3.0 examples of chaotic systems - richard c. harkness · 3.0 examples of chaotic systems outline...

53
3-1 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass systems 3.6 Molecules 3.7 Thermo-syphon 3.8 Rayleigh-Benard convection 3.9 Convection in earth’s mantle 3.10 Other examples This chapter describes simple real-world systems that exhibit various forms of behavior including chaotic. They are most interesting when chaotic so videos on the web almost always show them that way. The technical literature, which examines the math behind them, does not seem to give equal attention to each. The Lorenz equations and the Lorenz waterwheel -said to behave like them- are extensively covered in textbooks and articles. There is remarkably little on the double pendulum and magnetic pendulum. I’ve focused on the double pendulum because it’s intuitively easier to understand and there’s a nice Java model for exploring it. Although several systems are described below their behavior is similar in fundamental ways. All oscillate. Most can oscillate chaotically. There are common or generic aspects of their behavior. Explanations and videos of these are numerous on the web. Some good ones are cited. Before going further I recommend these sophisticated videos about chaos. They give a broad semi-technical feel for the complexity of this subject. The first shows a large number of billiard balls all apparently moving chaotically and taking different paths if hit slightly differently. It also shows three planets in motion at t=10. : https://www.youtube.com/watch?v=c0gDLEHbYCk The second is similar and also worth watching. https://www.youtube.com/watch?v=_xfi0NwoqX8 3.1 Double pendulum The double pendulum is one of the simplest systems that exhibits various forms of behavior including chaos. It’s extensively analyzed in this book by using a computer simulation.

Upload: others

Post on 02-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-1

3.0ExamplesofchaoticsystemsOutline

3.1Doublependulum3.2MagneticPendulum3.3Lorenzwaterwheel3.4Planets3.5Spring/masssystems3.6Molecules3.7Thermo-syphon3.8Rayleigh-Benardconvection3.9Convectioninearth’smantle3.10Otherexamples

Thischapterdescribessimplereal-worldsystemsthatexhibitvariousformsofbehaviorincludingchaotic.Theyaremostinterestingwhenchaoticsovideosonthewebalmostalwaysshowthemthatway.Thetechnicalliterature,whichexaminesthemathbehindthem,doesnotseemtogiveequalattentiontoeach.TheLorenzequationsandtheLorenzwaterwheel-saidtobehavelikethem-areextensivelycoveredintextbooksandarticles.Thereisremarkablylittleonthedoublependulumandmagneticpendulum.I’vefocusedonthedoublependulumbecauseit’sintuitivelyeasiertounderstandandthere’saniceJavamodelforexploringit.Althoughseveralsystemsaredescribedbelowtheirbehaviorissimilarinfundamentalways.Alloscillate.Mostcanoscillatechaotically.Therearecommonorgenericaspectsoftheirbehavior.Explanationsandvideosofthesearenumerousontheweb.Somegoodonesarecited.BeforegoingfurtherIrecommendthesesophisticatedvideosaboutchaos.Theygiveabroadsemi-technicalfeelforthecomplexityofthissubject.Thefirstshowsalargenumberofbilliardballsallapparentlymovingchaoticallyandtakingdifferentpathsifhitslightlydifferently.Italsoshowsthreeplanetsinmotionatt=10.:https://www.youtube.com/watch?v=c0gDLEHbYCkThesecondissimilarandalsoworthwatching.https://www.youtube.com/watch?v=_xfi0NwoqX83.1DoublependulumThedoublependulumisoneofthesimplestsystemsthatexhibitsvariousformsofbehaviorincludingchaos.It’sextensivelyanalyzedinthisbookbyusingacomputersimulation.

Page 2: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-2

Theauthor’shome-madedoublependulum,isshownbelow.

ThebestlivedemoofadoublependulumI’vefoundwasmadebyStrogatzanotedexpertinchaostheory.Itsfoundhere:https://www.youtube.com/watch?v=anwl6OZ1UuQ&ebc=ANyPxKpVTVQJGdaxEk1AvyBgCXkKdrV2SKjzJxpQGeBiMpxM3F4p8oCYU4_XDCVkTD1h_nlkssunljJ-FHl56FRZdGc1wGEPWgItnotonlyshowsthependuluminmotionbutalsodemonstratesits“sensitivedependenceoninitialconditions”orSDIC.Thesevideosshowprecisiondoublependulumsthatweresetinmotionwithaveryenergeticpushthatinsertedaconsiderableamountofenergyintothesystem.Whenbotharmsarehighandmovingslowlymostofthisenergyispotentialenergy,butastheydropPEconvertstokineticenergymakingthearmsspinfaster.https://www.youtube.com/watch?v=z3W5aw-VKKAandhttps://www.youtube.com/watch?annotation_id=annotation_632684&feature=iv&src_vid=z3W5aw-VKKA&v=vjVQWG7xUQkWhattolookfor:Theeasiestaspectsofchaoticbehaviortoobservebywatchingthependuluminactionarereversalsinthesmallpendulumsdirectionofrotation,orit’stransitionsbetweenswingingandrotating.Otherparameterssuchasangles,elevation,andratesofrotationarealsochangingbuttheyhappensofasttheyarenotreadilyobserved.Thekeypointisthatallthesechangesinbehaviorhappeninaseeminglyrandommannerwhenthesystemoperateschaotically.Sometimesthesmallpendulumrotatesonceortwicetimesbeforestoppingorchangingdirection.othertimesitrotateslonger.Theintervalsbetweenitgoingoverthetopappearrandom.Whenwatchingthedoublependulumonefeelsthateacharmistryingtodoitsownthing,namelyswinglikeasimplependulumfollowingitsownnaturalrhythm.Unfortunatelytheotherarmisn’tquiteinsyncandcontinuestodisturbthatrhythm.Sometimes,likewell-timedpushesonachild’sswing,armAboostswhatArmBistryingtodonaturally.Othertimesthepushesorpullsareoutofsyncandtheforcesfighteachother.Often–anditsbestobservedwhentheupperarmisswingingback

Page 3: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-3

andforth-itlooksliketheinnerarmisslingingorwhippingtheouterarmaround.Thuswetendtoseeashortseriesoforderlybackandforthswingswheretheouterarmswingsabitmoreeachtimeuntilitfinallygainsenoughenergytomakeacompleterevolution.Thereisafeelingthatenergyissurgingbackandforth(itis)insomewavelikemanner.Whenrunningatfairlylowenergynotehowtheinnerarmisoftenhangingnearlystraightdownandismotionless–andthuscontainslittleenergy-whentheouterarmswingsoverthetop.Thisindicatestheinnerarmhastransferreditsenergytotheouterarm.Itshardtoseebuttheouterarmspinsfastestwhentheinnerarmislowandalmoststill,meaningitstransferredmostitsenergytotheouterarm.Computersimulationsusepoint-massbobsratherthanmetalarms.Thetrailsleftbythelowerorouterboboftenlooklikethis:

Theimagebelowshowshowthespeedofthetwobobsvariesovertime..Notehowirregularthesewaveformsare.Thesystemwasverylikelychaoticinthisrun.

Page 4: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-4

Itsusefultolookatlong-termwaveformsaswellasshort-termoneslikeabovebecauseitmaytakearelativelylongtimeforapatternofbehaviortorepeatandallowustoconcludethesystemisperiodic.Orshowitisn’t.Figure28showstwolong-termwaveformsfromoneoftheauthor’ssimulations.Theyrecordhowtheamountofkineticenergyinthelowerbobvariesovertime.KEisofcourseproportionaltospeedsoaplotofspeedwouldlookthesame.Theupperplotwasmadebyreleasingthearmsatalowanglethusimpartingarelativelylowamountofenergyintothesystem.Obviouslythereisaregularrepetitivepatterntothisbehavior.Thefirstpeakatt=10isseenagainatt=30andt=50showingthatthegeneralbehaviorisperiodicwithaperiodofabout20seconds.Anysmalldifferencestotheheightsofthedifferentpeaksarenotobvious,althoughtheyexist.Thelowerwaveformreflectsstronglychaoticbehavior.Calmperiodsarerandomlyinterruptedbyhighspikes.Thisisatypicalchaoticwaveform.Ifothersystemsbehavethiswayitsaysweshouldn’tgetcomplacentduringperiodsofcalmbecausetheymightsuddenlyendwithunpredictableandviolentspikes.

Page 5: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-5

ThesimulationmodelIusedcansimulateenergylevelshighenoughtomakethesystemchaoticbutnotreallyhighlevelswherethearmsrotaterapidlylikeanairplanepropeller.Withaviolentswingtheauthorcouldprobablyputtenorfiftytimesmoreenergyintohishomemadependulumthanthesimulationmodelcoulddemonstrate.Itsnotclearwhetherthiswouldresultinchaoticorperiodicmotion.Thearmsseemedstaymoreorlessalignedandrotaterapidlylikeanairplanepropellerandthusappearedperiodic.Ontheotherhandtheymayhavewobbledabitandthusbeenchaotic.Clearlyafterslowingabittheseeminglysmoothrotationbrokeupandthearmsbecameviolentlychaotic.

