a sexrch for r-parity violx~inc; at hera …...i hwe to especially niention my house mates, dr....

180
A SEXRCH FOR R-PARITY VIOLX~INC; SCPERSYMMETRIC P.~~IC*LES AT HERA r:srh-G THE ZEUS DETECTOR Raphnel Galea A t hesis submit tecl in conforniity wit h the reqriirenierits for the degree of Doctor of Philosophy Graduate Depart nient of P hysics Cniversity of Toronto Copyright @ 2001 by Raphael Galea

Upload: others

Post on 09-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

A SEXRCH FOR R-PARITY VIOLX~INC; SCPERSYMMETRIC P . ~ ~ I C * L E S AT HERA r:srh-G THE ZEUS DETECTOR

Raphnel Galea

A t hesis submit tecl in conforniity wit h the reqriirenierits for the degree of Doctor of Philosophy

Graduate Depart nient of P hysics Cniversity of Toronto

Copyright @ 2001 by Raphael Galea

Page 2: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

National Library I*I of Canada Bibliothèque nationale du Canada

Acquisitions and Acquisitions et Bibliographie Services services bibliographiques

395 Wellington Street 395, me Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada

The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/nlm, de

reproduction sur papier ou sur format électronique.

The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation.

Page 3: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Abstract

Page 4: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Dedicat ion

For Nannu Ki1 le.

Page 5: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Acknowledgement s

Experimental High Energy physics is a collaborative effort and I miist thank an rnorrnoiis

number of people. For this reason. should a name be missirig in thesc acknowledgements.

it will certainly be found iri Appendix C which contains the author list for t h e ZEUS

collaboration.

My thanks must first go to rny aclvisor Dr. John Martin. wliosr iirifailirig support.

has been present throughoiit ni- stiidies. 1 am also gratefiil for t h r giiitlaricr o f Dr.

David Bailey and Dr. 'rlike Luke. and for the encouragenierit I receivecl froni Dr. Sarripa

Bhadra. Thank you. Dr. Bob Orr. for introdiicing rntl to the graduate program.

In Germany 1 learned a great deal througb collaboration with the past and prrsrnt

coordinat ors of the Esotics and Rare Phenornena Ptiysics groiip: Dr. Strfan Sdilenstcdt .

Dr. Masahiro Kuze. Dr. Roberto Sacchi. Dr. Liica Stanco and Dr. Briictl Straiit). I

worked closely with Dr. Stefan Polenz and benefited h m liis e s p e r t i s ~ ancl fricndship.

Thanks also to the other Canadian group Researcli Associat~s Dr. Bill Schmidkr. Dr.

Garry Levman and Dr. Gerd Hartner. Dr. Ernrnaniielle Perez deserves a great dcal of

credit for her pioneering nork at H l on t tiis topic a n d hcr important coiitrihiitions to t l i t b

HERA Monte Carlo workshop.

Thanks must also go to the secretariat at DES\'. Fraii Bahr ancl Frau Brrtzkc I aiii

also grateful to Winnie Kam and Maianne Iihurana a t the University of Toronto Pliysics

Department for their guidance and help throughtout m - time in the School of Gradiiate

Studies.

The Italian group at DESY were like faniil? to nie. I hwe to especially niention my

house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola

'Cippolone' Coppola and of course Vincenzo. whose nickname is unprintable. Alberto.

Silvia, Polini, Maria Carrnela. Antonio: Enrico, Marta, Daniella, Davide and the rest of

Page 6: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

their compatriots never let me forget where I was born. There is life outside DESY ancl

riiy friends Sonja. Kristina, Carsten. Pet ra. Dominik. Icla. GiGiLs and the Spanish c r o d

helped me to esperience it.

1 have to also thank Andrea 'THE OX'. my Friend. house mate. and meniber of the

Canadian group. Vielen Dank für alles. 1 must not forget to acknowledgc the entirr

Canadian ZECS cluster. it [vas truly a group which reflected Canada's cultural divcrsity.

!darce Pat. Laurel. Slohsen. Peter. hlichael. Sanjay ancl Tliorsten. ['II nevcr forgct the

'good old da YS'.

To Christian. Steve. Ali. Daniel. Dr. Pepptir and Sneaky Dees. we started antl aliriost

finished together. The 'Heir Apparent'. Etiennc. and cspecially Amit helpetl rtir to

remember to take tirne For myself.

Thanks to Gina and .\lison for continually fiw-tuning the Feiig-shiii in oiir l ioiis~

until this thesis was completc.

And finally I must thank niy parents for proviclirig rntx with il11 t h r rii3ccssary charar-

teristics to succeed and enjoy my choices in life. Equally iiriportant to riiy sl1rct.s~ i w s

rny sister. Serena. whose support. emotionally financially antl otherwise has nlivays twrn

unyielding.

FI-ahhar

Page 7: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Contributions t o the ZEUS Experiment

I arrived at DESY to begin my work a t the ZEUS experiment in September 1996. Cpori

arriva1 1 worked on the Third Level Trigger (TLT). 1 becanie responsible for the niain-

tenance and upgrade of the software and hardware for the TLT dong with a Researcli

Associate (RA) from the Cniversity of Toronto. 1 sas on cal1 during data takirig For ;in-

online problems relating to the TLT. In the ivinter sliutdown between i996 and 1997.

1 Iielped in integrating a new architecture into the system and 1 performed a major rc-

organization of the monitor and filter software code. Oïer the years niore deniaiid lias

been made on the TLT in terms of processing poiver. Along ni th the RA. 1 portetl rnariy

offline data quality checks to the TLT.

In 1997. 1 managed the Canadian clustcr cornprised of several platforms and opcrating

systems. That same year 1 joinecl the Exotic and R i i r ~ Pherionirna physics groiip. Ii i

1998. 1 became the group's trigger representative. Along with riiy trigger responsibilit ios

for the Exotics group. 1 initiated the Data Quality llonitoring (DQSI) for the ~ s o t k

physics triggers. In 1998. the DQM consisted of the Event of the W e k (EOT\V) projrrt.

in which the liighest energv most interesting events arc selected and scanrit'tl. In 1099.

I implemented a simpler version of the EOTK selectiori code onlirie. a t ttit. TLT. iir i<i

created the Event of the Day (EOTD). ivliich perfornis a real tiriie csotic selectiori. This

allows the two person shiftcrew an added visual opportunity to look a t the data. ivliic4i

has made spotting potential detector problems easicr.

1 have represented the ZECS and H l collaborations at two international conferenccs.

DIS99[1] and LLCVI2000[2]. In 1998 1 perticipated in the year long HER-\IIC[3! worksIiop

in which 1 worked on generators of R-parity violating supersyrnrnetry at HERX.

Finally. 1 participüted and assisted in a meeting of the ZEUS collaboration in Toronto

in Junet 2000. 1 designed and managed the meeting web page and addressed an- com-

puting concerns of our collaborators.

Page 8: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Contents

1 Introduction

2 The Standard Mode1 4

. . . . . . . . . . . . . . . . . . . 2.1 Basic Elements of the Stanciarct llodel 4

. . . . . . . . . . . . . . . . . . . . . . . . . '2.1.1 Generation of mass 6

. . . . . . . . . . . . . . . . . . . . . 2.2 P rob iemswi th thcS tandard~~odc l 6

Phenornenology of Supersymmetry 8

3.1 The Mnimal Supersymrnetric extension to the Standani Mode1 (.\ISS.\I) 11

. . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Seutraiino Sector 12

. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Chargino Sector 1:)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 R-Parity 14

3.3 Phenornenology of Supersymmetry at HERA . . . . . . . . . . . . . . . . 16

3.3.1 Resonant prodiiction of Squarks . . . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Squark Decap 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 P, Squark Decays 21

3 3 . . . . . . . . . . . . 3.4.2 R-parity conserving or Gauge Squark Decays -- 3.5 Neutralino and Chargino Decays . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 XeutralinoDecays . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii

Page 9: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

. . 3 . 2 Chargino Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 i

3.6 Possible Final State Topologies . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 The Experimental Setup 33

4.1 H E R k Hadron Elektron Ring Anlage . . . . . . . . . . . . . . . . . . . . 33

4.2 The ZEUS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :3G

4.2 . 1 Tlie Central Tracking Detector . . . . . . . . . . . . . . . . . . . 3;

4 . 2 . The Uranium Calorinieter . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Other Components . . . . . . . . . . . . . . . . . . . . . . . . . . 43

. . . . . . . . . . . . . . . . . . . . . . . 4.2.4 The Luminosity hlonitor 4 1

4.3 Trigger and Data .A cqiiisition System . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Thr First and Second Levd Trigger . . . . . . . . . . . . . . . . 45

. . . . . . . . . . . . . . . . . . . . . . . 4.3.0 Ttie Third Level Trigger 47

HERA Kinematics and Event Reconstruction 59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Phpics at HERA 39

. . . . . . . . . . . . . . . . . . . 5.1.1 Deep Inelastic Scattering (DIS) 59

. 5 1 2 Reconstruction of Kinernatical Cariablcs . . . . . . . . . . . . . . 6.3

. . . . . . . . . . . . . . . . . 5.1 -3 Reconstruction of Global Quantities 63

5 . 2 Track and Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Electron/Positron Finding . . . . . . . . . . . . . . . . . . . . . . . . . . 63

- - 5.3 Jet Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

. . . . . . . . . . . . . . . . . . . . . . . . . 6 Squark Mass Reconstruction 74

a.6.1 Channels mith a e" in the final state . . . . . . . . . . . . . . . . 74

5 - 6 2 Channels with a v in the final state . . . . . . . . . . . . . . . . . 14

viii

Page 10: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

6 Monte Car10 Simulation 76

6.1 Background Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 SCSY Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Event Selection 85

7.1 Search Strategv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

. 7 2 Ciit Optiniization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 NC-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 Preselectiori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

- i 3 . 2 Further '1'C Seiection . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.3 Jet Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.4 c jet Sample 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.5 e je ts Sarnple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.6 Selection Efficiencies and Squark S I i s Resol~t~ions . . . . . . . . 100

7.3.7 Final NC-like Event Sarnples . . . . . . . . . . . . . . . . . . . . . 100

7.4 CC-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

. 4 Selection cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.3 Signal Enhancernent . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Limit Setting Procedure 116

8.1 Inclusion of systematic uncertainties . . . . . . . . . . . . . . . . . . . . 117

8.2 Interpolation and limits in the SCSY phase space . . . . . . . . . . . . . 118

8.3 Systematic Vncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Page 11: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

9 Results 123

9.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Other experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11'6

10 Conclusion 130

A CC-like Cleaning Cuts 132

-1. l Calorimeter Timing cuts . . . . . . . . . . . . . . . . . . . . . . . , . . . LX

-1.2 S C positron/clectron criteria . . . . . . . . . . . . . . . . . . . . . . . . 1 3 3

B Branching Ratios and Signal Efficiencies 134

C The ZEUS Collaboration 139

D Glossary 150

Bibliograp hy 153

Page 12: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

List of Tables

2.1 The fermions of the Standard Mociel .

. . . . . . . . . . . . . . . . . . . . . 3

2.2 The bosons of the Standard 'Llocicll . . . . . . . . . . . . . . . . . . . . . . .

3.1 Particle content of 1LISSXI . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Squark production processes at HERA via 61, coiipiings with a positron

beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Squark dec- channels in @, SCSY which worp c*onsi<lereti . . . . . . . . 31

3.4 Squark Decay Charinels in J?, SCSY rlassifitbci hy distirirt topologirs . . . . 32

4.1 HERA design and 199'7 runriing parameters . . . . . . . . . . . . . . . . . 34

.. 6.1 Sumrnary of generated background 'ilonte Carlo saniples . . . . . . . . . . r l

6.2 Summary of generated signal Monte Cürlo saniples wit h niiiltijet f i n ci 1 statcs . 80

6.3 Sumrnary of generated signal lIonte Carlo samples a i th single jet final

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 Summary of data sample event numbers and espectation from Monte Carlo

background simulations for events with a reconstructed e= . . . . . . . . . 103

2 Summary of the cleaning and selection cuts for the CC DIS sample . . . . 108

Page 13: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

7.3 Summary of data saniple event numbers and espectation from Monte Carlo

backgroundsimulationsforevenrs w i t h & . . . . . . . . . . . . . . . . . . 114

. . . . . . . . . . . . . . . 8.1 Summary of systematic uncertainties considered 1'2'2

Page 14: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

List of Figures

3.1 Radiative corrections to the Higgs n ias iri a siipersyninietric niotiel. . . .

3.2 The cvolution of the SG(3). SC(2). and L7(1) couplings in the (a) the

Staridard SIodel and (b ) t hr Mininial Siiprrsyninietric Extension to the

Standard 'LlodcL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Neutralino masses giwn at fixcd ( a ) Jb = LOO Ge\' (b) -\I? = 200 Ge\'

and tan 3 = 3 as a function of p. . . . . . . . . . . . . . . . . . . . . . .

