3 phase fault detection (2).docx

60
Bansal Institute of Science &Technology Kokta, Anand nagar, Bhopal (M.p) (RGPV, BHOPAL) PRESENTATION SYNOPSIS PRESENTATION ON: “3 Phase Fault Detection’ Department of electrical & Electronics (EX) SUBMITTED TO: - SUBMITTED BY:- Prof.:- Ravi Verma Niraj kumar Head of the electrical & electronics Department:- Mr. Ravi Verma

Upload: aditya-srivastawa

Post on 28-Oct-2015

574 views

Category:

Documents


3 download

DESCRIPTION

3 phase fault detection in the three phase power supply

TRANSCRIPT

Page 1: 3 PHASE FAULT DETECTION (2).docx

Bansal Institute of Science &Technology Kokta, Anand nagar, Bhopal (M.p)

(RGPV, BHOPAL)

PRESENTATION SYNOPSISPRESENTATION ON:

“3 Phase Fault Detection’Department of electrical &

Electronics (EX)

SUBMITTED TO: - SUBMITTED BY:-

Prof.:- Ravi Verma Niraj kumar

Head of the electrical & electronics Department:-

Mr. Ravi Verma

Page 2: 3 PHASE FAULT DETECTION (2).docx

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

BANSAL INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL (M.P)

May, 2012

CERTIFICATEI hereby certify that the work which is being presented in the B.E. Minor Project Report entitled

“3 PHASE FAULT DETECTION” , in partial fulfillment of the requirements for the award of the degree of

Bachelor of Engineering in Electrical and Electronics Engineering and submitted to the Department of

Electrical and Electronics Engineering , Bansal Institute of Science and Technology , Bhopal (M.P.) is an

authentic record of my team work carried out during the period from Jan 2012 to April 2012 under the

supervision of Prof. Ravi Verma EX Department.

The content presented in this project has not been submitted by my team for the award of any

other degree elsewhere.

Signature of Candidate

Niraj Kumar

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Date:

Project Coordinator HOD Principal

Prof. – Ravi Verma Ravi Verma prof. A.M Jain

Page 3: 3 PHASE FAULT DETECTION (2).docx

ACKNOWLEDGMENT

This project involved the collection and analysis of information from a wide variety of sources and the efforts of many people beyond us. Thus it would not have been possible to achieve the results reported in this document without their help, support and encouragement.

I would like to express my gratitude to the following people for their help in the work leading to this report:

Prof. A.M Jain sir Principal BIST Bhopal (M.P) for providing us with an environment to complete our project successfully.

Prof. Ravi Verma Head, Department of Electrical and Electronics branch, who modeled us both technically and morally for achieving the greater success to complete the project and for organizing and coordinating the B.E. Projects’ 2012.

Prof. Ravi Verma Project Coordinator for their useful comments on the

subject matter and for the knowledge I gained by sharing ideas with them.

We also thank all the staff members of our department, college and technicians for their help in making this project a successful one.

Finally, we take this opportunity to extend our deep appreciation to our family and friends, for all that they meant to us during the crucial times of the completion of our project.

Niraj Kumar

Page 4: 3 PHASE FAULT DETECTION (2).docx

CONTENTS

1. INTRODUCTION

2. CIRCUIT DIAGRAM

3. P.C.B LAYOUT

4. WORKING

5. APPLICATIONS

6. LIMITATION

7. FUTURE ENHANCEMENT

8. COMPONENT LIST

9. COMPONENT DESCRIPTION

10. SOFTWARE

11. REFERENCES

Page 5: 3 PHASE FAULT DETECTION (2).docx

INTRODUCTION

Three phase fault detector projects equipments mostly motors from

destructive line conditions. When one of the 3 phases goes off the 3 phase

fault detector/analyzer detects and the buzzer starts operating and the

relay gets connected to the motor and the motor is prevented from getting

damaged.