Fig28Regularversuschao2cwaveforms

Page 6: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-6

SDIC:Whentwoidenticaldoublependulumsarereleasedfromalmostbutnotexactlythesamepositiontheirbehaviorstartsoutbeingnearlyidenticalbutovertimeitdivergesso-atanygiveninstant-thearmsareinverydifferentpositions.Thisshowsupclearlyinthesevideos:https://www.youtube.com/watch?v=MtJLhb9yaPcandhttps://www.youtube.com/watch?v=LfgA2Auyo1AIhavealotmoretosayaboutitsSDICinChapters7,8,and9.Links:Otherniceanimationsofdoublependulum:http://www.clausewitz.com/mobile/chaosdemos.htm#3Bodyhttps://search.yahoo.com/yhs/search?p=double+pendulum&ei=UTF-8&hspart=mozilla&hsimp=yhs-001https://www.youtube.com/watch?v=QXf95_EKS6EThesesitesalsoshowdoublependulumsinaction:https://www.youtube.com/watch?v=zdW6nTNWbkcThisisaprecisionbuiltversionwithverygoodbearings.http://www.clausewitz.com/mobile/chaosdemos.htm#DblPend(labdemobyStrogatz)https://www.youtube.com/watch?v=U39RMUzCjiUhttps://www.youtube.com/watch?v=QXf95_EKS6Ehttps://www.youtube.com/watch?v=_i3WqnejOQkhttps://www.youtube.com/watch?v=WMPOvmozGMcThisversionhasthreearms.http://scienceworld.wolfram.com/physics/DoublePendulum.html fine animation or trace of the bobs http://groups.physics.northwestern.edu/vpl/mechanics/pendulum.htmlJavasimmodelfordoublependulumbutwithfewcontrolsorplotssocan’treplicatewhatDoolingmodelwilldo.Foramusementwatchthevideoatthissitecalled“complexadaptivesystems”.Yes,Ithasnothingtodowiththedoublependulumbutshowsanothertypeofsystemsbehaviorthatisrelatedtofishschooling,birdsflockingandothersuchself-assemblingsystems.http://www.clausewitz.com/mobile/chaosdemos.htm#DblPendThis“pendulumwave”toyexhibitscomplexchangesinbehaviorasfrictionslowlyslowsitsoscillations.Sometimestheballsself-organizeintoniceshapes,atothertimestheydon’t.Anotherexampleofhowcomplexdynamicbehaviorcanbe.See:https://www.youtube.com/watch?v=yVkdfJ9PkRQ

Page 7: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-7

3.2MagneticPendulumTheauthor’smagneticpendulumisshownbelow.Thebasecontainsthreestrongmagnetsandthere’sasteelnutontheendofthependulum.Thenutisattractedtoeachmagnetbutalsotothecenterpositionbyearth’sgravity.Itsa5bodysystemwhereeachbodyinfluenceseachoftheothersviathegravitationalormagnetforcesbetweenthem.The5bodiesarethebob,earth,andthethreemagnets.

Asimulationmodelwasusedbytheauthortoplotthetraceleftbythependulum.Itcanmodelthreependulumsandsuperimposethetrailleftbyeach.Itfoundat:http://demonstrations.wolfram.com/PendulumWithThreeMagnets/(needinstallCDFPlayer,then“downloaddemoatCDF”andopenwithCDFplayer.Click+nexttotimeslidertogetstart,pauseandstopcontrols)ThescreenshotbelowshowsthetrajectoriesofthreebobsreleasedfromconsiderablydifferentheightssotheystartwithverydifferentamountsofgravitationalPE.TheydifferinmagneticPEaswell.Eachtrajectorystartswherethebobwasreleased.Thepatternofmovementdependsgreatlyontheheightofreleaseorinitialpotentialenergy.Red,releasedclosetoamagnet,hadlittleGPEsoitcouldn’tescapethemagnetic“well”arounditsmagnet.Nonethelessthedistancebetweenitandthemagnetappearstovaryirregularlybecauseitsorbitwasalteredbytheothermagnets.Arguablyitsmovingchaotically.Blueandgreenhaveenoughenergy(inertia)toblastthroughthemagneticwells,whichcontinuallydistorttheirpath.Theymovefromonemagnettoanotherinrandomandprobablychaoticmanner.Sincegreenhasmoreenergyorspeeditscourseislessbentbythemagnetsitpasses.

Itseasytoseehowthesinuouspathfollowedbythependulumbobwouldproducewaveformsforthevariousvariablesthatoscillateupanddownreachinghighsandlowsofdifferentmagnitudeinrandommanner.Thevariablesmightincludespeed,

Page 8: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-8

angleofthearm,distanceofbobfromthecenter,ordistancebetweenthebobandsomemagnet.

ThemagnetpendulumcomputermodelsIfounddidnotproducewaveformsorphasespaceplots,nordidIfindanyintheliterature.Therearenumerousvideosonwebshowingasystemlikethisinmotion:https://www.youtube.com/watch?v=vFdZ9t4Y5hQhttps://www.youtube.com/watch?v=uIZG2MyEu0Ahttps://www.youtube.com/watch?v=hTe6tRPROjI

Page 9: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-9

https://www.youtube.com/watch?v=Qe5Enm96MFQ(gotomidpointofvideo)3.3LorenzwaterwheelTheLorenzwaterwheelisanotherclassicexampleofasimplesystemthatbehaveschaotically.Itoperatesperiodically–thatisrotatesinonedirectionataconstantspeedwhenthewaterflowintothewheelisfairlyslow.Athigherflowratesitbehaveschaotically.Itchangesspeed,oscillatesbackandforthfromCWtoCCWrotation,andthenreversesdirectioninaseeminglyrandommanner.Atstillhigherinflowratesitrevertstoconstantunidirectionalrotation.Itsbehaviorhasbeenextensivelystudiedinamathematicalsensebuttherootcauseofchaosinthissystemhasneverintuitivelyexplainedtotheauthor’sknowledge.Therearestatementssayingthingslike:thedifferenceinweightofthewaterontheleftversusrightsideofthewheelexertsatorque,whichwilleithersloworincreaseitsrotationrate.AtanygiveninstanttheLorenzwaterwheelisessentiallyapendulumbecausetheweightofwaterononesidediffersfromthatontheothersidethusformingavirtualpendulumbobwhichwantstoswingtoalowerposition.Itscomplexbecausethevirtualbobismovingaroundtherim,includingswitchingfromonesidetotheotherinawaythat’sverydifficulttovisualize.Itsmassisalsochanging.Thewaterwheelisaso-calleddissipativesystembecauseenergyislostduringitsoperation,bothbywatertakingPEwithitwhenitdripsout,andbyfrictioninthebearingsand/orapartly-appliedbrake.HowevernewwaterinjectedatthetopprovidesacontinuinginputofnewPE.Thetwophotosbelowshowsahome-madeversions.

Page 10: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-10

Watchthis.It’savideoofalaboratoryversioninoperation,alongwithexcellentexplanationbyStrogatz.Goto:https://www.youtube.com/watch?v=7iNCfNBEJHoThepicbelowofanotherlabwaterwheelistakenfromathesisbyRachelFordice:http://www.reed.edu/physics/faculty/illing/campus/pdf/RachelThesis09.pdfThisthesisincludesagood,easytoread,introtochaosandthewaterwheel.

Page 11: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-11

Chaoticoscillation:Theimagebelowshowshowthespeedofthewaterwheelchangeswhenitoperateschaotically.Plusvaluesshowspeedinonedirection.Minusvaluesshowspeedintheoppositedirection.Notetherandomreversalsandtherandomnumberofevermoreintenseoscillationsbetweenthem.Itotherwordsthewaterwheelgotcloserandclosertostoppingoneachcycleuntilitreversed.ThisimageisfromathesisbyFordycefoundat:http://www.reed.edu/physics/faculty/illing/campus/pdf/RachelThesis09.pdfThisthesisinvolvedbuildingarealwaterwheelinthelabandseeinghowcloselyitreplicatedtheLorenzequations.ItalsodoesanexcellentjobdevelopingthemathbehindthewaterwheelandmappingtheLorenzequationstothewaterwheelequations.

Page 12: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-12

ThebehavioroftheLorenzwaterwheelisdescribedbythefamousLorenzequations.Inthemjustthreevariablesareneededtodescribethestatusofthesystem.Thediagrambelowshowshowthesevariableschangeoroscillateovertime.

Thesystemwaschaoticwhenthefollowingchartwasmade.(Source:Ca2,p318.)Notethattheoscillationsgrewsteadilymoreintenseuntilthetracecrossedthecenterlinefromminusvaluestoplusvalues.Crossingthatlinemeantthewater-wheelreverseddirection.