3.4 Chargino masses given at fiseci (a) JIz = LOO Gr\* (b ) -1- = 200 Ge\' arid

t a n 3 = 2 as a function of p. . . . . . . . . . . . . . . . . . . . . . . .

3.5 Decay of a Proton via LQD and L-DB. . . . . . . . . . . . . . . .

3.6 Interaction vcrtices via A:,, couplings. . . . . . . . . . . . . . . . . . . . .

3.7 Production cross sections for C L and & for A' = 0.1 in e p collisions. . . .

3.5 Squark &, production and decay diagrams. . . . . . . . . . . . . . . . . .

3.9 Regions in the SCSY phase space (Jly. p ) corrcsponding to a charged LSP

and a neutral LSP dominated by its 5 . 2 or f io cornponerits. for tari 3 = 2.

3.10 Dominant gauge decay mode for a 150 Ge\. irt sqiiark in the phase space

plane ( J I 2 . p ) for tan 3 = 1. . . . . . . . . . . . . . . . . . . . . . . .

3.11 Representative diagrams from the 4d, decay of the f: for a non-zero Xi,,.

3.12 Gauge Decays of the t:. . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.13 Gauge decay modes for the Fz. . . . . . . . . . . . . . . . . . . . . . . .

S..

Xlll

Page 15: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

4.1 Layout of the HERA accelerator complex and injection system . . . . . .

-4 . 2 The integrated luminosity recorcied by HERA for 1992-2000 . . . . . . . .

4.3 Cutaway view of the ZEUS detector . . . . . . . . . . . . . . . . . . . . .

4.4 One octant of the CTD showing the field and sense wires . . . . . . . . . .

4.5 The ZEUS calorimeter (4-2 projection) . . . . . . . . . . . . . . . . . . . .

4.6 The Layout of the ZEUS luniinosity rnorlitor . . . . . . . . . . . . . . . . .

4.7 Schematic diagram of the ZEUS trigger and data acquisition susteni . . .

4.8 The TLT hardware design . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 The TLT software design

4.10 Flow chart outlining the TLT trigger decision . . . . . . . . . . . . . . . .

4.1 1 Time measurements for ep and beam-gas iriterüctioris . . . . . . . . . . . .

4-13 Tirne distributions of RCAL tinitis versus thc FCAL ttiiriirs RCAL tirrit .. .

4.13 Examples of cosmic and halo miions in the ZECS (irtwtor . . . . . . . . .

-1.14 The CPC processing time required by t h r TLT . . . . . . . . . . . . . . .

5.1 A schematic view of the Deep Inelastic Scattering Process ;it HERA . . .

5.2 A schematic view of the s-channel resoriuncr! production at HERA . . . . .

5.3 Display of a charged current SIonte Carlo r v m t . . . . . . . . . . . . . . .

4 I J J ~ as compared to gregulorlrcd for a liigh Q2 charged ciirrerit Slontc Carlo

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sample

. . 3.3 The positron finding efficiency as a function OF energ y. polar angle arid

6.1 Examples of leading order diagrams for (a) direct and (b ) resolved photo-

production processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Graphical riew of the gerierated signal Nonte Carlo sets in the gaugino

mass space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

siv

Page 16: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Effect of initial and final state parton showers on the mas reconstruction

of a 200 GeV squark undergoing the 4(, decay (i + eq. . . . . . . . . . . . -

o(eTd _t as a functiori of the SLSY pürarneter p for fixed .\- and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fised squark mass.

.Jet distributions for Monte Carlo sig~ial sirnulations with e= and mii1tiji.t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . topologies.

.Jet clistributions for Monte Car10 iieiitral and chargetl ciirrmt hackgroiind

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulations.

.Jet distributions for hfonte Carlo signal siniulations for e and single jet

topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.Jet Distributions for the pr~sclected data satnpltt. . . . . . . . . . . . . .

Kineniatic distributions for th^ prc!sele(:rrd data ~ i i r ~ i p k . . . . . . . . . .

log,, (Q') and reconstruct~tl n ias distributioris for t h pr twl~ct rd data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sample.

The ET distribution of tht. highwt ET jet as a Iiin(*tion of thr invariant

n i a s of t hc e + jet ( s ) susteni. . . . . . . . . . . . . . . . . . . . . . . .

(a) The !j distribution for ncutral current DIS corripard to a sarnplr i:iis-

cade decay (e jets) and a sample 4 decay ( r jet. ( h ) The y distribution

as a function of the invariant m a s . . . . . . . . . . . . . . . . . . . . . .

The log,,(Q2) distribution for rieiitral currerit DIS cornpareci to that of a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cascade squark.

7.10 The experimental efficiencics for squark decq-s a5 a hnction of squark mass. 101

7.11 The mass resolution For squark decays as a function of q u a r k mass. . . . 102

7-12 The reconstructed mass distribution for the e jet final sample. . . . . . . 103

7.13 The reconstructed mass distribution for the et jets final sample. . . . . . 10-4

Page 17: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

7-14 Distributions of events in the (niimber of good tracks)-(number of al1

tracks) plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.15 The (a) PT(- l i r ) and (b) f i distributions before the application of thpir

selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.16 Control plots comparing data and Monte Carlo backgroiind simulation

espectation for the niimber of good jets. y. Pr arid ET clistribiitions after

preselection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 t 1

7-17 Control plots comparing data and hlorite Car10 backgroiind sirriulatiori

expectation for the logl,(Q2) and invariant m a s distributions after pres-

election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11'2

(a) The efficiencies and (b) resolutions for cascade sqtiark ciecays into u jets

as a function of the squark miLss. . . . . . . . . . . . . . . . . . . . . . . 114

The reconstriictecl mass distribution for the u .jets tinal sarnplt?. . . . . . . 113

The systernatic uncertainty of variation of the selection cuts or1 thcl sclec-

tion efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1

A;,, lirnits as a function of Jii for f ixd .II2 = 290 G d ' . 11 = -200. 'LOO Gel'

and tan 3 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5

The 95% CL upper limit on A;,, in the SCSY pararrieter (JI2. p ) spacc for

= 200 Gel'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

95% CL exclusion upper limits on the pl, coupiing Xi,, as a function of

thesquarkmass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127'

Diagram for the selection squark production process at HERA . . . . . . 128

Branching ratios at fised JI2 = 90 Ge\-. p = -200 GeY and tan .j = 2 . . 135

Branching ratios at fised :LI2 = 190 GeV. p = -200 GeV and tan 3 = 2. . 135

Page 18: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

B.3 Branching ratios at fixed :LI2 = 240 GeV. p = 100 GeV and tan 3 = 10. . 136

B.4 Branching ratios a t fixed -1f2 = 290 GeV. AL = 200 Ge\' and tari 3 = 10. . 136

5 Efficiency as a function of squark m a s at fised tan .-3 = 2 and p = -200 G ~ 1 * 1 3 i

B.6 Efficiency as a function of squark rnass at fixecl tan 3 = 10 anci I L = 200 Ge\'135

svii

Page 19: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 1

Introduction

In 1999. 1 presented a prelirninary study of this analysis along a i t h other exotir particlr

searches performed at ZECS [l]. at the Workshop on Deep Inelastic Scattcring in Berlin.

Germany. At the conference dinrier. 1 ivas sittirig a lmg side a st'nior nicnibrr o f o i i r

collaboration. He askecl rnp what the topic of rny tlicsis nu and 1 r d d hini thnt 1 \vas

looking for Supersymnietry. To this 1 received t iicl conmient .*SUS Y (Srrpcrs?/nlrrretvj) t s

the only mode1 which has sumued uuer 25 geears urithout a single piece of eqilîzrriental

proof ".

The point is well taken in the contest of the great acconiplishmcnts by t l i~orists ai ic i

experimentalists in the field of particle phpics;. The Standard lIodel (SM) of particle

physics. which is briefly discussed in chapter 2. has beeri the culmiriation of the successt~s

of the field and has been able to explain a wealth of precise esperimental data. The

discovery of the top quark[4] and firsr direct observation of the tau neutrino[Z] have

filled in the last gaping holes of the SM particle spectrum. with one exception. This is

the important Higgs particle which by most indications seems to be right around the

proverbial corner. Existing measurements have already

to a mass of 108 GeV[6] and the Tevatron run II and

ruled out the Higgs particle up

anticipated experiments at the

Page 20: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

planned Large Hadron Collider (LHC) are espected to discover the Higgs particle or

push its mass Iimit to up to the Ievel of 1 Te\*[i].

Despite its siiccess. the SM is not a Theory of Everything (TOE). Ttierc arc esperi-

mental datai81 nhicti suggest that neutrinos Iiave m a s . which is strictly not a part of the

SM. by design. The SSI and some other shortcomiiigs of the SM are outlined in cliaptcr

2. One proposed answer to physics b e o n d the Slf is SLSY. A mininial supersymm~tric

model's most draniatic effect is in cloubling the knonn pürticle spectriim. Each fermion

in the Shf Lias a scalar superpartner and each boson has il fermioiiic superpartrier. SCSI-

searches have been performed at al1 the major esperiirie~its aroiirid the world aiid t t i ~

search for SCSY a t HERA is the topic of ttiis thesis. HERX (sre ctiaptt~r 4) Iias a iiniqiir

opportunit- to test SCSY models involving the concept of R-parity violating (&) super-

symmetric quarks (squarks). The search for & qua rks is promising at HERA bccaiisr

they can be produced right up to the kiriematical limit (300 G d ' ) . This phcnornmology

is described in chapter 3. In the search described iri tliis ttiesis. no signal is obsrrved for

the production of &, squarks in 17.7 of P - p data taken by t h ZECS rsperinicmt

from 1994-1997. Chapters 5 and 6 describc the tools and iiiethods bu rvliich da ta is

reconstructed and in chapter 7 the event selection is esplained. Litiiits ikrr set on ttiv

strength of 4 couplings as a function OF the squark rriass arid parameters whicii clefirie

the models under study. Chapter 8 oiitlines the rnethodology usecl in the setting of the

limits. The results and their discussion can be foiind in &apters 9 and 10.

I can understand the frustration expressed bu niy senior collaborator becaiisc this

SCSY search does not rule out a mode1 but instead orily sets liniits. This is preparatory

work for the upcoming experiments which ail1 Further piish the frontiers of the SII arid

perhaps begin to rule out or confirm SCSY models. To answer the comment regarding

Lack of experimental evidence for SC'S)-. i responded with an anonynious quote: "The

pessimist would say that no SUSY particles have been discovered. The optimist would suy

Page 21: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 1. INTRODUCTION

thut half of them have ".

Page 22: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 2

The Standard Model

Particle physics phenornena are extremely ive11 descrihctl withiri ttic SM of clemtmt.ary

particles arid t heir fundamentai interactions. Thil SSI proviclrs an &gant t l ieor~t iciil

framework which has successfull:; passeci ver'- prccistl tests. somr of whicti likc sin HL\- =

0.23147(16) have reached the level of 0.1% [9].

2.1 Basic Elements of the Standard Model

The SM describes elementary particles as the point-like constituents of rnatttlr. Ttiiw

are two types of basic building blocks. the matter particles and the interaction particl~s.

T h e matter fields are fermions of spin L/2 and are classified into leptons arid quarks

grouped into three generations. They are surnmarized in table 2.1. The leptons hwr

integral charge and the quarks have fractioriai charge.

The quarks have an additional quantum number called colour. which cornes in three

varieties. The quarks must be confined into the esperimentally observed mat ter part ides.

called hadrons. which are colourless. Thesc colourless composite particles are classified

into baryons, fermions made up of three quarks. and mesons. bosons (integral spin par-

Page 23: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Table 2.1: The fermions of the Stundünl Mode1 and their principd ch~rr~(:tensti(:s.

Generat ion

ticles) made up of one quark and one aiiti-qiiark.

Ali interactions in the SM are mediated by the cschange of mie of several iriterac.r,ioii

particles. which are elementary bosons. These particles arici the forces they nicdiatc arc.

summarized in table 2.2.

Quarks

1

3 -

Interaction

S t rong !

Charge (e)

Elect romagnetic

Table 3.2: The bosons of the Standard Mudel i d thew principal churnçteri.~tics[9!.

