a fission-fusion hybrid reactor in steady-state l-mode tokamak configuration with natural uranium...

28
A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th , 2011

Upload: tyrone-cameron

Post on 13-Dec-2015

226 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak

Configuration with Natural Uranium

Mark Reed

FUNFI

Varenna, Italy

September 13th, 2011

Page 2: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

PART I: The Issue

PART II: Fission

PART III: Fusion

PART IV: Conclusions

Page 3: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

PART I: The Issue

Why this might be a good idea

Page 4: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Contention

Fission-fusion hybrids could actually be more viable than stand-alone fusion reactors and

obviate some challenges of fission.

Qhybrid = Q fus

1

5+

4

5Q fis

⎝ ⎜

⎠ ⎟

Page 5: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Constraints

• D-T tokamaks

• Fully non-inductive (steady-state)

• Low confinement mode (L-mode) operation

• Pebble bed blanket with helium coolant

• Natural or depleted uranium

• Lithium-lead eutectic layer for tritium breeding (one triton per fusion neutron)

Page 6: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

PART II: Fission

The maximum natural uranium blanket power gain

Page 7: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Basic Layout

Li-Pb

natural uranium with He coolant

shield

Page 8: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Neutronics Methodology

• Developed a subcritical Monte Carlo code (benchmarked with MCNP)

• Treated uranium and lithium layers as elongated toroidal shells (quartic solutions for neutron path lengths)

• ENDF cross-sections and other nuclear data

Page 9: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Blanket Variables

• Uranium toroidal layer thickness

• Lithium toroidal layer thickness

• Relative positioning of toroidal layers

• Homogenized uranium density (different pebble designs)

• Lithium enrichment

• Major and minor tokamak radii

Page 10: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Layer Thickness Optimization

Page 11: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Subcritical Neutron Multiplication

k = 0.27

k0 = 1.19

Page 12: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Total Power Composition

Page 13: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fusion-Born Neutron Fate

Page 14: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fission Results

• Blanket power gain of 7

• Tritium breeding ratio of 1.05

• Uranium layer thickness of 18 cm

• Lithium enrichment of 90% 6Li

• Helium coolant velocity ≈ 10 m/s

Page 15: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

PART III: Fusion

The minimum tokamak size for steady-state L-mode operation

Page 16: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

0-D Tokamak Model

• Volume-averaged parameters

• Simply relate R, a, B, q*, Pfus, and Qfus

• Current limit and safety factor (q* > 2)

• Greenwald density limit

• Troyon no-wall pressure limit (βN < 3)

• L-mode operation (H-89 scaling)

• Fully non-inductive (fNI ≈ 1)

• Solenoid flux approximately twice plasma flux

Page 17: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fusion power surface density PF/AS and fixed Bmax uniquely define each operating point

q ~Ba2 1+ κ 2

( )

RIP

PAUX + Pα = PLOSS

PAUX +n2

4⟨σ DTv⟩EαV =

3nkT

τ E

V

985.0

276.5−

⎟⎠

⎞⎜⎝

⎛=aRκ 2 < R/a < 4

( )2/ aIFn PG π=

AUXAUX

F

P

P

P

PQ α5

==1

2

3

4

5

6

0-D Tokamak Relations

Page 18: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Stand-Alone Fusion Reactor

Q = 40, R/a = 2.6, Bmax = 15 T, PF/AS = 5 MW/m2.

Page 19: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fission-Fusion Hybrid Reactor

Q = 6.3, R/a = 3.1, Bmax = 15 T, PF/AS = 3 MW/m2.

Page 20: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fusion Results

• Major radius of 5.2 m

• Aspect ratio of 2.8

• Maximum on-coil magnetic field of 15 T

• Fusion gain of 6.7

• Total fusion power of 1.7 GW

• Safety factor of 3.0

• H89 = 1.48 (L-mode)

Page 21: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

PART IV: Conclusions

What this all means

Page 22: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Fission-Fusion Advantages

• Fully non-inductive L-mode operation at small scale (low capital cost relative to pure fusion devices)

• Subcritical operation (flexibility and safety)

• Control of fission blanket indirectly through control of the tokamak plasma – fission blanket gain increases with time due to plutonium breeding

• No uranium enrichment (non-proliferation)

• Enhanced transmutation of long-lived fission products through (n,2n) reactions

Page 23: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Conclusion

Instead of complicating the already difficult challenges of fission and fusion, fission-fusion hybrids could actually simplify many difficult

aspects of fission and fusion.

A profusion of pro-fusion sentiment?

Page 24: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Acknowledgements

Prof. Ron Parker (fusion)

Prof. Ben Forget (fission)

M. Reed, R. Parker, B. Forget. “A Fission-Fusion Hybrid Reactor in L-Mode Tokamak Configuration with Natural Uranium”. PSFC/RR-11-1 (2011).

MIT Plasma Science and Fusion Center (PSFC) report:

Page 25: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Extra Slides

Page 26: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

L-mode and H-mode

• H-mode has rough profiles that create edge-localized modes (ELMs), the bane of current fusion research.

• L-mode does not give rise to ELMs but has lower power density.

• Some current hybrid designs are based on ITER (H-mode).

Page 27: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

Hybrid Power

Q fus =Pfus

Paux

Q fis =Pfis

(4 /5)Pfus

Qhybrid = Q fus

1

5+

4

5Q fis

⎝ ⎜

⎠ ⎟

The fission blanket augments the fusion power.

Page 28: A Fission-Fusion Hybrid Reactor in Steady-State L-Mode Tokamak Configuration with Natural Uranium Mark Reed FUNFI Varenna, Italy September 13 th, 2011

At large size, increases in temperature lead to operation at the maximum D-T rate coefficient.

• T near <σv> maximum provides inherent stability (negative reactivity coefficient)

• Absolute <σv> maximum limits feasible parameter space

66 keV

T= 10 keV 100keV

Log

(D-T

rat

e co

effic

ient

)