Page 13: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-13

Thesmalloscillationsinthisplotrepresentrelativelygentlyrocking.Sointhissystemitappearsthatrockingoscillationsbuildsteadilyinintensityuntilsomethingdramatic–inthiscaseachangeinrotationdirection-happens.Thatgrowingoscillationgiveswarningthatthedramaticeventisabouttohappen.Incontrastthewaveformsforthedoublependulumwaveform(SeeFigure28)andthespring/massmolecule–shownlater-shownoobvioussequenceofever-growingoscillationsprecedingthedramaticevents.It’shardtoderiveausefulmessagefromtheseconflictingexamplesofchaoticwaveforms.Inonesystembehaviorseemssomewhatpredictable,intheothersitdoesn’t.It’salsoanexamplewhyitssohardtoidentifygenericbehaviorsthatarecommontoalldynamicsystems.Lorenzbutterfly:Sincetherearejustthreeoscillatingvariablestheycanbeplottedusinga3-Dphasespacediagramasshownbelow.Whenthesystemischaotictheplotlookslikeabutterfly.

Page 14: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-14

This“Lorenzbutterfly”isperhapsthemosticonicimageofchaos.Itappearsinvirtuallyeverypopulararticleorbookaboutchaosplusmosttextbooks.Technicallyitscalledastrangeattractor.Itssaidthelinescanneverintersectbutratheranynewtracemustfitbetweentheolderones.That’spossiblebecausethereareaninfinitenumberofnumbersbetweensayzeroandone.Expertsgetintofractalswhentreatingthissubject,butthatcomplexityisoutofscopeforourpurposes.Whenthewaterinflowtothewaterwheelislowitdoesn’tnecessarityoscillatechaotically.Afewgoodcomputersimulationsshowingthemovingdottraceoutthebutterflyarefoundat:

ThisisoneofthebetteruTubesshowingthemovingdottracingthebutterflyanditalsoshowshowthisrelatestothewaveforms:https://www.youtube.com/watch?v=6i57udsPKmsHerearesomeothers:https://www.youtube.com/watch?v=8z_tSVeEFTAhttps://www.youtube.com/watch?v=gOFrT-DGStIhttps://www.youtube.com/watch?v=TfnKzaGguaEThis utube shows the three waveforms and the attractor all developing at the same time. It also shows SDIC as the waveforms that initially lie atop each other later diverge. https://www.youtube.com/watch?v=6I-sa4mSkgo

Page 15: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-15

Thevariables–asshowinthebutterfly-interactinacoordinatedmannerandtheymustatalltimesbesomewherealongtheline,alsocalledatrajectoryortrace.Whenthesystemischaoticthemovingdotcirclesaroundafewtimesinonewingthentraversesovertocircleintheother.Whenthetraceswitchesfromonewingtotheotheritindicatesthatthewaterwheelhaschangeddirection.Thisbehaviordoesnotappearverychaotic(althoughitactuallyis)sincethetracegoesroundandroundinanorderlyandpredictablemanner.What’srandomiswhenitsuddenlyleavesonewingforanother.Thathappensonrandomintervals.Anothersignofchaosisthatthevariablesneverreturntothesameexactvaluestheyhadbefore.Inotherwordsthelinesinthebutterflynevercross.Eachnewlinemustfitbetweenpriorlines.Expertsexplainthisintermsoffractals.I’llomitthat.It’swellcoveredelsewhereandoutofscopeforourpurposes.

Non-chaoticoscillation:Thesystemhasvarioustypesofbehaviordependingonhowvariousparametersareset.AccordingtoStrogatzthosebehaviorscanvaryinaverycomplexmanner.(Ca2,p.330+)ThefollowingfourimagesshowhowthebehavioroftheLorenzequationandtheactualwaterwheelchangesasthe“drivingforce”isincreased.Ibelievethe“drivingforce”isthedifferencebetweentheratewaterisaddedatthetopandtherateitdripsout,aswellasfrictionappliedbyabrake.IneithercaseIbelieveitsproportionaltothetotalenergyinthesystem.Thefirstimageshowsthesystemoscillatingperfectlyperiodicallysuchthateachcrestinthewaveformhasthesameheight.Thismeansthewheelisrockingbackandforthanequalangleeachtime.Thisiscalledperiod-1oscillationanditsobviousbecausethetracefollowsasinglelinetimeaftertime.Whenthedrivingforcereachesacriticalvaluethesinglelinebeginsratherquicklytoseparateintotwo,meaningthateveryotherpeakinthewaveformhasexactlythesameheight.Thisisperiod-2oscillation.Thethirdimageshowsperiod-4oscillation.Thefinalimageshowsthesystemoperatingchaotically.That’sobvioussinceovertimethepatternfillsintheentireavailablearea.Notwopeaksareeverexactlythesameheight,althoughtheymaycomeveryclose.Notwopatternsareeverexactlythesame.ThewaveformofanyvariablelikeXisaperiodic.Theseimagesweremadebytheauthorusingasimulationmodelat:http://amath.colorado.edu/faculty/juanga/3DAttractors.html

Page 16: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-16

Page 17: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-17

Page 18: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-18

SDIC:Theimagebelow,alsofromtheFordycethesis,showshowsensitivethedownstreamwaveformistoverysmalldifferencesintheinitialconditionswhenthesystemischaotic.Thegreentracewasmadewithoneoftheinitialconditionsatsomespecificvalue.Thebluetraceresultedwhenthatconditionwaschangedjustatinybit.(Seewordingbelowthecharttoseehowmuch)Source:http://www.reed.edu/physics/faculty/illing/campus/pdf/RachelThesis09.pdfIfthiswerea20-dayweatherforecastoftemperatureforsayKansascityitsobviousthatasmallerrorwhenprogrammingtheforecastmodelwouldnotaffecttheaccuracyofthenear-termforecastbutthedifferentwaveformsonrightshowitwouldgreatlyaffectthelong-termforecast.Wewouldn’tknowwhichwasright,thebluelineorthegreenline.

Otherlinks:This informative video relates the Lorenz attractor to the weather: https://www.youtube.com/watch?v=SlwEt5QhAGY http://nullprogram.com/ChaosWheel/ shows amount of water in each cup buts that’s all ThefollowinguTubevideosshowLorenzwaterwheelsinoperation.https://www.youtube.com/watch?v=zhOBibeW5J0good,hasplasticcupshttps://www.youtube.com/watch?v=7A_rl-DAmUEbetter,bikewheel

Page 19: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-19

http://www.siliconsolar.com/building-a-lorenz-water-wheel/https://www.youtube.com/watch?v=SlwEt5QhAGYSophisticatedvideolinkinganimationofwaterwheelandLorenzequationstoweather.AlsodemonstratesSDIC.Herearesomesimulationmodelsyoucanexperimentwith:http://www.aw-bc.com/ide/idefiles/media/JavaTools/lrnzphsp.html shows circulation, has phase space plot and waveforms over a few seconds.: http://amath.colorado.edu/faculty/juanga/3DAttractors.htmlDoesn’thaveadequatecontrolsorplotsThisisaneatJavasimulationofwaterwheel.Youcanchangetheparameters.Accepttherisktostartit,thenitrunsfine:http://people.web.psi.ch/gassmann/waterwheel/Wwheel1.HTMLhttp://demonstrations.wolfram.com/LorenzsWaterWheel/ lacks adequate controls and plots. (wouldn’t run smoothly) http://www.cmp.caltech.edu/~mcc/chaos_new/Lorenz.html this applet plots the butterfly with two traces to demo SDIC. Treats equation only, not waterwheel. 3.4PlanetsAlthoughtheplanetsinoursolarsystemhavealmostcircularorbitstheydointeractgravitationallyanddisturbeachothersorbitsjustabit.Itappearsthesolarsystemmaybechaotic.