Throcighout thzs thesis the convention of rtatuml units (r = h = 1,) is applzed.

up t~

down d

charm c

strange s

Bosoris 1 spin 1 Cliargc ( c i

photon -< i l / O 1 O I l 1 i i 1

The SM is a quantum field theory (QFT) based on the gauge symmety S U 3 ) x

SC7(2) x C(1). This group includes the symmetry g o u p of the strong interaction. SC(3).

This theory is knorvn as Quantum Chromo Dynamics (QCD). The symmetry groiip of

top t

bottom h

Leptons

--

\LUS GC\ 1 1

213

-113

113

-113

Charge ( e )

I 1 i l

213

-113

elect ron-ncir t rino v,

electron e

miion-neutrino Y,

riluon

O

- 1

O

- 1

tau-neutririo Y ,

tau r

O

- 1

Page 24: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

the electromagnetic interaction. U(1). is a subgroup of SL:(2) x L:(l). the gauge group

for the electroweak theory of Glashow. Weinberg and Salam[lO. 11. 121. which unifies the

clec tromagnetic and meak sec tors.

2.1.1 Generation of mass

If the symmetry SLT('L) x L'(1) werr unbrokcn. thc I F and Zo woiild br niasslrss wliirti

is not the case. If mus terms were acicled to the SSI lagrnngian. thc tlieory's gaiigil

invariance would be lost. Instead a scalar particle. the Higgs boson (H). is adcled to ttw

t heory. Through a mechanism called spontaneoiis synimetry h a k i n g . the Higgs bos«ii

generates the particle masses while preserving thc ga i ig invariance of the theory.

One assumes the scalar particle H. w1iii:li is clectrically nrwtral. apprars as a doiihlot

of SL-(2) and has Yukawa couplings to both gaugr bosoiis and fcrniioris. Ttic SM potoritial

is chosen such that a t the niinimuni. the H lias a non-zrro tniiss in tlie vaciirrni. Ttic

symmetry SC(?) x ('(1) is spontaneously broken aiid tlie particles acqu i r~ a nias .

Several of the SM particles in tables 2.1 and 2.2 wrrB prrtlict,cd long be fo r~ t t i ~ i r

discovery. and are therefore testaments ta the succ~ss of the SM. Tlirse incltid~ r h ~ gliion

a t Deutsches Elektronen-S'i'nchrotron (DES).). the. II ' and Z bosons at C m t r ~ Eiinqwan

Recherche Niicléaire (CERN) and the top quark and Ï neiitriiio at Ferniilab. Only thr

Higgs boson has not yt been observed.

2.2 Problems with the Standard Mode1

The SltI has been tested thoroughly bu man? particle physics esperinients. )-et. \vit hoil t

the discovery of the Higgs boson it is still incomplete. There are also other theoretical

aspects of the theory which make most believe that it is not the final chnpter of particle

p hysics:

Page 25: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Hierarchy Probtcm

Why is the weak scale so small co~npürcci wit ti the scale of Grand Cnified Thcorics

(GCTS) : - IO-'' -IGIonck:>

Fine-Tuning Problem

Radiative corrections to the Higgs boson masses have quaclriitic divergences. The

corrections ro the Higgs masses are niany orders of rnagnitiitle largrr than thcl Higgs

mass itself. These divergences can bt. renornralizrti away ty carefui adjiistnirrit of

corrections and this rniist be clone to al1 onlcrs in pertiirbatioti tlicory.

Unification of couplings.

In a gauge theory the couplirigs scale witti enttrgy. A ncccssary reqiiireniciit of d l

GL'Ts is that these couplings rtieet at. a single point. .ifter pr~cisc rricastircrnrrits of

the S U ( 3 ) x SL'(2) x C(1) coiiplings. and thr extrapolation of tliesc coiiplirigs to tiigti

energies. unification h a been excludeci by rnorr tliirri eiglit standard dpviationsl K3!.

Gravity

Gravity. dong with the electroniagnetic. and strong forces. make up the foiir

fundamental forces of nature. Gravity is conspiciioiis bu its ;tt)senr:e in the SM.

Page 26: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 3

P henomenology of Supersymmet ry

One of the problerns alluded to in section 2.2 was the problern of jne-tuning: if t h

fermion and scalar couplings of the theory arp carefiilly üdjustcd. it is possibl~ to caricd

t hc quaclratically divergent cont ri biitiotis to th<% Higgs riiiiss. ;\ synirrietry cari Iw inipostvl

on the theory which results in this cancellatiori to occtir to al1 orders in pcrturbatiori

t heory [NI. It is this symmetry mhich is rcferred to as supersyrrcrnetq.

Supersymmetry (SCSY) relates the masses and cotiplings of particles with diff~rrrit

spins. SCSY is a leading contender for an exterisiori to the SM. It is a gcnernlization of

the space-tirne symmetries of Quant iim Field Thrlory (QFT) ttiat transforni ftwriions irito

bosons and bosons into fermions. SCSY ttierefor~ groiips particles wi th the same mass

and other quantum numbers. but which differ by I l / ? unit of spin. into a superfield.

where Q are fermionic generators wliich satisfy:

{Q. Q} = -Zi,, PlL

[Q. P'] = (Q. Q } = {Q. Q } = O.

where P p is the momentum operator and Aip are the Dirac matrices.

Page 27: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

The building of supersymrnetric lagrangians will not be covered here but is tliscussed

estensively in the literature [lj].

SUSY solves the Hieîarchy and fine-tuning problems.

.As previously mentioned tliere exist quadratic divergerices to the Higgs rnass whidi

lead to = O(.\I~,,,,,). Kowever. accorcling to the Fcynnian rules in SCSY.

loop corrections contain both ferniions ancl bosons. wliicti contributt. by a relütiw

negative sign (as illustratcd in figure 3.1) such that:

where .IlsLsi- is a typicai SCSY mas scale. Thi? fine timing problcni tiisappcars i f

th^ m a s scalp for SCSY is of the order of 1 To\*[16]. In otlier wortls. t h fine-t urr~rrg

a h i c h \vas requircd in ordcr to kcep racliativr c»rrrcti«ns iir1dt.r control is rio Io11gc.r

necessaru.

.------- .j Boson * . . . . . -...--.-* -::c.:: ..... .... H o -

Figure 3.1: Radzative corrections to the Hiygs rriass 1n u .s«pt.r.symmetric rnodel.

Unification of coupling constants.

Probably the most favored reason by theorists for the support of a supersymrnetric

Page 28: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.2: The evolution of the SLW(3). SL'(2). und C(1) coup1i~~g.s in the (a ) the S.CI

and ( b ) the iChimal Supersymmetric Exteii.si«n to the SM.

theory is that within a SCSI' niociel. iiiiificatioii of the stroiig. t ~ e i i k ilnd rltwro-

niagnetic couplings can be achievcd nt a comnion value of' 10L%Gr[13]. Tliis

perfect unification can be obtained as long as thc SCSY rnasscs are of the ordrr of

1 TeV. Figure 3.2 illustrates this circumstantial evidenc~ for SCSY. The disconti-

nuity a t O(100 Gel*) is due to the dissociation of the unifietl electrowenk force into

electroniagnet ism and the weak riuclear force.

0 SUSY naturally incorporates gravity.

The SCSY algebra cont ains P, generators which arc translations of space-time.

Requiring local gauge invariance under sucli transforriiations leads to the Einstein

theory of gravitation(l3). SCSY naturally is a theory of gravity.

Page 29: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.1 The Minimal Supersymmetric extension to the

Standard Mode1 (MSSM)

The lISSXI is defined to be the supcrsymnietric extension to the Standard !doclel wliicii

contains the minimal number of new particles and interactions ttiat are consistent with

the standard mode1 gaiige group. The cost of introducing SCSY is the doubling of t h

entire SM particle spectrum. See table 3.1.

Particle spin Sparticlt~ spin

quark (1 L/2 squarks ~ L . R O -

charged lepton 1 1/2 charged slcptoiis I L S R O

neutrino v 1 /2 sn~iitrino fi O

gluon cl 1 gluino + 1/2

a. photon 1 ptiotirio " / 2

neutral higgs h. H. .4 O neutrd higgsiiio f?~,? 112

charged higgs Hz O diarged higgsino H' 112

- I V . Hf mix to Form 2 chargino mass tiigcristates <;. i;

5 . 2 . H:,? mir to forni 4 neutralino n i a s eigenstates &3..1

Table 3.1: Particle content of !CISSICI.

There is one notable feature in table 3.1 which reqiiires clarification. In the SU. one

Higgs doublet is required to give mass to the quarks and leptons. In SCSY. two Higgs

doublets are needed in order to give mass to the up-type and clown-type quarks.

Page 30: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.1.1 Neutralino Sector

In the neutral fermion sector. the neutral fermionic partners of the and Zo gauge

bosons. f and 2. can mis with the neutral fermionic partners of the Higgs bosons. H P . , . . - to form the mass matris 3.3. Therefore the physical mass states iy. termecl iimtralirios.

are found by diagonalizing this mass niatrix:

.LI1 O -& cos .j si11 f l l l . Jiz sin 3 si11 dtt-

O A& .\IL cos 3 cos Or\- - J I z sin .I cos Hll.

- -LIz cos ,3 sin O r r p A l L cos 3 COS Bu. O -Cl

.CIZ sin 3 sin - .Uz sin .j cos Olt -P O

where is the electroweak mising angle. This rriatris[l7l contains sonie paramst ers of

the MSSX

0 dll and AI2 are the m a s parameters of t he gaiigirios i~ssociated wit ti tlir Le( 1 ),. and

SL'(3) r respect ively.

p is the Higgs miring parameter.

tan 3 is t h ratio of \acuiirri Espectatiori L1iit.s (VEV) of tlith Higgs sciilars.

In order to reduce the nurnbcr of free paranieters i r i the thcory a grarid iinified tlieory

relation is used which relates the gaugino m a s paranieters J I , ancl [13]. - -3

.\II = ; tan' Or\- Jf2.

In general. the mass eigenstates do riot correspond to 5.. 2. K Y and @ but giwn

values For p. JI2 and tan 3. the complicated mixtures of the states is defined. One

c m get an idea of the behaviour of the neutralino masses as a function of the SCSY

parameters in figure 3.3. The masses are defined such that .Clry < JI,? < JI,; < -\1,0. 4

h further discussion of the neutralino m a s sector can be found in (171.

Page 31: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.3: Neutralino masses gzven at hxed ( a } JI2 = 100 Ge V ( b ) .Ib = 200 Ge C' and

tan J' = 2 as a functiori of p. <y (solid). f: (dushed) . (3 (dotted) und (rlnsh-dot).

3.1.2 Chargino Sector

-1s in the neutralino sector. th^ physiciil m m statrs of the frrrriioriic partnrrs of the 11 * -

charged bosons. y?-. called charginos. are defined as linear combinations fornicd 11~- ttir

diagonalization of the mass matris:

such t hat

Page 32: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.4 shows the mass of the lightest chargino as a function of CL for representatire

choices for the value of .Cl2 and tan 3. By convention the .iT is thc lighter chargino.

Figure 3.4: Chargzno masses given nt fized (a) .\& = LOO Ge V ( 6 ) .\- = '200 Gr C- «nd

tan 3 = 2 as a junction o j p . (dashed) and iFIdot ted) . The (.soiid) iy m a s s is plottrd

as a reference.

The general SCSY superpotential contains terms which violate baryon and lepton nuniber

of the folloaing form:

Page 33: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

where i j k are generational indices. L. Q are the left-handed lepton and quark doublet

superfields respectively and the E. D and r are the right-haiicled charged lepton. tlo\vri-

type and u p t y p e quark singlet superfields respwtively. The first two terms of eqiiation

3.9 violate lepton nuniber and the thrid violatcs baryuti riutrilwr. T ~ P SISSM frarntwork

not only considers minimal particle content but also recluircs the tlieory to br mininial

in terms of allowed couplings. The extra couplings giren in 3.9 can b~ aroicletl by im-

posing a strict conservation of R-parity thereby achieving the goal of rnininiizing t h

number of allowed couplings. R-paritu is a riiiiltipliratiw dis(mw syniriietry &fincd as

4 = ( - 1 ) 3 ~ - ~ - 2 s . where B and L are baryori m t i lrptori niinrber rcqmxivcly arid S

is spin. It is defined such that R, = 1 for particles and Rp = -1 for siipersyrnnic~tric

particles (sparticles). r\llo~ving these R, violating couplings ciin leacl to riipicl proton

decay. as illustrateci in figure 3.5 for a non-zwo A' and A". which is exprrinienti~lly vrry

constrained(l81. An ad hoc way to s o h this. is t o iriiposr R, conservation. Anet l i ~ r

Figure 3.5: D e c q of a Proton vra LQD and ('06.

viable[l9] and Less restrictive syrnrnetry is B-parity which ensures baryon number con-

servation (A" = 0) and hence proton stability. It shoulci be noted that in the SM this

problem of lepton and baryon number violating processes does not arise since such inter-

Page 34: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

actions are forbidden by the gauge syrnmetries of the moclel.

