17

wall position just above the aft bluff body. A piezoelectric material with higher

piezoelectric constants can be adopted for higher output power of the device. Sources of

pressure fluctuation of Kármán vortex street can be compressed air flow in pipelines, air

flow in tire cavities, or fluid flow in machinery.

Acknowledgement

This work is financially supported by a grant from National Science Council,

Taiwan (Grant Number: NSC 100-2221-E-005-078).

Page 18: 1Graduate Institute of Precision Engineering, National

18

References

Akaydın, H.D., Elvin, N., Andreopoulos, Y., 2010. Wake of a cylinder: a paradigm for

energy harvesting with piezoelectric materials. Experiments in Fluids 49, 291-304.

Allen, J.J., Smits, A.J., 2001. Energy harvesting eel. Journal of Fluids and Structures 15,

629-640.

Blevins, R.D., 1990. Flow-induced vibration 2nd edition. Van Nostrand Reinhold, New

York.

Chung, Y.J., Kang, S.H., 2000. Laminar vortex shedding from a trapezoidal cylinder with

different height ratios. Physics of Fluids 12, 1251-1254.

Fu, X., Yang, H., 2001. Study of hydrodynamic vibrations in dual bluff body vortex

flowmeter. Chinese Journal of Chemical Engineering 9, 123-128.

Hempstead, M., Tripathi, N., Mauro, P., Wei, G.-Y., Brooks, D., 2005. An ultra low

power system architecture for sensor networks applications, in Proceedings of the

32nd International Symposium on Computer Architecture, 4-8 June 2005, pp. 208-

219.

Herrault, F., Ji, C.H., Allen, M.G., 2008. Ultraminiaturized high-speed permanent-

magnet generators for milliwatt-level power generation. Journal of

Microelectromechanical Systems 17, 1376-1387.

Holmes, A.S., Hong, G., Pullen, K.P., 2005. Axial-flux permanent magnet machines for

micropower generation. Journal of Microelectromechanical Systems 14, 54-62.

Howells, C.A., 2009. Piezoelectric energy harvesting. Energy Conversion and

Management 50, 1847-1850.

Krähenbühl, D., Zwyssig, C., Weser, H., Kolar, J.W., 2009. Theoretical and experimental

results of a mesoscale electric power generation system from pressurized gas flow.

Journal of Micromechanics and Microengineering 19, 094009.

Kuwata, J., Uchino, K., Nomura, S, 1982. Dielectric and piezoelectric properties of

332/31/3 0.09PbTiO)ONb0.91Pb(Zn single crystals. Japanese Journal of Applied

Physics 21, 1298-1302.

Lyshevski, S.E., 2011. High-power density miniscale power generation and energy

harvesting systems. Energy Conversion and Management 52, 46-52.

Miau, J.J., Hus, M.T., 1992. Axisymmetric-type vortex shedders for vortex flowmeters.

Page 19: 1Graduate Institute of Precision Engineering, National

19

Flow Measurement and Instrumentation 3, 73-79.

Miau, J.J., Liu, T.W., 1990. Vortex flowmeter designed with wall pressure measurement.

Review of Scientific Instruments 61, 2676-2681.

Okamoto, H., Suzuki, T., Mori, K., Cao, Z., Onuki, T., Kuwano, H., 2009. The

advantages and potential of electret-based vibration-driven micro energy harvesters.

International Journal of Energy Research 33, 1180-1190.

Peng, J., Fu, X., Chen, Y., 2004. Flow measurement by a new type vortex flowmeter of

dual triangulate bluff body. Sensors and Actuators A 115, 53-59.

Peng, J., Fu, X., Chen, Y., 2008. Experimental investigations of Strouhal number for

flows past dual triangulate bluff bodies. Flow Measurement and Instrumentation 19,

350-357.

Sanchez-Sanz, M., Fernandez, B., Velazquez, A., 2009. Energy-harvesting

microresonator based on the forces generated by the Kammon street around a

rectangular prism. Journal of Microelectromechanical Systems 18, 449-457.

Sohankar, A., Norberg, C., Davidson, L., 1999. Simulation of three-dimensional flow

around a square cylinder at moderate Reynolds numbers. Physics of Fluids 11, 288-

306.