“Chaosisubiquitousincelestialmechanics.Inthesolarsystem,chaoticinteractionswiththeplanetsshapethestructureoftheminorbodies,includingtheasteroidbeltandtheKuiperbelt(Lecar2001)”http://w.astro.berkeley.edu/~echiang/students/thesis.pdf

AbookbyPetersoncalledChaosintheSolarSystemseemstohavethesameopinionalthoughIcouldn’tfindwhereitsaidsoexplicitly.(Ca3)Thebestintroductiontochaosinplanetarybehavioristoviewtwovideosshowinghowthreegravitationallyattractingbodiesmoveinspace.See:https://www.youtube.com/watch?v=VX9IdCnNWJIandhttps://vimeo.com/11993047The3-Bodyproblem:Mathematicianshavestudiedthecomplexandnotfullyunderstooddynamicsofsimplelittle3-bodysystems.Apparentlytheyhaveconcludedthatallsuchinteractionsinvolving3ormorebodiesarechaotic.Thefollowingquotesattesttothis:

Page 20: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-20

“Second,ingeneralforN>2,theN-bodyproblemischaotic”https://en.wikipedia.org/wiki/N-body_problem“thethree-bodyproblemgenerallybecomesanalyticallyunsolvable,thatis,thereexistnogeneralformulasthatdescribethemotionandpermitthecalculationofpositionsandvelocitiesofthebodiesfromarbitraryinitialconditions.”http://butikov.faculty.ifmo.ru/Projects/Collection.html“SincePoincarétherehasbeenalotofworkonprovingthatsuchchaoticbehavioroccursinthethree-bodyproblem.”http://www.math.umn.edu/~rmoeckel/presentations/PoincareTalk.pdf

Thescreenshotbelowisfromananimationvideoshowingthemotionofasmallplanetaroundtwostars.http://www.clausewitz.com/mobile/chaosdemos.htm#DblPendandhttp://www.clausewitz.com/mobile/chaosdemos.htm#3Body

Undercertainpreciseconditions,wherethebodiesmoveinsynchronization,thissystemcanbehaveperfectlyperiodically.Thistechnicalsitecontainsanimationsofthosespecialsituations:http://www.scholarpedia.org/article/Three_body_problemByimplicationallotherconfigurationsarechaotic,aswouldbetrueforanysystemwithmorethanthreebodies.

Page 21: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-21

ThisN-bodysimulationvideoshowssmallbodiesmovingerraticallyandcollidingastheyself-assembleintoaplanetorstar.Thisissomewhatunrealisticinthattheyaren’tembeddedinaswirlingdiscofgas.https://en.wikipedia.org/wiki/N-body_simulationDiscussionsofthethreebodyproblemarefoundat:https://en.wikipedia.org/wiki/Three-body_problemandhttp://www.sciencemag.org/news/2013/03/physicists-discover-whopping-13-new-solutions-three-body-problemandhttp://www.ams.org/samplings/feature-column/fcarc-orbits1Formoreonthethree-bodyproblemsee:(Ca7,p.85+)andahostofwebsites.NOTE:Asanon-expertIremainconfusedaboutwhetherallsystemswiththreeormorepartsconnectedbynon-linearforcesarealwayschaotic,orjustchaoticiftheirinternalenergylevelishighenough.Thestatementsaboveseemtosaytheyarealwayschaoticbutdon’tsaysoexplicitly.Ontheotherhandthe3-part(earthplustwobobs)double-pendulumisn’tchaoticatlowenergylevels,andIdon’tthinktheLorenzwaterwheeliseither.Asimulation:Althoughtheplanetsinoursolarsystemareinnearlycircularorbitsnowandbehaveinanalmostperfectlyperiodicmannernowtheywereassembledbycollisionsofplanetesimalsthatweredefinitelynotbehavingsonicelywhenthesolarsystemformed.Theirorbitsweremoreellipticalandtheydisturbedeachothergravitationally,especiallyduringcloseencounters.Indeedchaosisfoundthroughoutthesolarsystem.(ca3)Scientistshaveusedsimulationmodelsrunonsupercomputerstoforecastthemovementsofplanetsoverthenextfewbillionyears.Somerunsshowthatsomemaycollideinabillionyearsorso,especiallyMercurywithEarth.SDICandotheruncertaintiesmakeitimpossibletosayforsure.ThescreenshotbelowisfromarunmadebytheauthorusingasimulationmodelcalledMySolarSystem.https://phet.colorado.edu/sims/my-solar-system/my-solar-system_en.htmlItsbeenmuchusedandappreciatedbytheauthor.This3-bodyrunshowsthecomplexpathstakenbytwosmallbodiesinellipticalorbitsaroundastar.Thetwobodiescontinuallydistorteachothersorbits,especiallyduringcloseencounterswheregravitationalattractionbetweenthemisstrongest.Herebluehasjustbeenejectedfromthesolarsystembyacloseencounterwithred.Thistransferredsomeofredskineticenergytoblue.Ifeachbodywerealoneitwouldoscillateperfectlyperiodicallyaroundthestarbutwhenthetwobodiesattracttheoscillationsbecomecoupledanddisturbeachother,thusleadingtocomplexwaveformsforvariableslikedistancefromthestarandvelocity.Mostrunsofthissimulationproducecollisionsuntilonlyoneplanetisleft.

Page 22: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-22

Variableslikethespeedofoneplanet,anditsdistancefromthestar,mayvarychaoticallybecausethisisan“N-Bodysystem”whereNis3.

Anentertainingandenlighteningclassdemousingarubbersheettoshowhowplanetsorbitisfoundat:https://www.youtube.com/watch?v=MTY1Kje0yLgThefollowingtwoscreenshotsarealsofromMySolarSystem.https://phet.colorado.edu/sims/my-solar-system/my-solar-system_en.htmlItriedtogettheseplanetstomoreorlessfolloweachotherinanorbitaroundtheircommoncenter.Thefirstscreenshotshowstheirinitialpositions.

Page 23: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-23

Howeverafterashorttimetheplanetshadfollowedthepathsindicatedbelow.ApparentlythepotentialenergybetweenthethreebodieswashighinitiallybutinthefirstencountersomeofthePEbetweenredandyellowwasusedtothrowthered/yellowpairfurtherawayfromblue.Intheprocessredandyellowgotcloser.WhenbluecamebackforasecondencounterevenmoreofthePEbetweenredandyellowwasusedtoejectbluetotherightandred/yellowtotheleft.Thisbehaviorissomewhatcounterintuitive.Onewouldexpectgravitytopulltheplanetscloserratherthanendupsendingthemapart.Indeedmayconfigurationslikethiscausethemtocollide.However,aftersomeexperimentationwithpositionsandspeed,thisparticularrunproducedsomethingmoreinteresting.BasicallytherewasPEbetweenthethreeplanetsatthebeginning.AftersomeinteractiontwobodiesdidendupcloserthusreducingthePEbetweenthem,butthatPEwasusedtosendbluefurtheraway.Itsnecessarytorealizethatgravityfallsoffwiththesquareofdistancetoseehowthismakessense.Thismotionisarguablychaotic.Virtuallyallthesesimulationsresultincollisionsandorejectionsafterashorttime.Itisveryhardtogetthethreeplanetsintostableorbits.Onecouldenvisionasituationwheretheyalltracedacloverleaflikepatternindefinitelybutapparentlythatsituationisveryunstable,likeaneggonend.

Page 24: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-24

Verysophisticatedsimulationmodelsofthesolarsystemhavebeenconstructedandrunonsupercomputersinordertopredictthelong-termstabilityofthesolarsystem.Theyshowasmallprobability–about1%-thatMercurywillcollidewithVenusinthedistantfuture,andthiscouldthencauseVenusandEarthtocollide.http://www.scholarpedia.org/article/Stability_of_the_solar_systemThissuggeststhatthesolarsystemhasnotyetreacheditslowestenergy,moststable,configuration.Pleasenotethatwhenoneofthebodiesina3-bodysystemisfarlargerthantheothersitchangesthesituationintowhat’scalleda“restrictedthreebodyproblem.Thisapparentlymakestheorbitsofthesmallbodiesmorepredictablebymaking“simplifications”inthemath.Withsuchsimplificationsthesundominatesbehavioroftheplanetsandkeepsthemfrominteractingaswildlyastheydointhe3-bodysimulationsImadeaboveusingbodiesaboutthesamesize.Sowhat?:TojumpwayaheadinthisstoryandsaywhyIthinkthisstuffmattersIthinkitslikelythatanysystemwith3ormoreinteractingbodiesisalmostalwaysoperatingmoreorlesschaoticallyiftheforceslinkingthebodiesarenon-linear.I

Page 25: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-25

haven’tseenthissaiddirectlyinthetechnicalliterature,butthenagaintheliteraturedoesn’taddressmanyofthepracticalimplicationsofwhattheoristswriteabout.IsuspectthatN-bodytheoryappliestomanylargesystemsofpracticalimport,forinstanceecological,andeconomicsystems.Theyhavemanypartsthatobviouslyexertforcesoneachother.Perhapsthoseforcesarenon-linearasmanyexpertsseemtobelieve.Ifsothereisatheoreticalbasisforsuggestingthesesystemsareintrinsicallychaotic.3.5Spring/masssystems

3.5.1TheNeumannmoleculesimulatorThebestspringmasssimulationmodelformypurposesisonedevelopedbyErikNeumannandfoundat:http://www.myphysicslab.com/springs/molecule/molecule6-en.htmlItmodelssixmassesconnectedbylinearsprings.It’ssetinmotionbypullingasideanymassusingthemouse.Ifdampingisturnedonthemagnitudeoftheoscillationswilldiedownandthesystemwillcometorestinoneofseveralequilibriumconfigurations.Withnodampingtheoscillationswillcontinueundiminishedindefinitely.Hecallsthisa“molecule”andindeeditdoesapproximatetheinternalbehaviorofone.Butit’sactuallyagenericspring/massmodel.Ifoundthisupdatedmodellateinthegamewhilefinalizingthisbook.Ithinkitnicelydemonstratesthatenergycanmomentarilyconcentrateinoronepartinamulti-partdynamicsystemandtherebydisturbitgreatly.OrshouldIsaystresssomepartsomuchitdoessomethingextreme.Again,Iamthinkinghowthistypeofthingmighthelpexplainextremeweatherevents,revolutions,stockmarketcrashes,andspikesseeninagreatnumberofotherreal-worldsystems.Partoftheuserinterfaceappearsinthescreenshotbelow.Onecancustomizevariousplotsliketheoneatleft.Duringasimulationrunthemovingmassesappearatright.