The output of the relay can be used either in set mode or reset mode , as

well as the output of the relay can be used any where 3 phase supply is

needed like heavy machines , power supplies etc.

The linear advantage of this circuit is that it cans automatically saves the

complete system being get damaged automatically as well as it also

provides a check on the phase which gets start after the disruption.

Page 6: 3 PHASE FAULT DETECTION (2).docx
Page 7: 3 PHASE FAULT DETECTION (2).docx
Page 8: 3 PHASE FAULT DETECTION (2).docx
Page 9: 3 PHASE FAULT DETECTION (2).docx

PCB LAYOUT

WORKING

The ckt consists of 3 optopccouplers which are connected to the main supply. The 230v main ac supply is step down to the required level by the use of step down transformer. The optocouplers consist of a LED and an open transistor. The transistor and LED are optically coupled. When the +ve of ac supply is applied a large reverse voltage appears across the opt coupler which may damage the LED, thus to avoid this LED in opposite polarity is connected in parallel to the opt coupler LED. Which operates for the negative pulse? A capacitor is connected in series to the opt coupler this capacitor gets charged for the negative cycle but the charge is not the large enough to cross the threshold level. So that it can show logic 1. Therefore both the positive and negative logic 0 appears at the or gate so the output of or gate is low and the 555 timer does not operate.

But when any one of phase goes off at that time the optocoupler corresponding to that phase does not operate and the capacitor

Page 10: 3 PHASE FAULT DETECTION (2).docx

connected begins to charge and when it cross the threshold value the corresponding input to the OR gate becomes high and thus the o/p of OR gate is high. As a result the capacitor connected to the OR gate starts charging and after the time period of 1.1 RC gets fully charged. During this duration the 555 timer does not operate as the required voltage level does not appear across the pins 2 & 6 of the 555 timer.

After this duration voltage at pin 2&6 becomes equal to the desired voltage as the capacitor starts discharging. And till the duration the i/p across the pin 2&6 does not becomes less than 2/3 vcc, the o/p of pin 3 of 555 timer becomes high as a result the transistor whose collector is connected to the relay starts operating and the relay also starts operating and the buzzer is on and hence we get the indication that all the 3 phases of the supply are not present…

Page 11: 3 PHASE FAULT DETECTION (2).docx

COMPONENT LIST

1. IC’s

Number Quantity Rate/P.

CD4075 1 22.00

NE555 1 12.00

LM7805 1 10.00 4N35 3 30.00

2. Transistors

Page 12: 3 PHASE FAULT DETECTION (2).docx

BC548B 1 3.00

3. Light Emitting Diodes (LED’s)

Red 4 1.50

4. Diodes

1N4007 3 1.50

5. Electrolytic Capacitors

1000F/25V 1 7.00

100F/25V 1 4.00

1F/25V 3 3.00

6. Ceramic Capacitors

104pf 1 1.00

7. Carbon Resistors (0.25W)

220K 7 0.251K 3 0.25

3.3k 1 0.25

Page 13: 3 PHASE FAULT DETECTION (2).docx

100E 1 0.25

8. Relays

12V/200E 1 25.00

9. Transformers

9/0/9 500mA 1 40.00

10. PCB

3” X 4” 1 90.00

11. Miscellaneous

IC Base (14 pin) 1 6.00

IC Base (8 pin) 4 3.00Mains Cable 1 15.00

Ferric Chloride 100gms. 40.00

Soldering Wire 20gms. 12.00

Connecting wires 2mtrs. 10.00

Soldering Paste 10gms. 5.00

Page 14: 3 PHASE FAULT DETECTION (2).docx

COMPONENT DESCRIPTION

RESISTORS: -

The electrical resistance of a circuit component or device is defined as the ratio of the voltage applied to the electric current which flows through it:

If the resistance is constant over a considerable range of voltage, then Ohm's law, I = V/R, can be used to predict the behavior of the material. Although the definition above involves DC current and voltage, the same definition holds for the AC application of resistors.