The consequences of assurning R-paritu conservation are two-fold. Since it is a miil-

tiplicative quantum number the number of SCSY particlm rritist be coriserveci mociiilo

2. In other words. sparticles can only be pair produccd froni S'LI particltxs. Seconclly.

a sparticle will dec- in a cascade iintil the Liglitest Supersyrnrrietric Particlc (LSP) is

produceci. which is necessarily stable. Herice. a niodel wi t li R-parity conscrvat ion \vil1

have a LSP which is stable.

The consequences of R-parity violation (lj!,,) are opposite to the constqiirncps o f R-

parity conservation. Namely tht. LSP will not b~ s td~l i l i i i i d cari (Ir(.- to ortliriary piiît i-

des. .-\lthough the simiiltaneous presencc of lepton and baryon niiniber violatirig rimis

(sec equation 3.9) is severcly corist rai r i c d 1)- txist iiig liiiii ts[ZOj uii t lit1 protori l i f d r i i c l .

G1, searches none t heless offer a ntbw irrid ricli p heriorritiriology.

3.3 Phenomenology of Supersymmetry at HERA

Slodels iri which R-parity is violateci via the SL,Q, D~ term hold tlit. most promisp for

CI state discove- at HERL This is because the leptonic and haclronic flavoiirs in the initi 1

at HERA make it an ideal machine for such a search. The cases in equation 3.9 whcrr

A' # O are especially promising as the- could lead to resonant production of squarks ~ i a

F. - q fusion. with a m a s right iip to the kirlematical liniit.

The search for P, SLSY is the subject of this tliesis. The following sections will

outline the phenomenology of the search performed at HERA froni the production to the

expected final state topologies. -1 similar search has already been performed by H1[2l].

Page 35: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.3.1 Resonant production of Squarks

One can expand the term L ~ Q , D~ in ternis of its m a t ter fields [El:

(3.10)

where the superscripts c denote the chargr corijiigatc spinors and t h superscripts

deriote the complex conjiigate of the scalar fields. T t i ~ iiitlices L ariti R. for the sciilars.

distinguish the independent supcrpartner fields o f tht. left and right-liaricl~cl fermions.

The interactions outlined in equation 3.10 are depicted in figure 3.6 for A:,,. Among

the 27 possible A:,,, couplings. only the cases with i = 1 are of special intcrest a t HERA

because a P- in the initial state allons for the s-channel production of sqiiarks throiigh

e'-quark fusion as in graplis ( c ) and ( f ) of figiir~ 3.6.

Fiirthcrniorc. HERA is more sensitirr to the X;,, wiiplings t~wuisc t hey allow for thc

fusion of t h e lepton in the initial statcs with a ïal<~ricr quark from the protori.

Positrons and electrons probe different squark coiiplings. In the case of r - scattrring.

e r d + C L -type squarks dorninate the production. .As this thesis is bascd on the data

taken from 1994 to 1997. when HERA \vas operating n i t h a positron heani. the locus

of this thesis is a search for CL- type squarks. Tah l~ 3.2 lists a11 prrtinent resoiiarit

squark production mechanisnis at HERA for positron bcarii. For r z - scattering. e - i ~ -r

- &-type squarks dominate. .\ search in e - scettrririg at HERA awaits the acciiniiilatiori

of more e - data.

The cross section for squark prodiiction at HERA depends ori the square of t h

strength of the coupling If this is sufficiently small then the cross section c m be

approximated by the Narrow W d t h .Approximation (SW.4) [23] for s-channel production

of a scalar resonance:

Page 36: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

where q ( x ) z q(x. rn2+ ) is the quark (or snti-quark) rnorrienttirn density in the protori e ( I

and s is the centre of rnass energv of HERA. It is ~ v a l u a t ~ t i at r = in:_ / s and at a '7

virtuality scaie of m:-,. So for esample. o ( e 3 -+ f i L ) depends on the value of A;,, - -

and the d quark momentum density in the proton. For ilR q u a r k production siiriply

substitute the û quark momentum density in the protori. -

For a given coupling strength. the production cross sections for ùL and & are shoan

in figure 3.7. The figure illustrates that CL-type squark production doniinates for e-

scattering. as a direct consequence of the relative magnitude of the quark and anti-quark

Page 37: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Xljc Production process -

111 e ' + i i + d R e - + d + i lL

densities insicle the proton. Due to th^ &op iii cross section with tlio quark riiass. HERA

will be sensitive to lon coiiplings a t loa triasses and liigher couplings are high ninssw.

Two assuniptions are made at tliis point tJo siniplify t h swrrti stratrgy:

Only one of the 4 coupling is non-zero. -4llowirig tiiorr tliari one wiipling to

esist would complicate the phenornenolog.. By isolating one coiipling at a timc and

in the absense of any observed signal. a direct limit can bc derived on the strength

of coupling. Separate analyses[24] have been perfornied at HERA. which set limits

on the product of two couplings but are made in the contest of specific topologies.

more specific than the search tvith which this t hesis is çoncerned.

The gluino. the SCSY partner of the gluon. is much heavier than the squark so

that the decays Q -+ ijq are kinematically not possible. The thrust of this analysis

Page 38: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.7: Production cro.s.v sections /or " r.md riR for A' = O. 1 in e p colhsiorrs.

is to cover the SCSY parameter space. Kencc siriw .\II. rvhich is rlitt gaiigi~io riiass

parameter associated ivit h SC'(3) does not enter into t lit! gaugirio n i u s mat riws

3.5 and 3.7 this assumption allows ils to be inseiisitivr to this parameter. T h ~ r r

are additional GCT reIations[l3] (ahere .II:i I= mi) whicli ensure the m u s of t h r

gluino is rnuch heavier tlian the ot her gaiigirios t liiis niakirig t his assuniption al1 t tir.

more valid.

The number of free parameters in SCSY models is inirrierise and surh assuniptions arc

made in an attempt to reduce this nurriber. ivhile wveririg the broadest possible set of

models. The search is in general a topological one. rvith the primary goal to look for

signals which cannot be account for by any SM process. The existence or absense of an-

signal can then be interpreted in terms of the SCSY models discussed in this chapter.

Page 39: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.4 Squark Decays

The phenomenologv of decay of squarks produced by & is dependent on the strengtli of

the &, coupling. If the coupling streiigth is greater than tliat of the gauge dec-s then tlie

sqiiarks will decay via the same @,, coupling by whicli the? aere rrearecl. Ot herwisr tliey

c m undergo a gauge decay into a rieutraliiio or chargino. which are the only accessiblr

clecays in hISS'LI.

3.4.1 41, Squark Decays

The width for the Pp decay of a scpark is

This aidth[Zl] is wry sinall: for a sqiiark miss o f 200 Co\' i i r i ~ i A;, , = O. 1. it is iipprosi-

mately 40 MeV.

Squark decay. via the 4L, coupling. is s h o w in figure 3.8. The procliiction and <It.ciiy

of squarks in this fashion is very similar to that of leptoquarks. Data selrction and

optimization for such topologies is sirriiltir to t tic leptoquirr k analysis [El. The firial st;ito

is characterized by a positron at high trarisvrrscl Priergy ( E T ) and a jrt.. On ;in weiir by

event basis this final state is indistirigiiishahle froni Siwtral Ciirrent ( S C ) and Chargrtl

Current (CC) deep inelastic scattering (DIS). Nonethelcss. in the arialysis. one can takc

advantage of two physical characteristics of scalar squarks:

The x distribution of a squark produced by nricl decaying via 4 couplhg should be

peaked at r = 5. Hence the search strategy foçiises on searching for a localized

escess above the espected NC and CC r distributions.

A scalar particle in its rest frarne will decay isotropically Hence the cross section

for this decay will be independent of the decay angle O* in the centre of mass frame

Page 40: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.5: Squark P, production und rlecay diagrnrns.

of the particle. 0' is related to y. which will br rxplainecl in rliapter 5 . in the

followirig rnanner:

Thus one would expect a Rat IJ distrit~utiori frorti a sqiiark clecaying via &. H o w v r r .

the y distribution for NC DIS. the miljor backgroiiricl for these processes. rlrops likr

I/!/'. allowing for a ver? good signal to t)ackgroiiri<l separation.

3.4.2 R-parity conserving or Gauge Squark Decays

Once produced the squarks can undergo clecays in wliicli R-parity is conserved. Such

decays are the only ones permitted in .\fSSSI niodels n i t h R-parity conservation and as

such the- will decay into a particle and a sparticle. These gauge decys. ivtiich play

an important role when the pl, coupling is small. depend greatly on the nature of the

gauginos.

Page 41: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Choice for the Lightest Supersymrnetric Particle

The identity of the LSP is important to the plienomenology of fi, SCSY. Ttiere are

favorable cosmological constraints wtiich iiriply tliat tlic LSP is tlie liglitest ~icutraliiio

[26]. The lightest neiitralino. as the LSP. in rnodels ivtiicli conserve R-parity is a good

candiclate for dark matter since it is n~cessariiy stable. Horvever. such co~isideratioris are

no longer valid once R-parity is violatd. Nevert heless. the LSP is assiimed to he t hc il;.

There is a sniall portion of phase space in wliicli <r is lighter thüri the lightest

neutralino (see figure 3.9). Since the assurnption for this anaiysis is chat the i: is tiir

LSP. this search is not valid in that sinall portion of phasr space. c w n tliougti chuositig

the 2: as the LSP would riot significantly cliünge tlit! fiiial state topologies in this portion

of phase space. Figure 3.9 shows mtiirh component of thc <y doniinatcs as a fiinctioii of

tlie phase space parameters (.\I.?. I L ) at a fisecl vali i~ of tiiri .j = 2.

The decay ij -+ q i y

The width for the sfermion gaugtb clccay into a quark arid iitwtralinu is givm rqiiatioii

3.15[27].

& Lj-q*': -

rvhere the factor C depends on the 5. 2 and H coniponents of t tir \p. Detailed csprcssions

for C as well as the Fevnman rulcs gowrning siich '\1SSSI rtlactions c:;iri tw foiincl in [l7].

This d e c q becomes more significant as the differericts iri rriass betneen the squark and

neiitralino increases.

The decayq -+ q' y

Charginos are mixtures of the charged wino ( l i - ~ ) and charged higgsino ( H Z ) States. It is

important to make a distinct.ion at this point betwen the raciicaliy different dynamics of

Page 42: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 3.9: Regzons in the SUSY phuse . s p ( ~ c ~ ( J I 2 . 11) ct~npspondzrlg to u charged LSP

tjqlf= couplings dcpending on whether the dccqping sqiiark is thtl SLSY partnrr of a lcft

or right-handed squark. Take the right-tiarided q u a r k for rxample. T h e weak interaction

only couples to left-handed fermions. so the II'' does iiot couple to right-handcd fermions.

Sirnilarly in SCSI-. one cannot cou pl^ a wino to a right-limdcd squark. Iri rtic casr of

a chargecl higgsino coupling to a rigtit-liaridd sqiiark. t h v ~ i ~ s !vil1 b~ proportiorial to

the m a s of the quark (q') . The width of ttir tlec:q GR -t q' H= is proportional to mi,.

Should the quark be in the first or second generations tliis width is negligible. Thereforr

whether the f' is 1iW= or fiz dominated. it is urilikely to have a significant probability

of occurring.

For a left-handed squark (the dominant productioii in t his analysis) t lie coupling to

a aino is not forbidden. -4 higgsino dominated ,ii will stiffer froni suppressions similar

Page 43: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

to those for ijR decay. The qL decay widr h is given by [?Tl:

1 r,+R,tS = - ( c~)~~- \ I+ Qîï

(3.16)

where the details of C are give in [ l T ] . The ciL decay niode is clominated by its tlecay

into n chargino as soon as it is kinernatically possible. This is clenionstrated in figiirr

3.10 where the dominant gauge clecay niode is reprcwiitetl for a 150 Ge\. f i L sqiiark i n

t h e phase space plane (&. p ) for tari 3 = 2 .

Figure 3.10: Dominant gauge decuy mode for u 150 Ck\' .sqirurh- ln the phnsr .spirr:P

plane ( J I 2 , p ) for tan 3 = 1[28].

3.5 Neutralino and Chargino Decays

It is necessary to study the decays of the gauginos in order to determine the possible

final state topologies when the &, produced squark has a gauge decay.