Page 26: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-26

Thescreenshotbelowshowshowthevelocityofmass#1intheYdirectionvariedduringarelativelyshorttimeperiod.Itshowednorepetitiveaspectandlookedchaotic.

Page 27: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-27

Thisisn’tofficiallychaos:Overalongertimespanthewaveformlookedlikethis.

Page 28: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-28

Itcertainlylookschaoticbecauseitcloselyresemblesthewaveformofthedoublependulumwhenitschaotic.Thekeythingtonoticeisthatthespeedofmass#1occasional,andseeminglyrandomly,spikedinvalue.JustbeforeeachspikeMass#1hadbeendisplacedfarfromitsequilibriumpositionsothespringsattachedtoithadbeenstretchedputtingagreatdealofforceonmass#1andgivingitalargeamountofpotentialenergy.Thespikeoccurswhenthatpotentialenergyhasbeenconvertedtokineticenergyintheformofspeed.

Page 29: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-29

Accordingtotheliterature,springmasssystemswithlinearspringscan’toscillatechaoticallyandthewaveformsrepresent“superposition”,whichmeansthevariouswavessimplyaddatopeachother,sometimescancelingsometimesreinforcing.Neverthelessthisresultispotentiallyimportantbecauseitshowsthatspikesinbehaviorcanoccurinsystemsthataren’tofficiallychaoticandwhichinvolvelinearforces.Idon’tknowifexpertsinotherfieldshavedeterminedwhethertheforcesintheirsystemsarelinearornot.Thissuggestsitdoesn’tmatter.Theybothseemtoproducewaveformswithoccasionalandseeminglyrandomspikes.NowIreverttorunsmadepreviouslywithanearlierversionofthismodel.Thisscreenshotshowsthemoleculeinoneofitsequilibriumconfigurationspriortoarun.

Whenonemassispulledasideandreleasedthesystembeginstooscillatewithmassesmovingbackandforthupanddowninrandomfashion.Thescreenshotwastakenwhentheyweremovingviolently.Notehowfarthespringstoredhavebeenstretched.Redhasconsiderablepotentialenergyinthisposition.Thestretchedspringswillrapidlyaccelerateitbacktowardtheothers.(Ifredwereacorporationthissuggestsithasresources-energyofsomesort-andtheforcesexertedonitwillcauseittoactinsomemanner.)

Page 30: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-30

Thewaveformbelowshowshowthespeedofmass#0changedovertime.Expertsassertthatthatspring/masssystemswithlinearspringscan’tbecomechaoticbutthewaveformcertainlylooksthatwayinthisparticularplot.Whetherofficiallychaoticornotthisisarealsystemanditproducesashort-termwaveformsimilartothatproducedbythedoublependulum,aknownchaoticsystem.Takenotethatsometimesmass#0oscillatesmildlyforawhileandthensuddenlymovesviolently.ThisisacharacteristicofgreatimportanceIFitappliesinlargenaturalandsocietalsystems.Thecalmperiodisbracketedbybluelines.

Page 31: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-31

Thepartialphasespaceplotbelowsupportsthenotionthatthissystemisn’toscillatinginarepeatableorperiodicmanner,althoughthereisnoproofthiscomplexmessypathwouldnoteventuallyduplicatetimeaftertimeifthesimulationranlonger.Thishighlightsanotherissuewhendealingwithchaos.Howlongmustoneobserveasystemtobesureitsbehaviorwillneverrepeat,becauseifiteverdoesitsperiodicnotchaotic.Onecouldarguethatifitdoesn’trepeatinareasonabletimeitschaoticforallpracticalpurposes.Thisishowthepartialphasespaceplotlooks.It’sapartialplotbecauseafullphasespaceplotmusthaveasmanydimensionsastherearevariablesinthesystem.Inthiscaseanygivenatomhassixvariables,namelyitspositionandvelocityineachofthreedimensions.Obviouslywecanplotamaximumofthree,butpartial2-Dplotsaresufficienttoshowifasystemisperiodicornot.

Page 32: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-32

ThescreenshotsbelowarefromthelatestversionofthisSuddensystemreconfiguration:This“Molecule”modeldemonstratesanotherfundamentalsystemsbehaviorlittlediscussedinthisbookbecauseI’vebeenfocusedsomuchonoscillation.Itsthefactthatsystemscanhaveseveraldifferentstableequilibriumconfigurations,andifdisturbedcouldendupmovingfromonetoanother.Inotherwordsoneconfigurationcouldbedestroyedandthepartsre-assembleintoanother.Averycrudewaytovisualizethisistoimaginedroppingabout6marblesintoaneggcarton.Theywouldallsettleintopocketsandformsometypeofstablepatternanalogoustowayatomsarearrangedinamolecule.Howeverifthecartonwereshakenenoughtheywouldpopoutofthosepocketsandsettleintoothers.Themoleculemodelpicturedaboveactuallyhasuptoeightstableconfigurationsdependingonhowstiffthespringsare.Iffrictionaldampingisactivatedinthesimulationtheatomsinthis“molecule”cancometorestinanyoneofthemafterbeingdisturbed.Inthismodeltheconfigurationsdifferintermsofwheretheredatomisrelativetothegreenatomandsoforth.Thenotionthatmanysomeimportantreal-worldsystemscouldbeinfragileequilibriumsandsusceptibletoradicalchangegivenasmallperturbationseemsveryimportant.ItsarguablythecaseontheeveofpoliticalrevolutionsliketheFrenchandArabspringrevolutions.Onechallengeisknowinghowclosewearetosuchatippingpoint.IwishIhadtimetosaymoreaboutthistopic.3.5.2FabricsimulationsConsiderableefforthasgoneintodevelopingcomputersimulationsoffabrictoshowhowitdrapesaroundotherobjectsinarealisticfashion.TheseareeasytofindonuTube.Thesemodelsareessentiallyspring/massnetworksthathavebeenrefinedtobehavelikerealfabrics.Theyareusefulforourpurposesbecausetheycanillustratehowdisturbingonepartofalargemulti-partsystemcansendwavesofchangethatsurgebackandforthinthesystemeventuallydisturbingalltheotherparts.Theymakethosewavesofchangemorevisiblethanthemoleculesimulationscando.Thescreenshotbelowisfromasimpleversionofafabricmodelandcanbefoundat:https://www.chromeexperiments.com/experiment/2d-cloth-simulationorhttp://andrew-hoyer.com/experiments/cloth/The“fabric”ishangingmotionlessfromthreepointsinthisscreenshot.

Page 33: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-33

Theadvantageofthismodelisthattheusercangrabonedot(amass)withthemouseandpullitasidetostarttheaction.Theimagebelowistakenfromavideoofaspringmasssystemofthetypeusedforsimulatingfabris.ItwasoneofaseriespostedbyPaulNathan.See:https://www.youtube.com/watch?v=ib1vmRDs8Vw&t=18sAndhttps://www.youtube.com/watch?v=qOvb3WLAX0EThisscreenshotcapturesawaveofchangeradiatingoutfromaplacewherethenetworkwasdisturbed.

Page 34: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-34

Hereisasimilaronebuttheusercan’tanimateit:https://www.youtube.com/watch?v=S5Rhx_NUBGcExtras:ScreenshotbelowisfromacubeshapedspringmassmodelavailableattheWolframsite.Itbeginsoscillatingwhenoneofthemassesisdisplacedbuthasn’ttheplotsorcontrolsneededforanalyticalwork.