A Resistor is a heat-dissipating element and in the electronic circuits

it is mostly used for either controlling the current in the circuit or

developing a voltage drop across it, which could be utilized for many

Page 15: 3 PHASE FAULT DETECTION (2).docx

applications. There are various types of resistors, which can be classified

according to a number of factors depending upon:

(I) Material used for fabrication

(II) Wattage and physical size

(III) Intended application

(IV) Ambient temperature rating

(V) Cost

Basically the resistor can be split in to the following four parts from the

construction viewpoint.

(1) Base

(2) Resistance element

(3) Terminals

(4) Protective means.

The following characteristics are inherent in all resistors and may be

controlled by design considerations and choice of material i.e.

Temperature co–efficient of resistance, Voltage co–efficient of resistance,

high frequency characteristics, power rating, tolerance & voltage rating of

resistors. Resistors may be classified as

(1)Fixed

(2)Semi variable

(3)Variable resistor.

Resistor Combinations :The combination rules for any number of

resistors in series or parallel can be derived with the use of Ohm's Law, the

Page 16: 3 PHASE FAULT DETECTION (2).docx

voltage law, and the current law

In our project carbon resistors are being used

CAPACITORS

The fundamental relation for the capacitance between two flat plates

separated by a dielectric material is given by:-

Page 17: 3 PHASE FAULT DETECTION (2).docx

C=0.08854KA/D

Where: -

C= capacitance in pf.

K= dielectric constant

A=Area per plate in square cm.

D=Distance between two plates in cm

Design of capacitor depends on the proper dielectric material with

particular type of application. The dielectric material used for capacitors

may be grouped in various classes like Mica, Glass, air, ceramic, paper,

Aluminum, electrolyte etc. The value of capacitance never remains

constant. It changes with temperature, frequency and aging. The

capacitance value marked on the capacitor strictly applies only at

specified temperature and at low frequencies.

Page 18: 3 PHASE FAULT DETECTION (2).docx

LED (Light Emitting Diodes)

As its name implies it is a diode, which emits light when forward biased.

Charge carrier recombination takes place when electrons from the N-

side cross the junction and recombine with the holes on the P side.

Electrons are in the higher conduction band on the N side whereas holes

are in the lower valence band on the P side. During recombination, some

of the energy is given up in the form of heat and light. In the case of

semiconductor materials like Gallium arsenide (GaAs), Gallium

phosphate (Gap) and Gallium arsenide phosphate (GaAsP) a greater

percentage of energy is released during recombination and is given out

in the form of light. LED emits no light when junction is reversing biased.

Page 19: 3 PHASE FAULT DETECTION (2).docx

TRANSISTOR: -

A transistor consists of two junctions formed by sandwiching either

p-type or n-type semiconductor between a pair of opposite types.

Accordingly, there are two types of transistors namely: -

(1) n-p-n transistor (2) p-n-p transistor

(NPN) (PNP)

An n-p-n transistor is composed of two n-type semiconductors separated

by a thin section of p type. However a p-n-p transistor is formed by two p

sections separated by a thin section of n-type. In each type of transistor

the following points may be noted.

1. There are two p-n junctions; therefore a transistor may be

regarded as combination of two diodes connected back to back.

2. There are three terminals taken from each type of semiconductor.

Page 20: 3 PHASE FAULT DETECTION (2).docx

3. The middle section is a very thin layer, which is the most important

factor in the functioning of a transistor.

4. Transistor can be used as an Amplifier also.

A transistor raises the strength of a weak signal and thus acts as an

amplifier. The weak signal is applied between emitter base junction and

output is taken across the load RC connected in the collector circuit (in

common emitter configuration). In order to achieve faithful

amplification, the input circuit should always remain forward biased. To

do so, a dc voltage is applied in the input in addition to the signal. This dc

Voltage is known as biasing voltage and its magnitude and polarity

should be such that it always keeps the input circuit forward biased

regardless of the polarity to the signal to be amplified.