Page 44: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.5.1 Neutralino Decays

In order to study the decays of the neutralinos it is cssential to discuss the dynamics of

the LSP. In models of the SLSSSI in whicli R-parity is conserveci. the LSP is stable. Hencr

any final state topologv for such rnodels consists of a characteristic missing transverse

mornentum ( f i ) coming from the LSP which escapes iiridetected. On the contrary. in

models with j?,,. the LSP is in general not stable anci ni- circ:ay irito a ferniion and a.

virtual sferrnion which subsequently d e c q s through an &, coupli~ig. Such tlccay chairis

are represented in figure 3.1 1. When the dcc-s irito ii cfiiirgecl lepton it can rleciiy

Figure 3.11: Representatiue diagrurris jrom the pl, d e c q o j the for a non-zero

For n = 1 these diagrarns represent the Jecays of the LSP and the finrd .st«gc of rrny

cascade. The charge conjugate diagrarns are not draun.

with equal probability to e' or e-. The wrong sign lepton (e'p + e - -+ multijets) is

the most unambiguous and background free signature for the production of a squark via

R*

Page 45: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

The branching ratios for which f y decay is dominant depends on the nature of the

f y . i.e.. which cornponent dominates the mixture: the 5. z or f io . Recall figurr 3.9.

The branching ratio for the + e x j e t s is mauinium wheii the iy is dominatecl by irs 5

componcnt and hence the coupling strength is proportional to the charge of the lepton.

If we consider the ciecay of y!!, nhere n > 1. they can also dec- directly via $ as

shown in figure 3.11. In addition there can be radiative decays such that iy,+ 7 or Z

,?y. as illustrated in figure 3.12. The in,, are allowed to iindergo a gauge ~lecay wlicrc~

Figure 3.12: Guuqe Decags of the f: for n > O. ni < n .

R-parity is conserved. The py will decay as described above.

3.5.2 C hargino Decays

Chargino decays become very important once they are kinernatically possible as already

illustrated in figure 3.10 and are the dominant decay mode in most of the considered

phase space. As in the case of in, ,. the Xg's can decay via P, A',,, couplings in a sirnilar

Page 46: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

fashion to the decays shown in figure 3.11 or undergo gauge ciecays as in th<? esamples

shown in figure 3.13. The # subsequently decays in the assumption of 6% as clescribecl

Figure 3.13: Grrugr: decug rrrodes for the i,'.

in the previous section resul t ing in ario t her cascade dec-

There is an enormous nuniber of possible (lecay modes and an rffort nns niade to

consider the most significant modes in order to make the most comprehcnsivc srarch

possible. In that respect. cascade clecays involving the and were not considered.

That is to s q that the assumptiori is made that in tliis analysis the- are not ohseneci.

The? can occur but the efficiency for their detection is effectively zero. This is reasonnble

because q' + q~: , , and ij + q'?; channels are rarely or eren never a dominant squark

decay mode as seen in figure 3.10.

Page 47: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

3.6 Possible Final State Topologies

The different decay modes discussed above can be classifiecl into separatr topologies

depending on their final states. The topologies considered in this search are siimmarized

in table 3.3. Table 3.4 siimmarizes other distinct topologies which were not iriclucled iri

this search. Wi th positrons in the initial state the &-type sqiiark prodiiction clorniriatcs. -

Hencc the final state frorn dR -+ vq. consisting of one jet and high PI' is not consiticrd

Table 3.3 shows al1 the final s t a t ~ s considerecl in t his search ahich di& in the lepton

identity and the riumber of quarks. Esperimentally no distinction is made bctween t\vo

or more reconstructed jets in the final state. Hence. one can sec ttiat althoiigh thcrc

are seven quoted firial states. there are only four recoristriictetl chaririels. -411 t h fina1

states are considered in terms of rfficicncy of c l c t ~ t ion h i t srperatr opt irtiizat ions for r Iip

separate rniil t ijpt topologies arc iior rriacle. This is disciisstd flirt hor in c h a p t ~ r 7 rvliilrr

t lie analysis met hods are explaineci. The rsaniplc deciiy proc-rsst3s err iilso reprcwiit iit iw

and riot cxhaust ive.

3.7 Summary

SUS\* is a compelling theory for an cstension to the SM. hiit as y t lias no esperimental

support. The phenomenology of & SLSY at HER.4 has been outlincd ancl the assiinip-

tions made in this particular search were described. The niain points are sumniarizd

liere for convenience.

The SCSY process under stiidy is the rcsonant production of a squark througli

the fusion of a positron incident on a quark froni the proton. This niode violatcs

R-parity via an ~ ~ & , 4 ~ operator.

In order to study t.his particular SCSY mode1 the following assumptions were made:

Page 48: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

- The LSP is the lightest neutralino.

- The gluinos are much heavier than the squarks producecl so the decq- <j -i jq

is not kinematically allowed.

- Only one of the X i l h couplings in equation 3.10 is doriiiriarit.

- Although each A l j , coupling allows for the procliictioii of two iiiiiqiie sqiiarks.

(iL and C R . the productiori is doniinated hy CL-type sqiiarks wlicri HERA is

operating with a positron bcarn (see figure 3 .7) .

The squark may dec- via & or gauge clec-

- hfter making the assiiniption in equatiori 3.6. tlic ncutralino ancl diargino

sectors are defiried by tlirec SCSY parameters: .\-. thil n i a s trrm for the

SLV(2) gaugino. p. the Higgs misirig parairieter and r;iri .A t h c i ratio of V E \ 3

of the Higgs scalars.

- The mode1 consideretl is an iinconstrained h[SS'\I nitti &. Tlic sfcrniim

masses are free pararneters and are taken to be mass d~gerieratc.

- By allowing for &. thc LSP is iiot stable and cxn clccay as illiistrat~tl iri figiire

3.11.

The final state topologies consiclerecl arc listed in table 3.3. -411 ciwacle tlecays in-

volving & and <: were taken into account. Four distinct reconstriictetl channels are

searched for:

e' + 1 jet

e' + multiple jets

e - + multiple jets

PT+ multiple jets

Page 49: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Decay Process -. 1 Reconstructed 1 Fiiial ~ t a t c j

Channel 1

High & e' + 1 jet P 3 1

1 High 4. e+

A' 9 e-qtqt' 1 + niuitijcts /

High &- 1 I "qqq I

+ niiiltijcts i i

Table 3.3: Squark decay channels in 4% SGrSY which were considered. c/assified hv their

final states und their reconstructed topologies. This list 1s onlv r~presen tü t i ve and nol

exhuustive.

Page 50: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

/ Nature of LS? f l 1 Demy proccss Topology

Nissing PT + 1 jrr

High e=

- High Pr P * or p - 4 &-+ triiiltijrts

Table 3.4: Squurk Decay Chanrieh in P, SUS Y classified bv distinct topologie.s.[27/ These

channels are not considered in the seerch urld U S in tuble 3.3 this list 1.9 .sot exhav.sti.ue.

Page 51: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 4

The Experimental Setup

Particle accelerators and colliders have proviciecl t tie experimental cvideriw for th<. basis

of the SM. They will also be the kcy to providing hints of nctv physics I~eyoncl thr

ShI. or perhaps Pven stimulate the development of ritlw tticoritts. Thp Hadron Elektroti

Ring .inlage (HERA) Ilas alreaciy p laod aiid c:ontiniicts t.o (wnrrit)iitc~ an iniportant roltl

in this aspect. In ttie followiiig stxtioii a brief ovrrview o f thcl rriachint' itsdf ;lri(l t l iv

ZECS detector is prescntcd. ZEUS is one of ttie tuo large drtwtors at UER.-\ and

is a collaboration of about 430 physicists represcntiiig 12 countries. A more dctailed

description of the ZEUS detector can be Founcl in the 1993 Stattis Rrport[29].

4.1 HERA: Hadron Elektron Ring Adage

HERA is the world's first and only lepton proton collider and is locatrti at the Deutscties

Elektronen-Skrnchrotron (DESY) laboratory in Hamburg, Germa-. The HERA acceler-

ator complex (figure -4.1) is designed to accelerate electrons to 30 Ge\- and protons to 820

GeC'. yielding a center of mass energy of 311 GeV. The ring has a circuniference of 6.3 km

and runs 10-30 m below ground level. The design energy of the electron beam is limited

Page 52: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

HERA Parameters

Circum ference (m)

Encrgy (Ge\')

Slagnetic Field (T)

Luminosity (cm-%- l )

Number of colliding bunches

Bunch crossing time (ns)

Ciment (ni;\)

Horizontal bearri sizct

ffr (mm)

Vertical berzni size

ov (mm)

Longitudinal beam size

0: (cm)

Energy loss per turn (Ge\-)

Injection Energv (Ge\*)

Injection time (min)

Design Valiies 1 1997 Values

Table 4.1: HER.4 deslgn and 1997 running parameters.

I electron 1 proton electron proton

Page 53: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 4.1: Layout o j the HERA accelerator cornplex ( ~ r r d irljectiorr sg.stein.

by the radio freqiiency power required to rompensatcl for rnergy llost diw ru syic-lirorrori

radiation. while the design energy of the proton beam is liniitccl hy t l i e 4.65 T iiiitxi~tiiirti

magnetic field of the bending ciipoles [SOI. Tlie counter-circiilatiilg t4wtron and proron

beams are contained in tno evacuated storage rings aritl collicie in the H 1 m c i ZECS

experiments. which are situatecl in the north (NORD) and south (SCDI ~sperimental

halls. respectively. The parameters used by HERA in 1997 are listtd in t a b l ~ 4.1.

Page 54: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 4.2 shows the accumulated luminosity of HER-A since 1992. The improving

performance can be seen in the iricreasingly steep slopc y a r by year.

HERA luminosity 1992 - 2000

1 0 0 150 200

Days of running

Figure 1.2: The integrated lurnino.sit?j recorded bg HERA /or 1992-&/O0.

4.2 The ZEUS Detector

The ZELS1 detector at HERA is a general purpose detector and has been in operation

since 1992. The detector has a large forward-back~vard asyninietr- to accomriiodate the

boost of the centre-of-rnass in the direction of the proton beam. ahich is caused by the

Page 55: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 4.3: Cutuurmy uieui oJ the ZEUS detector.

large asymmetry in the encrgies of the elcctron/positron and proton beanis. The right-

handed ZELS coordinate system is aligned sucli that the i asis points in the proton

beam direction with the origin at the nominal interaction poirit. ariti th .r asis poinririg

towarci the centre of the HERA ring. The arigles O and m are rncasiired relative to the :

and r axes respectively. The ZEUS detector is made iip of many coniporieiits. of wliich

only those of particular relevance to this analysis will be discussed. and is shown in figure

-4.3.

4.2.1 The Central Tracking Detector

The central tracking detector (CTD) provides a measurement of the direction and mo-

mentum of charged particles with high precision [31. 32. 331. It is a cylindrical drift

Page 56: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

chamber made up of 72 concentric Iayers divided into nine sup~rlayers. The active vol-

ume of the CTD has a length of 205 cm. an inner radius of 18.2 cm and an oiiter radius

of 79.4 cm. The CTD operates in a 1.43 T solenoidal magnetic field. Tracks are recon-

structed in the angular range 15" < 0 < 164" and there is full coverage in azimiithal

angle 0.

A gas mixture of Ar/CO?/ethane and ethanol is iised to till the tracking volume.

Argon. which is relatively inespensive requircs orily ii low iritcrisity elcrtric field for

avalanche formation. forrns the niain component of the trackirig ctiambcr giis. Gascs

consisting of heavy organic niolecules. siich as carbon-dioside and d i a n e . are known as

'quenchers' [34]. Such 'quencher' gases have iiiariy degrces of Erccdoiti aritl caii efficient ly

absorb energy from the avalanche in ortler to stop it. The carbon-cliosidc also lessens

the flarnmability of the mixture [Xi. The quenchiiig proccss rlis<:iissrcl abow nia' o i ~ a -

sionally lead to polymcrization in whicli liquiil or solid polynwrs drposit or1 t h (.liariihrr

wires. ahich scriously affects the operation of tht: drift ctianihw. -4 non-polyi~ierizing

agent like ethanol is added to retliice t his ~ffect . Charged particlrs trawling t hroiigh tlir

CTD ionize g s atoms. The crnancipat~d clectrons tlien t ravcl azirriiithally to t h ariocltl

sense wires where they avalanche ancl musr a measilrable electric piilsc.