Page 35: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-35

AnotherInteractiveClothSimulation,byMatthiasWloka:http://www.paulsprojects.net/opengl/cloth/cloth.htmlHereisanotherspringmassfabricyoucanstartawaveinbymovinganyplacewiththemouse:http://jlongster.com/s/lljs-cloth/

Page 36: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-36

3.6MoleculesMoleculesconsistofpartsconnectedbyspring-likeelectromagneticforcessoitnotsurprisingthatthepartsoscillatewhenthemoleculescontainenergyintheformofheatandmanifestitbyvirtueofmovingparts,justasthedoublependulumdoes.Ibeginwithaquote:

“In a turn of events that would have astonished anyone but N.Bohr, we now know that chaotic trajectories identical to those that govern the motion comets, asteroids, and spacecraft are traversed on the atomic scale by highly excited Rydberg electrons. This almost perfect parallel between the governing equations of atomic physics and celestial mechanics implies that the transport mechanism for these two situations is virtually identical...” http://www.iitk.ac.in/directions/directions_dec07/3jan~SRIHARI.pdf

Therelevantforces:Computermodelsofmoleculardynamicsapparentlyrangeinsophistication.Inthesimpleonesatomsareapparentlyattachedtoeachotherbylinearspringsandoscillateharmonicallyaroundtheirequilibriumposition(seegreenlinesinimagebelow)whereasinrealitytheforcesaren’tlinearasshownbythebluelinesintheMorsePotentialdiagrambelow.https://en.wikipedia.org/wiki/Morse_potential.TheMorsepotential,molecularoscillation,the“moleculardance”,andtheirrelationtochaosisnicelyexplainedat:http://www.iitk.ac.in/directions/directions_dec07/3jan~SRIHARI.pdf

Page 37: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-37

Thisseemstomeantwothings.One,sincetherealforcesarenon-linearthemotionsinmoleculeswith3ormoreatomsareprobablychaotic.Second,thebluelinesshowthatifamolecule’senergyisincreasedenough,forexamplebyraisingitstemperature,itwillvibratesoharditwilldissociateorflyapart,thusallowingchemicalreactionstoproceed.InamoregenericsensethisisprobablythebasicphysicsbehindthesystemsbehaviorIcall“suddenreconfiguration”.Initanexistingsystembreaksapartbecausethebondsholdingittogetherhavebeenstretchedtoomuch.Afterbreakingfreethepartsreassembleintoadifferentsystem.Inthiscaseadifferentmolecule.Insomeofthesimulationsshownbelowitisn’tclearwhetherthemodelsusedsimplelinearsprings(easertodealwithwhenmodeling)ornon-linearMorsePotentialforces.Andsomeseemtoillustratejustonemodeofvibrationatatimewhereasinrealityallwouldprobablybecoupledandchaotic.Notethatthereareavarietyofatomicbondsthatrangeinstrengthfromstrongcovalentbondstoweakhydrogenbonds.Presumablythestrongbondsformfirstandremainwhiletheweakerbondsformlast.Oscillation:Atomswithinmoleculesoscillate.Thefollowingscreenshotisfromananimationofavibratingbenzenemolecule.https://search.yahoo.com/yhs/search?p=vibration+of+molecules+utube&ei=UTF-8&hspart=mozilla&hsimp=yhs-001orathttps://www.youtube.com/watch?v=HuSbLBDagdc

Page 38: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-38

Screenshotbelowisfromanimationofvibratingmolecules:http://www2.ess.ucla.edu/~schauble/MoleculeHTML/SF6_html/SF6_page.html

Watchthisforsure:Screenshotbelowisfromacompellingvideoofapeptidemoleculeinthefinalstagesofself-assemblyfromtwosmallermolecules.Ibelievethisiswhat’shappening:Environmentalheatinjectsenergyandkeepstheatomsoscillating.Wavesofoscillationalternatelystretchandrelaxbondsbetweenthestronglybondedatomsatcorecausingtheentireconfiguration,moleculeorsystemtoflexchaotically.Thisbringsoutlyingatomstogethermomentarilysotheyform

Page 39: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-39

weakhydrogenbonds,andthussub-optimalmolecules.Thesedon’tsurvivethenextchaotictwistofthemolecules.ThroughtrialanderrorenoughweakbondsformtoeventuallycreateastablePeptidemolecule.https://video.search.yahoo.com/video/play?p=youtube+Simulation+Molecule+Formation&vid=6123f88bce545dc14a13008b76a6d18b&turl=http%3A%2F%2Ftse4.mm.bing.net%2Fth%3Fid%3DOVP.V5a5b65a0197b98175963d40f7ec3fed6%26pid%3D15.1%26h%3D145%26w%3D300%26c%3D7%26rs%3D1&rurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DB4sS1iIp-Qk&tit=Molecular+Dynamics+Simulation+of+self+assembling+Peptide+in+gromacs&c=17&h=145&w=300&l=337&sigr=11bl0m7j8&sigt=123br2jv7&sigi=1311kacei&ct=p&age=1406748225&fr2=p%3As%2Cv%3Av&b=391&fr=yhs-mozilla-001&hsimp=yhs-001&hspart=mozilla&tt=b

Presumablytheatomshavefallen–attheendofthissimulation-tothelowestenergy,mosttightlybondedstatepossible,oratleastonestableenoughtosurviveatthistemperature.Chaoticenergymovementwithinthesystemmaybekeytoself-assemblyinothersystemsaswell.Asenergymovesarounditconcentratesmomentarilyoncertainpartsstretchingtheirbondsbeyondthebreakingpointandfreeingthemtomove

Page 40: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-40

aroundtoformother,potentiallymorestable,configurations.Thusanassemblingsystemmightexplore–andevenrestforawhile-inseveraldifferentconfigurationsbeforefindingthemoststableandenduringone.Oscillationischaotic:Atleastsomeexperts“intramolecular dynamics” assertthatthevibrationwithinmoleculesischaotic.Seeforexample:http://store.elsevier.com/Nonlinearity-and-Chaos-in-Molecular-Vibrations/Guozhen-Wu/isbn-9780444519061/and:

“…we now know that chaotic trajectories identical to those that govern the motion of comets, asteroids, and spacecraft are traversed on the atomic scale by highly excited Rydberg electrons. This almost perfect parallel between the governing equations of atomic physics and celestial mechanics implies that the transport mechanism for these two situations is virtually identical... The orbits used to design space missions thus also determine theionization rates of atoms and chemical-reaction rates of molecules!” http://www.iitk.ac.in/directions/directions_dec07/3jan~SRIHARI.pdf this tech paper includes much more about oscillation within molecules)

Moleculesaregoodlittlesystemstoexamine.IthinkmostofthebasicsystemsbehaviorslistedinChapter1applytomolecules.Ifsohowtheyself-assembleintoincreasinglymorecomplexversions,andhowtheybehavemaybeanalogoustowhathappensinothersystemsthataffectourdailylives.Alookathowsimplemoleculesbehaveisausefulstepinextendingourunderstandingofsystemdynamicsfromverysimplemechanicalsystemslikethedoublependulumuptowardthemuchmorecomplexmolecularsystemsthatself-assembleintolivingorganisms.Itallcomesdowntopartslinkedorbondedtogetherintoasystembyspring-likeforces.Ifthosebondsarestretchedtoofartheybreakallowingnewsystemstoform.Thishappensacrossabroadrangeofsystemsstretchingfromatomsandmoleculestosolarsystemsandgalaxies.LaterinthebookIhopetoshowthatitalsoappliestosocietalsystems.Ischaoticoscillationnecessarytoconcentratepassionenoughtopasscontroversiallegislationorcauserevolutions?There’smoreaboutmolecules in various places includingChapter12. Otherlinks:Wikipediahasanimationofmolecularvibrationmodesplusotherdetails:https://en.wikipedia.org/wiki/Molecular_vibration

Page 41: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-41

Lectureonmolecularvibrationdiscussingenergylevels:https://www.youtube.com/watch?v=DJI518yTr2cAnimationshowinghowmolecularbondsarestretchedandcompressed:https://en.wikipedia.org/wiki/Molecular_vibrationNicelysemi-technicalexplanationofhowpotentialandkineticenergychangeasatomsvibrate.PlotscurveofPEandKE,andattractiveandrepulsiveforcesasafunctionofdistance.https://www.youtube.com/watch?v=Wl5QHeS2UXEThisveryclearlecturetreatsbondstrengthandenergyneededtobreakit:https://www.youtube.com/watch?v=I9jd1Ew_YGU&ebc=ANyPxKoqzaVjxJaWWAApc3GCwrV25dzhktewYBQIVTPvshRz4sBpn-91bqDWk_QjiYaKx9m3OLde7n83nBwadHzaR7ZSz-u16gThisexplainssomeoftheintermolecularforcesandhowtheyfalloffwithdistance.https://en.wikipedia.org/wiki/Molecular_mechanicsThisexplainsintermolecularforces:(butitsnottooclear)https://www.youtube.com/watch?v=S8QsLUO_tgQOtheranimationsofvibratingmolecules:https://www.youtube.com/watch?v=HuSbLBDagdchttps://www.youtube.com/watch?v=iy-8rguvGnMhttps://www.youtube.com/watch?v=3RqEIr8NtMI&index=2&list=RDHuSbLBDagdc