As the input circuit has low resistance a small change in signal

voltage causes an appreciable change in emitter current. This causes

change in collector current (by a factor called current gain of transistor)

due to transistor action. The collector current flowing through a high

load resistance RC produces a large voltage across it. Thus a weak signal

applied to the input circuit appears in the amplified form in the collector

circuit. This is how a transistor acts as an amplifier.

Page 21: 3 PHASE FAULT DETECTION (2).docx

Transistor may be used in different configuration like CB (common base)

& CC (common collector) according to requirements of amplifier

(impedance matching, buffer amplifier etc.).

TRANSFORMER

Definition: -

The transformer is a static electro-magnetic device that transforms

one alternating voltage (current) into another voltage (current).

However, power remains the some during the transformation.

Page 22: 3 PHASE FAULT DETECTION (2).docx

Transformers play a major role in the transmission and distribution of ac

power.

Principle: -

Transformer works on the principle of mutual induction. A

transformer consists of laminated magnetic core forming the magnetic

frame. Primary and secondary coils are wound upon the two cores of the

magnetic frame, linked by the common magnetic flux. When an

alternating voltage is applied across the primary coil, a current flows in

the primary coil producing magnetic flux in the transformer core. This

flux induces voltage in secondary coil.

Transformers are classified as: -

(a) Based on position of the windings with respect to core i.e.

(1) Core type transformer

(2) Shell type transformer

(b) Transformation ratio:

Page 23: 3 PHASE FAULT DETECTION (2).docx

(1) Step up transformer

(2) Step down transformer

(a) Core & shell types: Transformer is simplest electrical machine,

which consists of windings on the laminated magnetic core. There

are two possibilities of putting up the windings on the core.

(1) Winding encircle the core in the case of core type transformer

(2) Cores encircle the windings on shell type transformer.

(b) Step up and Step down: In these Voltage transformation takes

place according to whether the

Primary is high voltage coil or a low voltage coil.

(1) Lower to higher-> Step up

(2) Higher to lower-> Step down

DIODES - +

Page 24: 3 PHASE FAULT DETECTION (2).docx

It is a two terminal device consisting of a P-N junction formed

either of Ge or Si crystal. The P and N type regions are referred to as

anode and cathode respectively. Commercially available diodes usually

have some means to indicate which lead is P and which lead is N.

RELAY

In this circuit a 12V magnetic relay is used. In magnetic relay,

insulated copper wire coil is used to magnetize and attract the

plunger .The plunger is normally connected to N/C terminal. A spring is

connected to attract the plunger upper side. When output is received by

relay, the plunger is attracted and the bulb glows.

Page 25: 3 PHASE FAULT DETECTION (2).docx

SOFTWARE

Dip Trace

Dip Trace is a complete state-of-the-art PCB Design System. It includes:

PCB Layout — PCB designs with an easy to use manual routing tools, auto-router and auto-placer.

Schematic — Schematic Capture and export to PCB or Spice. Pattern Editor — allows you to create part footprints. Component Editor — allows you to draw parts and make

components.

Dip Trace provides the following features:

Easy to learn user interface

To design a schematic, simply select and place components onto your document and connect them together using the wire and bus tools. Multisheet design is supported. Then select the menu option 'Convert to PCB' to convert the schematic to PCB. Layout can be updated from Schematic in a few clicks at anytime. When you create or edit design objects they are highlighted to improve your work. Step-by-step tutorial available from web-site guides you through the design process and allows to get started with ease.

Page 26: 3 PHASE FAULT DETECTION (2).docx

Smart placement and auto-placement features

After converting Schematic to PCB layout, place board outline and arrange components. Then use "placement by list" for chips/connectors and auto-placement for other components to get acceptable result in a few minutes and start routing.