The sense and field wires are divideti into octants. onc of which is showii in figure

4.1. The heavier dots indicate sense wires while the lighter dots represent field wires.

Field wires are held at varying potentials to create a uniform electric field. In cvery ottier

superlayer the wires are strung parallel to the beam a i s . while the wirc.s in the otticr

superlayers are angled approximately fiw degrees from the beani a i s in order to nieastire

the 2 position of a track via a stereo effect. In total. the CTD consists of 4608 sense

wires and 24192 field wires. Superlayers 1. 3 and 5 are instrunientetl with a r-by-timing

system for trigger purposes and have z resolution of approximately 4 mi. The resolution

of the CTD in r - o is about 230 pm. resulting in a typical event-by-event interaction

Page 57: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

F i e 4.4: One octant of the CTD showing the field «rd sensr iuzrrs. T h stttwo (inrglr

for the stereo layers is also displuyed.

vertex resoliition of 0.4 <:ni in 2 and 0.1 cni in the trariswrsc plaiic.. Alttioiigh tiic A y -

timing system has a poorer rcsolution. it provitles a fast sigrial to b~ iisc~l by r tir) t.riggc'r

system to reject bcarn relateci background. The transverse rrioniibritiini ( p , ) resoliition for

full-length tracks can be parametcrized as a(pt ) / p l = 0.005Spt 8 0.0065 0.0014/pt [36].

with pt in Gd'.

4.2.2 The Uranium Calorimeter

Calorimeters are devices which measure the total energy deposited by a particle or grotip

of particles. The absorbed energy in the calorimeter is converted into a meastirable signal

which is proportional to the energy of the incident particle. One class of calorimeters are

sampling calorimeters which are cornposed of layers of active niaterial interleawd with

layers of an absorber. The incident particles interact witli the materials in the absorber

Page 58: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Iayers. producing secondary particles which in turn interact and leacl to the development

of a particle shower. The active iayers 'sample' or nieasure the energy flow as a hnctiori

of dept h. The characteristic lengtli of electromagnetic sliowers is srnaller t han tliat i,f

hadronic showers of comparable eriergu. As a result. electrornagnetic calorimeters are

found in front of t heir hadronic counterparts.

Electrornagnetic showers consist of electrons. positrons and photons. At enrrgit3s

above 1 Ge\' the following processes doniinate an electroniagrietic: siiowr:

Bremsstrahlung: The radiation of photons. froni elcctrons and positrons. iindcr thil

influence of the field surrouriding heavy niiclei. The ciiiwgy loss is proportioriiil t.o

2'. where Z is the atomic number of the material travcrsccl.

Pair production: Photons witti enough energy can produce an ~ l w t r o n and positron

pair under the infliieiice of the field of niiclei. Thta rross section is proportional to

z"

At l o w r energies:

Ionization: Electrons and positrons losc energy by ionizing the traversecl mcdiiim.

The energv loss is proportional to Z log Z.

Photo-electric effect: When the photon is absort~ed by ari atomic electron. the atoni

cari be ionized. The cross section for tliis proccss is proportional r.o Z4 - 2'.

dominating üt lower photon energies.

The scale for electromagnetic showers (:an be expressed in terms of the radiation lenyt 11.

.Yo. and is material dependent. -Yo is defined as the energv loss of electrons tlirougli

bremsstrahlung a t energies above 1 GeV:

Page 59: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

where x is the thickness of the material and E is the energy of the incident electron.

Incoming hadrons not only undergo electrornagnet ic. but also nuclear interactions.

The tiadronic shower is niore complicated due to the enorrnous variety of processes. Tht.

secondaries. in hadronic showers. are riiainly createrl in inelastic collisions witti niiclci iii

the absorber material. The folloning processes contribute to the drwlopment of liatironic

showers:

production of chargcd hadrons that lose energy by ionizatiori iiritil a riew strong

interaction occurs.

e production of neutral hadrons that only undergo strong interactions.

0 production of neutrinos w hich escape the calorirnctcr uiiclctcctr~cl.

0 production of particlcs nhich shocver electroiiiagiietically.

0 production of escited nucleoris. tv hich releas~ low ericrgy p tiotons or nticlwns o r

which undergo fission.

The hadronic shower starts to die out. wheii the tmirgics of the shower parti&s him~rnr

so srnall. that they are completely ahsorbecl. Thr scalr for Iiarlroriic showcrs cran tw

erpressed in ternis of the nuclear interaction length. or the n iwn frer path betwrii

hadronic interactions. It is defined by:

shere -4 is the m a s number of the absorber. p is the specific density. .V.., is Avogadro's

number and o, is the inelastic cross section [37].

The ZEUS calorimeter [35. 39. -101 is a sampling calorirneter aliich consists of al-

ternating layers of 3.3 mm thick plates of steel-clad depleted uraniui~i as the absorber

and 2.6 mm thick plates of plastic scintillator as the active material. The ratio of the

Page 60: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

BCAL

Figure 4.5: The ZEUS calorimeter (9-2 projection).

thickness of the uranium to the scintillator is chosen tu achirvi. cwniptwsation. i x . t h .

responsr to hadronic and electromagnctic particles is eqlial ( e l h = 1 .O0 zk 0.0;3). ;111d

to give a good energy resolution for lia(1rotis and jets. The rvergy rt.soltit,ion of thc

calorinieter is a ( E ) / E = 0 . 3 s / J m ~ for hadrons and n ( E ) / E = o.~s/JFGG for

electrons/positrons. as tneasured in a test beatn. The calorinicter also provides an accu-

rate timing nieasurement with a resoliition of ~ ( t ) = l.5/,/= 3 0.5 ns in n s i~igk

ce11 ivith energv abovr 3 Ge\'.

The calorimeter is divided into parts. ai th each part being longittidinally segmcntctl

into an electromagnetic (EMC) section and one or two hadronic (HAC) sections (figure

4 . 5 ) . The fonvard calorimeter (FCAL) covers 2.2" < 9 < 39.9" and contains riva hadronic

sections. The barre1 calorimeter (BCAL) covers 36.7" < B < 129.1" and also has tno

HhC sections. The rear calorimeter (RCAL) covers 1'28.1" < H < 176.9' aiid has only

one H X section. since hadrons individually have low energy in the RCAL due to the

forward boost. The ESIC sections are 25 radiation lengths thick and contain most of the

Page 61: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

energy of an electromagnetic shower. The total depth of the calorirneter ranges froni 7

nuclear interaction lengths in FCAL to 4 interaction lengths in RCAL. The calorinietcr

is hernietic escept for a 20 x 20 cm hole in FCAL and a 20 x S cm hole in RCAL to

accommodate the HERA beani-pipe.

The scintillator light. from each calorimeter cell. is rcad out by two wavelcngth shiftcr

(R'LS) light guides on opposite sides of the cc11 attactiecl to ptiotomultiplier tiihcs (PSIT).

providing redundant left/right readout . Therc are -- 10000 P SlTs iri the c;ilorinict(x

The natural radioactivity of the deplered uranium provicles a stable refcrcnce signal

which is used for calibration of the calorimeter. Csing this signal. rtie encrgy calibration

of the calorinieter is precise to 1%.

4.2.3 Other Components

Other subdetectors of the ZEUS detector illustrateci in figure 4.3 are bricfi! drscr ihd

here for completeness but were not central to the analysis which is drscrilwri in this

t hesis. An instrurnented-iron backing calorimeter[-l il (BAC) rritwsurcs cnmgy leakagtl

from the CAL. The muon chambers in the forward['l9] (F'rICOS). rear (RMCO'i) and

barrel[-E] (BhIUO.\:) regions are used to masure muons in ep physics rverits iind to i t h -

tif? and remove background events induced by cosmic-ray or beani-halo muons. The rear

( RTD) and forward ( FDT) t racking detectors are planar drift chanibers w hich provide

supplement tracking information which can be combined with the CTD to reconstruct

particle tracks in the regions outside of the full-length track CTD acceptance. The FDET

is a composed of three planar drift chambers. interleaved with two transition radiation

detectors (TRD).

Page 62: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 4.6: The Lagout of the ZEUS lurninosit~ rrtonrtor as rue11 u s sorrir of the HER.4

quadrupole (Q) and dipole ( B ) nragnets.

4.2.4 The Luminosity Monitor

In order to nieasurc a cross section. the delivcred luminosity mtist br detcr i i i ind Thr

liiminosity for ZEUS is determined by rneasuritig the rate of harci brerrisstrahliing photons

from the Bethe-Heitler process ep + elyd [-431. an elcctrornagri~tic proccss whosr cross

section is precisely known to an nccuracv of 0.5%. Thus. a precise rneasiiremcnt of t h

photon rate allows for precise tleterminatioii of the e p liiminosity at HERA.

Photons from the Bethe-Heitler process a i t h 0, < 0.5 nirnd exit tlw heani-pipe

clownstream of a large vertical bend in the proton beam line. The photons iirr tiien

detected at 2 = -107 rn by a lead/scintillator sampling calorinieter (LCSIIG)[-H] as

shown in figure 4.6. A carbonflead filtered is installed in front of the LCSIIG detector

to shield the detector from synchrotron radiation. The LCSIIG drtector has a resoliition

of cr(E) = 0 . 2 3 / , / ~ ( ~ e V ) . The luminosity is deterrnined froni the cross section. the

counting rate of photons and the photon acceptance.

A small electromagnetic lead/scintillator calorimeter (LCSIIE) at 2 = -33 m de-

Page 63: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

tects etectrons between 7 and 20 Ge\' produceci at O, < .3 rnrad with respect to the

electron/positron beam direction. Tiiese electrons are cleflected niore by the HERA

magnet system than electrons/positrons at the beam energy and leaïe the bearn-pipe at

2 = -27 m and impact the LCSIIE detcctor. The LC'SIIE detector has a resolution of

a ( E ) = 0 . 1 8 / \ I ~ ( ~ e ~ ) . Coincidences of botti the electron/positron and photon froni

the Bethe-Heitier process in tlie LCMIE and LCSIIG detectors allow the LCSLIC: ta 1 1 ~

calibrated.

4.3 Trigger and Data Acquisition System

4.3.1 The First and Second Level Trigger

The HERA heam bunciies cross once every 96 ris givirig a brani m ~ s s i n g ra t t o f 10.4

MHz. In cont ra t . interesting physics evcnts occiir at ;i rat<. of O(100) Hz eiiti t tic.

output of recorded cvents is limited to a rate of O(10) He. The tiigli background ra t rs

predominately consist of beani-gay events. which are largely causecl hy t hr proton bt!ani

interacting with the residiial gas in the beüni pipe and t hc walls of t hr bcarri pipr upst rrarri

of ZEUS. A sophisticated trigger decision is necessa? to filtcr t h r interesting ~p rvonts

out of the large background rate. Sucli a trigger decisiori cannot be macle tvithin the

96 ns bettveen bunch crossings. Therefore. in orcler to niinimize dead tinie. the ZEUS

trigger uses a three Ievel. pipelined trigger system as s h o w in figure 4.7. Even thoiigh

it reqiiires 0.3 s for al1 three levels of the trigger to analyze au event. the trigger is able

to annlyze every beam crossing due to the pipelining. Additionall. since each evcnt

contains roughly 100 KByte of information. only a small rate of events can be written

to disk/tape and the trigger selects a nianageable rate of less tlian 10 Hz froni the 10.4

MHz beam crossing rate.

Page 64: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

ZEUS detector cornponents +

data rate 10 MHz L.

front end 4

E 2 L -

4.4 p e c pipeline P r . I

readout and local E T - - - - --- - -

Equiprnent. Global n T - output rate - 1000 H GFLT j Ct~mputef

Equipment = - Computer .L

output rate - 100 Hz i -' t -l-

I

Event Builder I l y [distribution Equipment I

collecting subevents : - via TP networki ; Cnmputer

- - - - 20 Mbytedsec ,

TLT computer farm consisting of 17 Silicon Graphics output rate 5-10 Hz

dala tnnsfer to main -& m a s stonge I

2 k - Data Quality' - SIonitonng

Figure -1.7: Schematic diagram of the ZEUS tngger and data ucquisition systeni.

Page 65: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Each ZELÇ subcomponent has its own first level trigger (FLT) electronics. the main

FLT subcomponents being the calorimeter and CTD. These electronics have availablc to

them very coarsely measured quantities which they analyze using pipelincd logic and afttrr

approximately 25 bunch crossings they report their results to the global first level trigger

(GFLT). The GFLT issues a global trigger decision büsed on varioiis logical conibinations

of the information from the subcornponent FLTs. This final tlerisiori orc:iirs 4.4 p s huricli

crossings after the original event occiirred. T h e is a srnall deati tinii. from stoppirig tlir

pipelines at the first lcvel to read out the front crid data froni thc coniponents after the

a first level trigger.

Data From events accepted by the GFLT are harided to each sribcomponent's sccoricl

levd trigger (SLT) mhich analyzes the data usirig its own transpiitws and electroriics. At

the second level. the data arc rnostly digitized and arc triore preciscx thari i it t h t b FLT.