3.7Thermo-syphonThethermo-syphonisadonutshapedtubecontainingaliquid,whichiscomprisedofagreatnumberofpartssoitcanbeasystemofsorts.Whenheatedonthebottomtheliquidwillbegincirculatingonewayortheother.Dependingonhowfastheatisappliedtheliquidcancirculatesteadilyinonedirection–periodicbehavior-orswitchrandomlyfromCWtoCCWrotation,meaningitsbehavingchaotically.Thethermo-syphonexampleisinsertedtoshowthatdynamicbehaviorcanbemadeinotherthansimplemechanicalsystems.Fluidicsystemslikethisthermo-syphon,magmaconvectioncellsintheearthsmantle,andatmosphericcellscanoscillateinvariouswaysincludingchaotically.AuTubevideoofthethermo-syphoninoperationisfoundat:https://www.youtube.com/watch?v=ofzPGPjPv6gAnothersimilarvideoisfoundat:https://www.youtube.com/watch?v=Vbni-7veJ-cNotehowindividualparticles

Page 42: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-42

inthisfluiddon’tallmovetogether.Sometimestheygoindifferentdirectionsorspeedswithinthegeneraloverallcurrent.Imagesbelowarefrom:PredictingflowreversalsinchaoticnaturalconvectionusingdataassimilationbyHARRIS,RIDOUANE,HITTandDANFORTH,February2012.at:www.uvm.edu/~cdanfort/.../harris-tellus-2012.pdforintheirearlierpaperat:http://www.uvm.edu/~cdanfort/research/harris-pre-draft-2009.pdf

Thesesimulationsnapshotstakenatdifferenttimesshowhowhotportionsofliquid(red)intrudeintocoldliquid(blue)makingthisacomplex3-Dphenomena.Theflowratewithinthesedonutswaschaoticasshowninthewaveformbelow.

Page 43: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-43

Chaoslikethisthatoccursinliquidsorgasesiscalled“spatiotemporal”chaosbecausevalueslikespeedortemperaturevarychaoticallyfromplacetoplacewithintheliquidorgasaswellasovertime.Seep.5at:http://www.uvm.edu/~cdanfort/research/harris-pre-draft-2009.pdfLiketheLorenzwaterwheelthisisanotherdissipativesystemwhichshedsenergy.Inthiscaseitsheatwhichescapesthroughthewalls.Newenergyisaddedbyheatingthewateratthebottom,whichmakesitlessdensethanwateratthetop.ThismakesthetopwaterrelativelymoreheavyandthusincreasingitsPE.Thisheavymassthenwantstofallfromitsunstablepositionandindoingsocausesthefluidtobegincirculating.Thisisanotherexampleofhowthephysicalconstraintsoftheapparatusdictatehowtherelevantforcescanmovetheparts.Thependulumismechanicallyconstrainedsothatwhilegravitypullsitstraightdownthearmforcesittomoveinanarc.HerethedonuttubeforcesthebulkofliquidtocirculateeitherCWorCCW.Thethermo-syphonseemsanalogoustoacross-sectionofanoceancurrentsuchastheelNinocurrent.HowevertheelNinocurrentisheatedfromthetopnotbottomanditscirculationisdrivenbywindsnotitsinternaldynamics.It’skindoftoobad,sinceitwouldhavebeennicetofindarealworldcurrentthatbehaveslikethethermo-syphon.Ifsowecouldhaveseenitschaoticbehaviorifitwerealreadychaotic,orspeculatedabouthowitmightbecomechaotic–withimportantsideeffects-ifheatedenoughbyglobalwarming.

Page 44: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-44

Itwasnicetofindthefollowingquoteinthetechnicalliterature.ItshowsI’mnottheonlyonetryingtorelatetoysystembehaviortothosebigreal-worldsystemswecareabout.

“The methods we use to forecast the toy model are also similar to the methods used for global geophysical systems. Both require state estimation to find the IC from which to generate forecasts. Also, when forecasts are made in either system, climatology and dynamically accessible regimes are often more important than specific behavior: the occurrence of flow reversals for the thermosyphon; periodic behavior such as the El Nino Southern Oscillation and statistics such as globally and regionally averaged temperatures and their effects on rainfall, ice cover, etc. for climate. Each of these is a statistic that must be post-processed from the model output. To meet these global challenges, many tools are needed in the modeling toolbox. These techniques may also be useful for forecasting socio-technological systems, which are rapidly gaining importance as drivers of human behavior. In this way, toy models can provide us with insights that are applicable to the important scientific problems of today.” From: http://www.uvm.edu/~cdanfort/research/harris-tellus-2012.pdf

3.8Rayleigh-Benardconvection3.8.1GeneralDiscretepartsystemsorganizeintofluidandgassystems:Althoughsystemscomprisedofdiscretepartsmayseemworldsapartfromsystemsmadefromfluidsandgasestheymayinfactberelated.Atthemicrolevelwehaveindividualatomsthatarediscretepartsinsmallsystemscalledmolecules.Electrostaticforcesgoverntheirbehavior.WhatwelearnaboutsmallN-bodysystemslikethedoubleandmagneticpendulums,andsmallspring/masssystemsisusefulinunderstandingtheirbehavior.Howeverwhenwarmatomsoscillatetheytakeupmorevolume.Countlessbillionsofthem,allgettingwarmerandtakingmorevolume,cananddoself-organizeintowarm,buoyantandrisingplumes.Theseindividualplumesfurtherself-organizeintonicelyformedconvectioncells,ordegenerateintochaoticturbulence.Atthismacro-levelgravitynotelectrostaticforcesgovernbehavior.

Page 45: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-45

Thisisaintriguingideatofollowasitmayseamlesslyintegratethebehaviorofsimpletoysystemshavingdiscretepartswiththatoflargefluidandgassystemslikeoceancurrentsandatmosphericflows.I’verunoutoftimetopursuethislate-occurringidea.Behaviorvs.energy:Ihaven’thadtimetostudyfluidbehaviorwellenoughtomakemanyvalidgeneralizations.Ideally,onewouldmakeaseriesofsimulationrunsforagivensystem(i.e.typeofcontainerandfluid)withsuccessivelyhigherenergylevelstomaptheirbehavior.Ittakessupercomputerstorunsomeofthesefluiddynamicssimulations.Ihaven’ttheresourcesortimetodothatsowhatfollowsarescreenshotsandvideosfromadisparatevarietyofsimulations.Imustreadbetweenthelinessotospeaktodrawanyconclusions.Ithinkitsgenerallytruethatbehaviordoeschangewiththelevelofenergyinthesefluidicsystems.Atlowenergiesthefluidstendtoself-organizeintoreasonablywellformedconvectioncurrentsorrolls.Athigherenergiesinstabilitiesseemtogrowbetweenfluidsflowingatdifferentspeedsandtheseturnintoeddies.Asenergyisincreasedstillmoreeddiessubdivideintowhat’scalledturbulentflow.Forhowturbulencedevelopssee:https://www.youtube.com/watch?v=e1TbkLIDWysandhttps://www.youtube.com/watch?v=GlTcRhh3gYcAsIsayelsewherethebehaviorofadynamicsystemmustmanifestorcontaintheenergywithinit.Agentleconvectionrollcanapparentlymanifestalowamountofenergy,apparentlyasKE,duetoitsslowlyrotatingmass.Attheotherextremeittakesahugeamountofenergytocreatetheturbulentwakebehindajetengine.WiththosethoughtsinmindIsimplypresentsomeexamplesofsimulatedfluidflowwithinlaboratorycontainers.TherehasbeenagreatdealofresearchonthetopicunderthegeneralnameofRayleigh-Benardconvection.3.8.2Two-dimensionalfluidbehaviorARayleigh-Benardcellisanexperimentalapparatusconsistingofacontainerfilledwithliquid.Whenheatedevenlyacrossthebottomplumesofrisingliquidformandcanself-organizeintoafewlargeconvectioncurrentsorcells.Atlowenergythefluidtendstocirculatesmoothlyformingtwo,orafew,convectioncells,butathighenergytheflowbecomeschaoticandturbulent.Thissystemisincludedjusttoshowhowcomplexbehaviorcanbeinasystemwithbillionsofpartswhentheinsertionofenergycausesthemtomove.Thescreenshotbelowcomesfromasimulationoffluidflowinathinmostlytwo-dimensionalcell.Coldblueplumesofwateraredescendingfromabovewhilehot

Page 46: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-46

redonesrisefrombelow.Thisparticularrunwasveryturbulentapparentlybecausethebottomplatewasquitehot,buttowardtheenditdideventuallyself-organizetosomeextentintotworoughlyformedcounter-rotatingcirculationcells.Source:https://www.youtube.com/watch?v=OM0l2YPVMf8orhttps://www.youtube.com/watch?v=OM0l2YPVMf8&t=9s

Inthesimulationbelowhotredplumesformandrisealongtheuniformlyheatedbottomplatewhilecoldplumesformanddescendfromtheevenlychilledcoldtopplate.

Page 47: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-47

Thisscreenshotwastakensomewhatlateraftertheplumeshadself-organizedintocounter-rotatingconvectioncells.