Easy to use manual and powerful automatic routing

Dip Trace PCB software includes an advanced automatic router that is able to route single-layer and multi-layer boards. It is available with a 'rip-up and retry' algorithm. Auto router achieves high completion rates by going back and re-routing nets to make space for connections that could not be routed on a previous pass. Intelligent manual routing tools allow you to create and edit traces by 90, 45 degree or without any limitations. Through, blind or buried visa can be used in automatic and manual routing. Unlimited board size is supported.

Shape-based copper pour

Powerful copper pour system can help to reduce your manufacturing costs by minimizing the amount of etching solution required. To use it, all you have to do is insert a copper area on your board in the PCB Layout program and any pad or trace inside the selected area will be automatically surrounded with a gap of the desired size. Using copper pour you can also create planes and connect them to pads and visa (different thermal types are supported).

Advanced Verification Features

Page 27: 3 PHASE FAULT DETECTION (2).docx

Schematic and PCB design modules have number of verification features that help control project accuracy on different design stages: The ERC function shows possible errors in Schematic pin connections using defined rules and allows you to correct errors step-by-step. DRC function checks the clearance between design objects, minimum size of traces, and drills. Errors are displayed graphically and you can fix them step-by-step and rerun the DRC in one click after any corrections. Net Connectivity Check verifies if all nets of PCB are electrically connected. This feature uses traces; copper pour filled area and shapes to control connectivity, and then reports broken and merged nets with area details. Comparing to Schematic allows you to check if routed PCB is identical with Schematic.

Spice Support

Using Dip Trace Schematic or Component Editor specify spice settings or attach models to the components. Then export .cir net-list of your Schematic to LT Spice or another simulation software to verify how it works.

Import/Export Features

Package modules allow you to exchange schematics, layouts and libraries with other EDA and CAD packages. Dip Trace Schematic Capture and PCB Layout also support Accel, Allegro, Mentor, PADS, P-CAD, Protel and Tango net list formats.

Manufacturing output formats

Dip Trace provides support for a number of different manufacturing output formats. Using this PCB software you can produce N/C Drill files for numerically controlled (N.C.) drilling machines and RS-274X Gerber files for sending to board manufacturers. Vector zing function allows exporting true-type fonts and raster images. Also Dip Trace supports DXF output.

Page 28: 3 PHASE FAULT DETECTION (2).docx

Standard component libraries

Dip Trace package includes component and pattern libraries, which contain 50.000+ components from different manufacturers.

Creation of your own libraries

Component and Pattern Editors allow designing your own symbols and patterns. To create complete components simply connect them together using Component Editor.

PCB Design Service

We recognize that there may come a time when you need to get a project urgently completed or just don't have the resources to do it. So our Engineering Department offers the following services:

Designing single-, double- and multilayer printed circuit boards; High density of component layout, subject to assembly conditions; Designing boards with analog, digital and mixed components; PCB routing for high-speed, including routing of differential pairs

and impedance control routing; RF Circuits; Designing boards for high voltage; Flex Circuits; Library creation.

Design process includes:

Page 29: 3 PHASE FAULT DETECTION (2).docx

Creation of schematic file (if it's not provided by the customer); Creation of a library with missing components; Schematic verification (ERC); Importing Schematic or Net list into PCB Layout; Routing the layout (automatic and/or manual); Comparing PCB Layout to existing Schematic; Routing quality analysis (DRC, Connectivity check, Impedance

control, etc.), making necessary changes; Adjustment of Dip Trace PCB Layout file based on customer

comments; Creation of Gerber/Drill/DXF files for PCB manufacturing, checking

files using Dip Trace and third-party viewers; Preparing all the documents needed.

When design is finished, the customer receives the following files:

Dip Trace Schematic and PCB files; Gerber and Drill files, DXF file (all files formatted to meet your PCB

manufacture’s requirements); Bill of materials (Excel compatible format); Layout chart to assemble components, Pick and Place report (Excel

compatible format and/or text file); Other documents, if needed.