The global second level trigger (GSLT) uses transpiitcrs to proctlss t h information from

the subcornponent SLTs and is able to use more complcs algoritlirris wliich recltiirr niorp

processing time than the GFLT wlien deciding t.o accept or reject an ewnt .

4.3.2 The Third Level Trigger

Events accepted by the GSLT are handecl to the everit builder (EYB) wtiich comt~ines

and formats the data before sending it to the third level trigger (TLT). Thc TLT is the

first trigger level which has access to the cornplete data flow From d l components of the

detector and is able to use sophisticated algorithms to pick out specific physics channds

from the data. The TLT is the first trigger level to have access to the coniplete raw et'erit

data and hence the global quantity of an event can be esploited. In principle any offline

selection can be performed online. limited only by the CPC power. The TLT is desigried

to reduce an EVB rate of - 100 Hz to 3 - 10 Hz. and this is accomplished by running

Page 66: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Event Builder 8 (Tra asputer Net w or k)

1 I

I

f Network Switch

ta Arehjving m. Two Tmnqvrer Board RAD; Radnont €ME-R>DI.l Baùrd

Figure 4.8: The TLT harrlwtrre desryn.

an optimized version of the reconstruction software. In particular. a t rack reconst riiction

package is run on the information from the CTD [-E]. As of the start of 1997. t . 1 ~ f u l l

tracking reconstruction code. the sarne one used offliiie in reprocessirig. was used onlint)

at the TLT.

The Hardware Design

The TLT hardware design is clepicted in figure 4.8. On a positive decision of t h e SLT.

the EVB gathers al1 the component data and writes the whole event into \'ME rncmory

Two memories are read out over V'rIEbus by one PME-FDDI-1 board (manufactured by

Radstone Technology PLC) on which WindRiver's operating system VsWorks is running.

On request. the PME-FDDI-1 board sends events via fiber optic loop t o a terget CSIS

Page 67: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

6 m Evm t Bui idcr

I

Figure 4.9: The TL T su ftwum deszgn.

workstation. The farm of workstatioris is coniposed of 14 Silicon Graphies Challengt. S

CNIX stations. cach containing an R4-100 SIIPS Technologies processor. aritl 3 Silicon

Graphics Origin 200 U N I S workstations. each containirig diid R 10000 SIIPS processors.

The workstations are al1 connected via an FDDI loop and connectetl to a netrvork siritch.

hence onl?. outgoing packages to the archiving workstat ion cross the switch.

The Software Design

The TLT processes are divided into control. transport and monitor Iayers which oper-

ate independently from one another. apart from the interprocess communication. Al1

Page 68: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

processes in the system are event driven. Furthcrmore. the proccsses are ordered in n

hierarchy as s h o w in figure 4.9. The TLT Run Coritrol is the top level which interfaces

ni th the ZECS Central Run Control (CRC) and Iiandles al1 state transitioris of the TLT.

The states are. IDLE. REA D Y ancl ACTIVE. The nest Ievcl i r i thc liierarchy are ttir

Brandi Controllers which in turn are in charge of the Analyzers.

1 1 1 processes of the control process layer deal with the state transitions. -411 control

processes wait for niessages from the appropriate processes in the hierarchy and arc

able to synchronize through an eschange of state information. In tiiis mu. a restartwl

process can join the systern in üny state or state transition. The -4nalyzt.-Controllcr is

the parent process of the Input and Output tasks and of the Pbysics .-\nalyzcr. Thrrr is

one Analyze-Controller and Physics .Analyzcr per processor.

The transport 1-er handles the data frotri frorri the EVB to thi. workstations. Th.

Evmt-Distributer. running on the PME-FDDI-L board. sc~itls rlvrltits oti rrqiicst to rl i (1

Input processes. The events are ivrittcn to o. niiilti-pwnt-buffw oii tlii. assigrid work-

station from where. iipon a positive clecision of the physics filtcrs. tliry arp sent to t h r

archiver.

The only process in the filter layer is the Phvsics Analyzer. \YiiiIr twirig analyzcd.

an event remains in the multi-ewnt-buff'er. and the results of t tit. physics dccision are

appended only if the event is accepted. For monitoring purposes. the filter job kceps track

of various statistical data during a run. The information is written to sbared mernoru.

ahere it can be accessed by the monitoring layer processes. The nionitor processes have

no impact on any of the other processes in the system but offer the only method of

monitoring the performance and qualit- of the data.

Page 69: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 4.10: flou.^ c h r t outlining the TLT tngger decision.

The TLT Trigger Decision

The TLT trigger decisiori is made iri three stages. shown in the Hocv cliart in figure 4.10.

By the time the data has reached the TLT. niost of tlie non-rp backgrounds have twen

rejected. Nonet heless. a final strict rejection criteria agninst t his non-ep backgroiirid is

perforrned in the first 2 stages of the TLT decision. At the TLT ttiere are 4 classcs

of vetoes applied. ahich rely on the calorimeter and track reconstructio~i and muon

identification. The vetoes were designed to reject "sparks". beam-gas and cosrnic and

halo muon events. and miist provide fast rejection of background ahile niaintaining a

Page 70: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

high efficiency for physics events.

-4 spark occurs when a calorimeter PSIT housing a t high voltage discharges to groiiriti.

The rate is low but significant for - 10000 PSITs. In general. a spark occiirs in only one

PSIT in a given ce11 and may bc identified by a large lelt-right iisyriinietry in the wlI

energy. An event is classified as a spark if it satisfies:

Erents are rejected if they contain a single spark ancl less than 3 GeV elsewliere in t h

calorimeter.

In order to reniove residual beani-gas events. the calorimctcr timing information is

iised [46]. .As illustrated in figure 4.11. particlcs coniing frotri e p interactions at the

interaction point (IP) arrive almost, simultaneously at the idorimeter k i t t = O.

The rejection algorithm calculates a weigtitetl average tiirit. for the FCAL. RCAL and

global regions (the entire CAL) using PSlTs with at l e s t 200 MeV. Thr TLT reacls in a

list of known bad channels From the calorimeter. Only those wlls with two good PSITs

with an asyrnrnetry 1 ;% 1 < 0.2 are inrluckd in thc tinie nieasiirpriient. Tlitl error on

the tinie of each PUT. 0,. is parameterizcd as a furirtion of the PUT tirirrgy. E,:

The time average for any region c m is given by:

with error

The energ-y thresholds for the calulations given in equations 4.4. 4.5. and 4.6 to be made.

are 1 GeV in RCAL and the global calculations and 2 GeC' for FCAL. An event is vetoed

Page 71: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

e-p collision

beamgas interaction

Figure 4.1 1 : Time meusurernents for ey und berirn-gas ~nterncttons.

Page 72: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

(4 (11)

Figure -4.12: Tinie distributions of RCA L t2rne.s oersvs the FC.4 L nun us RC.4 L t m t . i«

bejore und (b / after the TLT trigger decwmn.

if there is sufficient energ. in a region and if one of the following cotiditioris arc satisficci:

I t ~ c . 4 ~ 1 > ma@ M. 30, ,,,, ) ( 4.7)

> niau(8 ns. ht,,., , )

Figure 4.12 shows how efficient the timing cuts are iri scparating the major beanigas

background from the ep candidates.

If an event survives the spark and beam-gas vetoes. a muon rejection algorithni

MUTRIG[~~] is applied a t the TLT. in order to reject cosrnic muons or proton beam re-

lated halo muons which can traverse the detector. Esamples of such events are given in

figure 4.13. The rate of cosmic and halo muons is substantially lower than the beam-

Page 73: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

(a) Cosmic ( h ) Beani Halo

Figure 4.13: Examples of cosrnic and halo muons in the ZEUS detector.

gas background but nevertheless can be of O(10) Hz. To be sure that no iriterrsting

events of possible n e w physics are being lost. vetocd (?vents flaggd as cosmic or halo

mitons are passed throtigh two esotic physics triggcrs. ES011 ü ~ i d E S 0 1 2 iiiiikr i i s ~ of

the GLOMU[-LS] package. a more sophist icated rriiion iderit itirat iori roiit irio r o rrrowr t liostb

events considerecl tu be cosmic or liülo miions with oril- a marginal probahiliry

Finally, events are processed through the filters and arp kept only if one of tlit! physics

triggers fires. A provision is niade. at al1 levels of the da ta acquisitiori (DAQ) chairi. t,o

accept a certain rate of events which are simply prrssd tliroiigh thr trigger rpgartllrss o f

its decision. These are useful for rate studies for netv triggcrs. upgracling ttsisting m r s .

helping to determine trigger efficiencies and evaluating the clara qiiality.

The Physics Filters

The current physics software is composed of over 5OOOO lines of predoniinantly fortran

and some C code. There are 125 filter dots classifieci into five major groups relating the

class of phpics events selected. The groups are soft photoproduction (SPP). liard photo-

production (HPP). deep inelastic scattering (DIS). heavy flavour (HFL). esotic and rare

Page 74: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

phenornena (EXO) and muons (SILO). There are also an additional two slots. VTSO1

ahich selects a control saniple of events with a reconstructed vertes withiri I;,,, / < 7.5 cm.

and SAP01 which selects events tagged by the leading proton spect ronicter.

The physics filters niake use of al1 the reconstructecl data wbicli takes pliice iit t tie

TLT prior to the events being passed through the physics triggers. In particulnr. S C DIS

events rely on the e= identification. Four separate algorithnis are iised at the TLT. The

LOCAL algorithm searches for clusters of energ- deposits in the calorinietcr and c m on the

ratio of ESIC/HAC energy [XI]. E L E C T ~ [ ~ ~ ] siirns the energy in a 1 1.2" coiie iiroiiricl EhIC

cells. The other two algorithms run online are more sophisticatcd. S I N I S T R A [ ~ 1. 521 is a

ncut r d net büsed finder and E M I L L E [ ~ ~ ] iiscs probability rlist ri biit ions of ( k t ector rclsponsrl

for e' and is a variant of the e=-finder usect in this thesis (sce section 5.4).

.Jet-finding algorithms (see section -5 .5 ) are also iised onlinr. Two jet-findcrs. E U C E L L ! ~ ~ \

and KT. are employecl online. The latter is the one iiscci in this analysis.

The filter dots are the responsibility of the physics groiips at ZEUS. Tlir pritircl TLT

filter code can be simulated offlirie tising titzgana. This catie is a ~ î i l a b l c to al1 physics

groups and is used to verif? online trigger decisions aiid devdop or ripgrad~ filtrr slots.

Cnlike the FLT. a trigger d o t is a software fabrication aiid th^ riiimber of dots is not

restricted and siniply depends on the processing poiver required to nicet the tleniantls of

the esperiment.

Performance of the TLT

The TLT has been a crucial part of the ZEUS DAQ chain since the inaiigural riin in

1992. In 199.5 the TLT hardware was redesigned ancl the old Ferniilab Brandi Bus

system[55] was replaced a i th more modern and commercial technology. The writing of

events from the PME-FDDI-1 board to the workstations operates at a siistained rate of

5.S 'rlByte/sec [56]. The hardware itself is able to mite at a rate of 7 'rIByte/sec from

Page 75: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Processing Time irns)

Prncessing Time (ms)

Processing Time (ms)

Figure -4. I-L: The CPU processing Lime rerpired by the TLT. ( a ) Fm- R4400/150 .CiHz

processors of which there are 7. ( h l /or R4400/250 M H z pîncessor.~ of ruhrch tht:rr~ trrr 7

and (c) for fi 10000 processors OJ w h ~ h there ure 5 used online.

its interna1 DR-ILI to the FDDI loop. but is limitecl by tlir data transfer spwd ovcr ttir

VSIEbos. Event transfers from the workstations to the archiver merr nicasiirrd[Sûj t» Iir

11.5 SLByte/sec. With the EVB writing out at rates of up to 30 Hz per YUE riierriory ar

an average event size of 100 kBytes. one PME-FDDI-1 board keeps up reaclirig oiit two

mernories. yielding a 60 Hz event rate per TLT branch.

Over the years more demand has been placed on the TLT to make niore estensive

event reconstruction in order to provide more refined and sophisticated trigger decisions.

CPC power has been added to meet this demand while maintaining the design reqtiire-

ment to handle 100 Hz input event rate. In the current configuration the input limit of

the TLT has been estimated to be 103 Hz[57]. Typical CPC' times are shown in figure

Page 76: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

4.14. The distribution of total processing times in 1997 indicate a mean processing timc

of 237 ms. which is dominated tq- the certes and track reconstruction processing time.

The system is extrernely resilient. allowing processes to restart autoniatically tluring

data taking. -1 process may crash for several reasons. For esarnple. a harclwarr fail-

lire whicli could be repaired niid-run. a power glitch. meniory resources rnx~iniized by

system processes causing a reboot or network interruption caiisirig rriiiltiplc tinieoiits.