Itsimportanttonotethatindividualplumesemergingallalongthebottomusuallymergeintoafewmajorstreamsmovingup,inthiscaseoneachside.Nicelyformedconvectionrollsseemunlikelyinnaturesinceitseemsconditionsmustbejustrighttoproducethem.Icouldnotgetnicecongestioncellstoforminahome-made,stove-topRayleighBenardcell.Thissuggeststhatneatbehavior-suchaswellformedconvectionrolls-requiresalltheparameterstobeperfect(viscosity,temp,cellshape)andthusperfectbehaviorisprobablyrareinnature.Cloudsforexampleareoccasionallyseeninlongwellformedbandsorrolls,butit’srare.Earthsmantle:Thereisevidencethattectonicplatesaredrivenaroundinrandomfashionbyveryslowmovingcurrentsinearth’smoltenmantle.See:http://escweb.wr.usgs.gov/share/mooney/2006_GJI_activetectonics.pdfSocietalsystems:Howplumesformandbehaveis,Ithink,quitesignificantbecauseit’sanabstractmetaphorforhowsocialandpoliticalmovementsform.Certainlyit’sastretchbutconsiderthefollowing.Supposethefluidalongthebottom

Page 48: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-48

representedalargenumberofindividualsinsomesocietyandtheheatbelowwasanalogoustosomethingforcingorenticingthemtodosomethingtomeetsomepersonalgoal.Somethinglikefindingasolutionforsomeunmetneed.Theneedmightbespiritualorreligious.Itmightbehungerorthewishforpoliticalfreedom.ThinkArabspring.TheRBsimulationsuggeststhatwhentheheat(unhappinesswiththestatusquo)hasrisensufficientlysomeone–apersonslightlymoreunhappythanhisneighbors-willbethefirsttotakeactionandformanewsocial,religiousorpoliticalmovement.Ifseveralfolksdothisitwouldresultinmanysmallplume-likemovementsrisingfromthebottom.Eachusingenergytopushagainstthestatusquo.Howeverthefluid(individuals)immediatelyadjacentanalreadyformingplumewon’tstarttheirownplumeormovement,insteadtheymovesidewaystojoinanalreadyformingone.Why,simplybecauseitseasierandtakeslessenergytobeafollowerthanaleader.Overtimethemanysmallplumes(religiousorpoliticalmovements)tendtomergeintojustafew.Thishashappenedinreligionandinpolitics.ThemainCatholicandProtestantchurchesthatemergedfromthemergerofmanyreligioussub-groupsduringtheReformation,andtheDemocratsandRepublicans,cometomind.Thereisperhapsamorescientificrelationbetweentheplumesinthisfluidandsocialmovements,buthopefullyI’mdrawnacompellinganalogythatinvitesmoreresearch.Isuspectitallcomesdowntothings–betheywatermoleculesorpeople-takingthepathofleastresistance,whichofcourserequireslessenergy.3.8.3Three-dimensionalfluidbehaviorThescreenshotbelowisperhapsmyfavoritesimulationvideo.Itsfoundat:https://www.youtube.com/watch?v=pmLmfciox50&list=UUraRQTwh5EYkCvzelOrHRlg&index=11Ihighlyrecommendwatchingitandseveralmoretogetafeelforspatio-temporalbehavior.Notehowisolatedplumesformfirstthenmorphintorelativelystableupanddowncurrents.Latertheseoscillateuntiltheyinterferewitheachotherandbecomeunstable.Noinformationisgivenastowhetherornotenergyischangingduringthisrun.

Page 49: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-49

Thissimisexcellentinshowinghowsteadyconvectionrollsformandlookinathreedimensionalcontainer.Watchfortherisinggreencurrentsincenterandoneeachside.Theactionstartsatabout=t=40.https://www.youtube.com/watch?v=buskqZlPdvIThescreenshotbelowisfromanothersimthatshowshowisolatedplumesselforganizeintolargerstructures.https://www.youtube.com/watch?v=eb8PzSmZqRM

Page 50: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-50

Thisvideoshowssimilarstructuresbutthistimeinanactuallabcontainerthusprovingthesimulationsrepresentreality.https://www.youtube.com/watch?v=nPHwnS3_xlYExtras:Thescreenshotbelowisfromaveryinterestingsimthatisdefinitelyworthwatching.Itshowshowsmall,dispersedplumesself-organizeintoarelativelylarge,stableconvectionflowwherehotfluidascendsintwocornersandcoldbluefluiddescendsintheoppositecorners.Laterenergyseemstooscillatearoundinthissystemuntilitconcentratesenoughtobreakthatpatternapartandformanotherwiththislargecenterplume.Laterittoobreaksup.ItteachesseveralthingsandisfurtherdescribedinChapter4.3.https://www.youtube.com/watch?v=cMGVltlKmr0&index=9&list=UUraRQTwh5EYkCvzelOrHRlg

Page 51: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-51

Other:https://www.youtube.com/watch?v=pmLmfciox50&list=UUraRQTwh5EYkCvzelOrHRlg&index=11andhttps://www.youtube.com/watch?v=buskqZlPdvIOtherRaleigh-Benardvideosarefoundat:https://www.youtube.com/watch?v=s30nE_hRv2Mhttps://www.youtube.com/watch?v=ECpNSjUG5yU&list=UUraRQTwh5EYkCvzelOrHRlgShowshowcomplexfluidmovementscanbecomeandhowunstableoccasionalrotatingcellscanbehttps://www.youtube.com/watch?v=kJnE12dJ9ichttps://www.youtube.com/watch?v=fZviNVPZjDQ&list=UUraRQTwh5EYkCvzelOrHRlg&index=7https://www.youtube.com/watch?v=r0pYCo9Vx5chttps://www.youtube.com/watch?v=nluyQThAcmMhttps://www.youtube.com/watch?v=r0pYCo9Vx5chttps://www.youtube.com/watch?v=5ApSJe4FaLIformsunstablerollshttps://www.youtube.com/watch?v=buskqZlPdvIcomplex3Dsimulationhttps://www.youtube.com/watch?v=nPHwnS3_xlYrealworldlabdemoofRBrollsinapanPaperaboutSpatiotemporalChaosinRayleigh-BénardConvection:http://www.cmp.caltech.edu/~mcc/Talks/BeijingIACM_06.pdf

Page 52: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-52

3.9Convectioninearth’smantleThesevideosshowhowconvectioncurrentsintheearthsmantledriveplatetectonics:https://www.youtube.com/watch?v=ryrXAGY1dmEandhttps://www.youtube.com/watch?v=Kpoko_l34ZE

“TheconvectionoftheEarth'smantleisachaoticprocess(inthesenseoffluiddynamics),whichisthoughttobeanintegralpartofthemotionofplates.Asthemoltenrockmovesupanddownchangingpressuresandtemperaturescauseitschemicalcompositiontochangeandproducemanydifferentminerals.Arelativelysimpleprocessbuildingcomplexity.https://en.wikipedia.org/wiki/Mantle_%28geology%29#Earth.27s_mantle

Belowarediagramsofconvectioncellsandplumesinearth’smantle.Source:https://en.wikipedia.org/wiki/Mantle_convection

Page 53: 3.0 Examples of chaotic systems - Richard C. Harkness · 3.0 Examples of chaotic systems Outline 3.1 Double pendulum 3.2 Magnetic Pendulum 3.3 Lorenz waterwheel 3.4 Planets 3.5 Spring/mass

3-53

Thesevideosshowhowconvectioncurrentsintheearthsmantledriveplatetectonics:https://www.youtube.com/watch?v=ryrXAGY1dmEandhttps://www.youtube.com/watch?v=Kpoko_l34ZE3.10OtherexamplesThefollowingsitesleadtootherexamplesofchaoticbehavior.

Hereisverynicevideoofthethreebodyproblemwhichshowsthechaoticpathsofthreebodieswhichgravitationallyattracteachother:https://vimeo.com/11993047Thisisanotherneat3bodyanimation.Youdon’tneedtouseJavatoseeit:http://www.clausewitz.com/mobile/chaosdemos.htm#3BodyThisentertainingvideoshowstrafficchaosonthirdworldstreets(scrolldowntoplaythevideosegmentcalledAComplexAdaptiveSystem)at:http://www.clausewitz.com/mobile/chaosdemos.htm#3Body

Thissimvideohastwospringmasshollowballscolliding.http://scholar.harvard.edu/tlan/meshed-mass-springAuthorcouldmakethemodelIwantfromthis.CHECKITOUTMOREGoodreadabledescriptionof2ormoremasses/springs.http://www.math24.net/mass-spring-system.htmlsays2mass3springsystemislinear.Usefulinfo.

Wrap-up:Thisconcludesaquicklookatsomesystemsthatbehavechaoticallyundertherightconditions,plussomespringmasssystemsthatcan’tofficiallybechaoticbutneverthelessshowsomeofthesomebehaviors.InthenextchapterIattempttosummarizewhatIfeelarethemostimportantaspectsoftheirbehavior.Thesethingshopefullyapplyacrossawiderangeofsystems.Ipresentevidenceofthis,butnotproof.*****endofChapter3***