Please provide the following details to get final quote and start working:

Dip Trace Schematic (.dch file), Schematic picture (JPEG, GIF or PNG) or net list (Accel, Allegro, Mentor, PADS, P-CAD, Protel 2.0 or Tango).

Size of PCB, the drawing is preferred for complex board outline (DXF or picture); mounting hole diameters and positions, component positions if required, areas free from traces (if such exist), etc.

Page 30: 3 PHASE FAULT DETECTION (2).docx

Trace width, clearance, via size, ring size, etc. Number of layers (fixed or preferred). Datasheets or drawings for non-standard components. Your PCB manufacturer or his requirements. Your other requirements.

P.C.B. MANUFACTURING PROCESS

It is an important process in the fabrication of electronic

equipment. The design of PCBs (Printed Circuit Boards) depends on

Page 31: 3 PHASE FAULT DETECTION (2).docx

circuit requirements like noise immunity, working frequency and voltage

levels etc. High power PCBs requires a special design strategy.

The fabrication process to the printed circuit board will determine

to a large extent the price and reliability of the equipment. A common

target aimed is the fabrication of small series of highly reliable

professional quality PCBs with low investment. The target becomes

especially important for customer tailored equipments in the area of

industrial electronics.

The layout of a PCB has to incorporate all the information of the board

before one can go on the artwork preparation. This means that a concept

which clearly defines all the details of the circuit and partly defines the

final equipment, is prerequisite before the actual lay out can start. The

detailed circuit diagram is very important for the layout designer but he

must also be familiar with the design concept and with the philosophy

behind the equipment.

BOARD TYPES:

The two most popular PCB types are:

Page 32: 3 PHASE FAULT DETECTION (2).docx

1. Single Sided Boards

The single sided PCBs are mostly used in entertainment electronics

where manufacturing costs have to be kept at a minimum.

However in industrial electronics cost factors cannot be neglected

and single sided boards should be used wherever a particular

circuit can be accommodated on such boards.

2. Double Sided Boards

Double-sided PCBs can be made with or without plated through

holes. The production of boards with plated through holes is fairly

expensive. Therefore plated through hole boards are only chosen

where the circuit complexities and density of components does not

leave any other choice.

DESIGN SPECIFICATION

(I) STEPS TAKEN WHILE PREPARING CIRCUIT

(A) PCB DESIGNING

Page 33: 3 PHASE FAULT DETECTION (2).docx

The main purpose of printed circuit is in the routing of electric

currents and signal through a thin copper layer that is bounded firmly to

an insulating base material sometimes called the substrate. This base is

manufactured with integrally bounded layers of thin copper foil which has

to be partly etched or removed to arrive at a pre-designed pattern to suit

the circuit connections or other applications as required.

The term printed circuit board is derived from the original method

where a printed pattern is used as the mask over wanted areas of

copper. The PCB provides an ideal baseboard upon which to assemble

and hold firmly most of the small components.

From the constructor’s point of view, the main attraction of using

PCB is its role as the mechanical support for small components. There is

less need for complicated and time consuming metal work of chassis

contraception except perhaps in providing the final enclosure. Most

straight forward circuit designs can be easily converted in to printed

wiring layer the thought required to carry out the inversion cab footed

high light an possible error that would otherwise be missed in

conventional point to point wiring .The finished project is usually neater

and truly a work of art.

Page 34: 3 PHASE FAULT DETECTION (2).docx

Actual size PCB layout for the circuit shown is drawn on the copper

board. The board is then immersed in FeCl3 solution for 12 hours. In this

process only the exposed copper portion is etched out by the solution.

Now the petrol washes out the paint and the copper layout on PCB

is rubbed with a smooth sand paper slowly and lightly such that only the

oxide layers over the Cu are removed. Now the holes are drilled at the

respective places according to component layout as shown in figure.