Taylor, G.W., Burns, J.R., Kammann, S.M., Powers, W.B., Welsh, T.R., 2001. The

energy harvesting eel: A small subsurface ocean/river power generator. IEEE

Journal of Oceanic Engineering 26, 539-547.

Tang, L., Païdoussis, M.P., Jiang, J., 2009. Cantilevered flexible plates in axial flow:

Energy transfer and the concept of flutter-mill. Journal of Sound and Vibration 326,

263-276.

Violette, R., de Langre, E., Szydlowski, J., 2007. Computation of vortex-induced

vibrations of long structures using a wake oscillator model: Comparison with DNS

and experiments. Computers & Structures 85, 1134-1141.

Venugopal, A., Agrawal, A., Prabhu, S.V., 2010. Influence of blockage and upstream

disturbances on the performance of a vortex flowmeter with a trapezoidal bluff body.

Measurement 43, 603-616.

Venugopal, A., Agrawal, A., Prabhu, S.V., 2011. Review on vortex meter –Designer

perspective. Sensors and Actuators A 170, 8-23.

Page 20: 1Graduate Institute of Precision Engineering, National

20

Venugopal, A., Agrawal, A., Prabhu, S.V., 2011. Influence of blockage and shape of a

bluff body on the performance of vortex flowmeter with wall pressure measurement.

Measurement 44, 954-964.

Wang, D.-A., Chao, C.-W., Chen, J.-H., 2012. A miniature hydro energy harvester based

on pressure fluctuation in Kármán vortex street. Journal of Intelligent Material

Systems and Structures , DOI: 10.1177/1045389X12467517.

Zhu, D., Beeby, S., Tudor, J., White, N., Harris, N., 2010. A novel miniature wind

generator for wireless sensing applications, The 9th IEEE Conference on Sensors

2010, Waikoloa, Hawaii, USA, November 1-4, 2010.

Page 21: 1Graduate Institute of Precision Engineering, National

21

Fig. 1. Schematic diagrams of the devices of (a) Allen and Smits (2001); (b) Taylor et al.(2001); (c) Tang et al. (2009); (d) Akaydin et al. (2010); (e) Zhu et al. (2010); (f) Fu andYang (2001).

Page 22: 1Graduate Institute of Precision Engineering, National

22

Fig. 2. Operation of a piezoelectric energy generator.

Page 23: 1Graduate Institute of Precision Engineering, National

23

Fig. 3. (a) An assembled energy generator. (b) An exploded view of the energygenerator.

Page 24: 1Graduate Institute of Precision Engineering, National

24

Fig. 4. (a) Computational domain for flow over two bluff bodies in tandem arrangement.(b) A close-up view of the mesh near the bodies. (c) A close-up view of the mesh forflow over a single bluff body.

Page 25: 1Graduate Institute of Precision Engineering, National

25

Fig. 5. (a) Instantaneous contours of vorticity magnitude for flow over two bluff bodiesin tandem arrangement. (b) Time histories of static pressure.

Page 26: 1Graduate Institute of Precision Engineering, National

26

Fig. 6. Assembled energy generator.

Page 27: 1Graduate Institute of Precision Engineering, National

27

Fig. 7. A photo of the experimental setup.

Page 28: 1Graduate Institute of Precision Engineering, National

28

Fig. 8. A schematic of the measurement apparatus.

Page 29: 1Graduate Institute of Precision Engineering, National

29

Fig. 9. Experimental results. (a) Pressure variation at the flexible diaphragm center. (b)Deflection of the free end of the cantilever piezoelectric film. (c) Output voltage of thepiezoelectric film. (d-f) Power spectral density corresponding to (a-c).

Page 30: 1Graduate Institute of Precision Engineering, National

30

Fig. 10. Experimental average power versus load resistance.

Page 31: 1Graduate Institute of Precision Engineering, National

31

Fig. 11. Simulated wall static pressure distribution along the streamwise direction.

Page 32: 1Graduate Institute of Precision Engineering, National

32

Fig. 12. Simulated static pressure fluctuations at the flexible diaphragm center versusblockage ratios of the flow channel.