(B) LAYOUT DESIGN:

When designing the layout one should observe the minimum size

(component body length and weight). Before starting to design the layout

we need all the required components in hand so that an accurate

assessment of space can be made. Other space considerations might also

be included from case to case of mounted components over the printed

circuit board or to access path of present components.

It might be necessary to turn some components around to a different

angular position so that terminals are closer to the connections of the

components. The scale can be checked by positioning the components on

Page 35: 3 PHASE FAULT DETECTION (2).docx

the squared paper. If any connection crosses, then one can reroute to

avoid such condition.

All common or earth lines should ideally be connected to a common line

routed around the perimeter of the layout. This will act as the ground

plane. If possible try to route the outer supply line to the ground plane. If

possible try to route the other supply lines around the opposite edge of

the layout through the center. The first set is tearing the circuit to

eliminate the crossover without altering the circuit detail in any way.

Plan the layout looking at the topside to this board. First this should

be translated inversely; later for the etching pattern large areas are

recommended to maintain good copper adhesion. It is important to bear

in mind always that copper track width must be according to the

recommended minimum dimensions and allowance must be made for

increased width where termination holes are needed. From this aspect,

it can become little tricky to negotiate the route to connect small

transistors.

There are basically two ways of copper interconnection patterns

underside the board. The first is the removal of only the amount of

copper necessary to isolate the junctions of the components to one

another. The second is to make the interconnection pattern looking

Page 36: 3 PHASE FAULT DETECTION (2).docx

more like conventional point wiring by routing uniform width of copper

from component to component.

(C) ETCHING PROCESS:

Etching process requires the use of chemicals. Acid resistant dishes

and running water supply. Ferric chloride is mostly used solution but

other etching materials such as ammonium per sulphate can be used.

Nitric acid can be used but in general it is not used due to poisonous

fumes.

The pattern prepared is glued to the copper surface of the board

using a latex type of adhesive that can be cubed after use. The pattern is

laid firmly on the copper using a very sharp knife to cut round the

pattern carefully to remove the paper corresponding to the required

copper pattern areas. Then apply the resistant solution, which can be a

kind of ink solution for the purpose of maintaining smooth clean outlines

as far as possible. While the board is drying, test all the components.

Before going to next stage, check the whole pattern and cross check With the circuit diagram. Check for any free metal on the copper. The

etching bath should be in a glass or enamel disc. If using crystal of ferric-

Page 37: 3 PHASE FAULT DETECTION (2).docx

chloride these should be thoroughly dissolved in water to the proportion

suggested. There should be 0.5 lt. of water for 125 gm of crystal.

To prevent particles of copper hindering further etching, agitate

the solutions carefully by gently twisting or rocking the tray.

The board should not be left in the bath a moment longer than is

needed to remove just the right amount of copper. Inspire of there being

a resistive coating there is no protection against etching away through

exposed copper edges. This leads to over etching. Have running water

ready so that etched board can be removed properly and rinsed. This will

halt etching immediately.

Drilling is one of those operations that call for great care. For most

purposes a 0.5mm drill is used. Drill all holes with this size first those that

need to be larger can be easily drilled again with the appropriate larger

size.

(D) COMPONENT ASSEMBLY: -

Page 38: 3 PHASE FAULT DETECTION (2).docx

From the greatest variety of electronic components available,

which runs into thousands of different types it is often a perplexing task

to know which is right for a given job.

There could be damage such as hairline crack on PCB. If there are,

then they can be repaired by soldering a short link of bare copper wire

over the affected part.

The most popular method of holding all the items is to bring the

wires far apart after they have been inserted in the appropriate holes.

This will hold the component in position ready for soldering.

Some components will be considerably larger .So it is best to start

mounting the smallest first and progressing through to the largest.

Before starting, be certain that no further drilling is likely to be necessary

because access may be impossible later.

Next will probably be the resistor, small signal diodes or other

similar size components. Some capacitors are also very small but it would

be best to fit these afterwards. When fitting each group of components

mark off each one on the circuit as it is fitted so that if we have to leave

the job we know where to recommence.

Although transistors and integrated circuits are small items there are

good reasons for leaving the soldering of these until the last step. The

Page 39: 3 PHASE FAULT DETECTION (2).docx

main point is that these components are very sensitive to heat and if

subjected to prolonged application of the soldering iron, they could be

internally damaged.

All the components before mounting are rubbed with sand paper

so that oxide layer is removed from the tips. Now they are mounted

according to the component layout.

(E) SOLDERING: -

This is the operation of joining the components with PCB after this

operation the circuit will be ready to use to avoid any damage or fault

during this operation following care must be taken.

1. A longer duration contact between soldering iron bit & components

lead can exceed the temperature rating of device & cause partial or total

damage of the device. Hence before soldering we must carefully read the

maximum soldering temperature & soldering time for device.

2. The wattage of soldering iron should be selected as minimum as

permissible for that soldering place.

3. To protect the devices by leakage current of iron its bit should be

earthed properly.

Page 40: 3 PHASE FAULT DETECTION (2).docx

4. We should select the soldering wire with proper ratio of Pb & Tin to

provide the suitable melting temperature.

5. Proper amount of good quality flux must be applied on the soldering

point to avoid dry soldering.

APPLICATIONS:

Identify and locate – Faults & defects in any of the 3 on line phases.

Page 41: 3 PHASE FAULT DETECTION (2).docx

Condition based monitoring of faults, in line variations, during commissioning

And while in-service.

It can be used by itself or in conjunction with

Other in-service test results for assisting in decision make-

Ing process or switching.

ADVANTAGES:

Rapid Results – It is quick and easy to

Configure, giving results in seconds

Reliability and Ease of Use – It produces

High quality results with high repeatability allowing for

Rapid and reliable decision making

Rugged and Reliable – It is a circuit with outstanding durability for field use

Simple User-friendly interface

LIMITATIONS:

It is only useful for house-hold or low voltages up to 230 volts

Page 42: 3 PHASE FAULT DETECTION (2).docx

It is not usable for H.T Lines

FUTURE PROSPECTIVE:

It can be made more reliable and useful by employing microcontroller

LCD displays &

Sensors.

It can be employed for Hotlines with the use of high ratings relays, in conjunction with Instrument Transformers.

CHRONOLOGY

The following steps have been followed in carrying out the project.

Page 43: 3 PHASE FAULT DETECTION (2).docx

1. Study the books on the relevant topic.

2. Understand the working of the circuit.

3. Prepare the circuit diagram.

4. Prepare the list of components along with their specification.

Estimate the cost and procure them after carrying out market

survey.

5. Plan and prepare PCB for mounting all the components.

6. Fix the components on the PCB and solder them.

7. Test the circuit for the desired performance.

8. Trace and rectify faults if any.

9. Give good finish to the unit.

10. Prepare the project report.

Reference

Page 44: 3 PHASE FAULT DETECTION (2).docx

REFERENCE FOR TECHNICAL INFORMATION FROM FOLLOWING BOOKS:

1. EHV-AC &HVDC TRANSMISSION ENGINEERING & PRACTICE - S.C.RAO

2. ELECTRICAL POWER SYSTEM-C.L. WADWA3. ELECTRICAL POWER- Dr. S.L. UPPAL

REFERENCE FOR ARTICLES & TECHNICAL INFORMATION ON REMOTE ACCESS

TERMINAL FROM FOLLOWING SITES:

http://www.yahoo.com (yahoo search engine)

http://www.google.com (goggle search engine)

http://www.national.com/pdf/ 4N35.PDF

http://www.national.com/pdf/ NE555.PDF

http://www.national.com/pdf/ CD4075.PDF

http://www.fairchildsemi.com/pf/1N/1N4007.html