The physics analyzer process rn- also crash due to a rare bug in the filtctr (*O&. Ii i

tliis situation. the event which was being processed tluring tlic crash is tliirnpcd to ilisk.

allowing the TLT expert to retrace the cause and remetly aiiy prograrnrning anonialy.

The communication processes are al1 based on standard network p r o t o d s whirli tln-

sures good portability and maintainahility. An- deniarid for more baridwidth or CPC

power cari easily be satisfied by adciirig niore TLT branchtas and/or iriorp ivorkstiitions

to thc system. Tlie separation of the filter layer and ot1it.r TLT proccssrs iilloi~s for ilas!.

modifications of the physics algorit hms.

Page 77: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 5

HERA Kinematics and Event

Reconstruction

5.1 Physics at HERA

5.1.1 Deep Inelastic Scattering (DIS)

Lepton-Hadron scattering h a s bren a ricli soiirce of information iri the p s t for iindor-

standing the structure of nuclei and nucleons. HERA continu~s ttiis tradition I>y prohirig

the structure of the proton a t srnaller distance scales than e w r before. The process of a

positron-proton interaction is showri in figure .?.l to lowvest orcler in perturbation theor?.

4

Giren the k e c t o r s of the initial ancl final stntes. C = (E,. k). p = ( E,. li) a id

kt = ( E t . k'). J = (Es. J ) respectively. one can derive four Lorentz invariant qiiantities

which characterize DIS. The interaction is characterized by the constant centre of mass

energ . 6. which is a function of the energies of the colliding beams:

Page 78: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5 . HERA KINE~IATICS AND EVENT RECONSTRUCTION

Figure Ll : .4 schemalic uiew of the Deep Inelastir Scatt~nnq Procrss r ~ t HER.4.

Sotr that at HERA bearn energies ttw beani particlr ttiasscs c;rii h t > ric~gltv:trd in t , l i ~

derivation of .S. The other invariants arc:

Q2 is the negative of the Cmomentum transfer squared betmeen the initial and final state

leptons and sets the scale of the interaction. At high Q' the positron-proton interaction

is essentially a positron-quark interaction. The invariant s is the fraction of the pro-

ton's momentum carried by the struck quark. Finally. g. sometimes referrecl to as the

inelasticity. can be interpreted as the fractional energ' transfered From the positron to

the proton vertex. in the rest frame of the proton. The scattering angle in the centre of

Page 79: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5. HERA KINEMATICS AND EVENT RECONSTRUCTION

mass frame: O * ? is related to y via:

The kinematics of this process is over constrained by r. y. and Q'. since they are related

by the equation:

Figure 5.2: .4 xhematic viem of the s-channel resonancri production nt HER.4.

This thesis describes the search for a scalar porticle s-channel resonancc pri>~liiced as

showri in figure 5 .2 . The dynaniics of production of such a particlc arid its siibsrqiirnt

decay are discussed in section 3.4.1. The mass of the resonarice can be espresseci in the

following way:

.112 = (k + XP)' zz rs . ( 3 . 7 )

One other important esperirnental feature which is used in this thesis is the variable

6 = E - Pz. where E and P, are the total energy and the total longitudinal monientiirn

of an event. Since the ZEUS coordinate system defines the positive 2 (fonvard) direction

Page 80: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHXPTER 5. HERA KINEMATICS AND EVENT RECONSTRUCTION 62

to point in the direction of the outgoing proton. energv and longitudinal momentuni for

forward moving particles are essent ially equal. Hence t heir contrihii tion to t j canceis tu

zero. Particles moving in the rear direction have energy and longitudinal rnoriientiint of

opposite sign and thus their contribution to 6 is twice tlieir energv. 6 is a conserveci qiiaii-

tity and hence if al1 possible particle losses in the forward and/or backward beaniholes

are ignored. b can be caiculated from the initial state and miist be eqiial to tliat from t h r

Aria1 state. By conservation of rnomentum and energy the difference betivi.cn thc total

energy and the total 2-component of the monienturii is qua1 to twicr the initial elertron

bcarn energu:

Sote that particles which escape detection in thr forwarcl bram holr \votild giwri urily ;i

very small contribution to E - Pz.

Seutral Current (SC) DIS occurs through the exctiaiige of a photon or Z0 iind is

characterized by a positron in the final state. Chargetl Ciirrent (DIS) occiirs throiigh

the eschange of a IL'' boson and is characterized hy rnissing transvcrsr niorrii.ntiim (Pr

due to the escape of the neutrino froni the detector. The S C DIS cross section drops

like 1/Q" and the CC DIS cross section (s - ( 4 1 L \ , i . ) 1 ) falls off e w i faster due to the

rnass of the II' boson. .C i i v . in the cross section formula. This analysis is concerned witli

events which would populate the kiriematic rcgion of high Q2.

At Q' - 0. the exchanged boson is a real or quasi-real photon. in a process callecl

photoproduction. In such events. t he scattered positron disappears into the rear beam

pipe and cannot be measured in the main detector. Photoproduction events forni the

rnajority of HERA data.

Page 81: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

DIS and photoproduction constitiite the backgrounds for the physics bring searchecl

for in this thesis.

5.1.2 Reconstruction of Kinematical Variables

Table 5.1 defines the notation usetl in this thesis. Polar angles arc rneasurcd witti rrspwt

to the z-axis.

El Energy of the final state positron

8, Polar angle of the final state positron

S Energv of the struck quark

Polar angle of the struck quark

1 E, Constant Energy of ttie initial positron ( 2 7 . 3 G d . ) I 1 Ep Constant Energv of the initial proton (8.10 GPI.) /

Table 5.1: ;Vatution.

The scattered positron in ttie final state provides a tiariclle For recogtiizirig S C DIS for

triggering and reconstructiori. The clectrori niethod[5S] for reconstructing t h kincrnatical

variables defined in section 5.1.1 makcs use of the scattered positron's rnergy ( E ' ) and

angle ( O ) :

Q T ~ = 2E,E1(1 + cos O , ) .

E e E'(1 i cos O,) z,i = -

E, 2E, - E'(1 - cosl),)'

The kinematic variables can also be defined in terms of the angles 0. and 7 . This

method, which is the method of choice in this analysis. is aptly called the double angle

Page 82: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5 . HERA KINEMATICS AND EVENT RECONSTRUCTIOF~

met hod[ZS]:

sin 3( 1 + cos 19,) QL, = 4 ~ : sin + sin 0, - sin(& + 7) '

E, sin y + sin 19, + sin(& + 7 ) XD.-I = - Ep sin -/ + sin O, - sin(& + î ) '

sinO.(l - cos r ) !/D.-I = sin 7 + sin 19, - sin(& + - 4 ) '

This met hod lias the great advantage t hat it is insensit i w to iincwtaint ies i r i t lie c:aloritii+

ter encrgy scaIe to

cari bc shown that

first order. The problerii lies iri

7 can be calculateci via

ttie cleterniiriation of t h ariglr. It

P;,h - ( E - C'OS 7 =

P&, + ( E - Pz) ; '

The .Jacquet-Blonclel metliod[59] i1st.s the haclronic criergy Horv of an twv i t to rwon-

striict ttie kincmatics:

nhere Sh is a sum over the hadronic energv in the event. The difficiilty of this method

is in the determination of S and 3 . One does not esperimentally directly mensiire thesr

quantities. In this thesis. jets are used to reconstruct the hadronic final statr ancl hrncc

the summation indes on Sh is the number of jets. Despite ttiis tlrawback. the Jacqiiet-

Blondel method provides the on- tvay to reconstruct the kinematical variables for CC

DIS and photoproduction where the scattered lepton goes undetected.

Page 83: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5. HERA KINEMATICS AND EVENT RECONSTRUCTION

5.1.3 Reconstruction of Global Quantities

The following global event quantities are essential in the event selection. The longitiiclinal

cnergv variable given in equation 3.10 is clefined as lollows:

EL = ,/i;, + Pj;, + Pf,. (+5 -22 )

The f i . referrecl to in the previous section. is magnitude of thc vector siirri of thcx

transverse momcntum and is calculatecl by

The sunis i are over d l calorimcter objects. The srriallrst of siich caloririwter o t > i t ~ ~ s is

a calorirrietcr cell. Hoivever. cclls cari lw cl~istcred togctlicr to for111 islaiids or j r ts . w l i i c 4 i

arc tlescribed in folloiving sect ioris 5.4 and 5 - 5 . and t tic. above variables cari (ittfiricd in

terms of t hose exteiicled objects.

5.2 Track and Vertex Reconstruction

V C T R A K [ ~ ~ ] is a fortran package which finds tracks. the primary vertes and sccondar-

vertices for ZEUS events. Each reconstructed trttck makes use of data in the CTD

although information from other trackiiig devices can also be esploited. For the purposes

of this thesis the regular CTD-only tracking and vertexing version nas used. VCTRAK is

a component of the offline reconstruction program and an optimized version of the same

Page 84: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

code (limited to CTD only information for purposes of speed) is tised oriline to do the

vertex and track finding riecessaru for the onliiie trigger decisioiis.

Tracks are first reconstructed in the ( x . g ) plane and tlien cstended to t l i ~ : diniension

using the 2-bu-timing and z-stereo information from the CTD. Track candidates b ~ g i n as

a seed. consisting of three hits on an axial outer Iauer of the CTD. and arc swuni inward

towarrl the nominal centre of t = y = 0. -4 Fourth rirtual hit is ackled kit th(! bmiti

line to aid the track as it is estrapolated inwartls gathcring additional hits resultitig iri

increasing precision of the track pmnir t r r s .

The primary vertex is found by first removing ariy tracks not corripatible witti origi-

nating on the heam line. A n initial simple vertcx fit is ttien performed on the rcniainirig

tracks which assigris a tveight to the (x. y. 2) origin of cach track. A secorid iind rriurr

cornprehensive vertes fit is finally prformed. in whicli the directiori and ciirvatiirp of

each track are adjiistccl to the final vertex position.

5.3 Corrections

In the determination of event parameters t ht. energy rriraurement and its reproduci bili ty

in the MC are essential. Energy corrections are necessaru since particles originating frorti

the e p collision traverse different niaterials before reaching the niain calorirtiet~r. Thi.

measured energy in the calorimeter would thus bc rediiced by the lost aricl iinrccov~rahlc

energy wit hin such material. Ot her reasons for energy correction include noise. back-

splash and shifts in the calorimeter position between years of running.

Calorimeter Noise

The ZECS calorimeter uses uranium as an absorber as dcscribed in section 4.2. The

natural radioactivity of the uranium creates noise in the calorimeter and is rneasu r~ i

Page 85: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5. HERA KINEMATICS AND EVENT RECONSTRUCTION 61

dong with the energies coming from the ep interaction. This noise is suppressed bj- aii

energy cut of 60(110) MeV for al1 EMC (HAC) cells [60. 61. 621.

CAL shift

.\ rnensured discrepancy between the BCAL and RCAL ce11 positiuris \vas obscrvrd hi.-

tween tlie data and SIC and is corrected duriiig reconstructiuii. Ttie BCAL is shifted iri

the :-direction by +6.5 min[63] and RCAL is shifted by +1.1 crn[G4] in thr xlirection

from 1996.

Energy clustering and Island corrections

Ueasurement of global energv variables based or1 cells are correctcd by factors wtiicti

are pararneterizeci as a function of some global quantities. usually thr g loM enrrgic1s

thcmselves. Such a global correction is perfornied for the hadronic energy deposits in thi l

CAL and corresponds to +5% in BCAL and +Xi% in RCAL (C.-\LCORR[65]).

;\ri improvenient iii energy resoliitiori can brb achicved i l a (:orrrctioii i v r w cloiit. for

eacli particle 1661. Since each particle coming from the ep interaction can (lrposit rnergy in

more t han one cell. clustering of energy deposits start irig frorri c:c?lls is prrforrrid. Thosr

clusters of calorimeter cells. called islands. gattiered around a single local niasiniiirti

approsimate a particle shower in the calorimeter.

These clusters are the islands which were briefly mentioned in section 5-4. The cliis-

tering is performed separately in cach of the F/B/RC.\L aricl siibscquent nirrgirig is

performed between islands which are deemed to be coiinected or traverse two CAL sec-

tions [67].

One source of deviation from the true energy is loss in inactive material between

the interaction point and the surface of calorimeter. -4s hadrons and electrornagnetic

particles are expected to behave differentl- the islands are split into two categories and

Page 86: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

separate island corrections are cleveloped based on dead material rriaps for tlio diffcrent

years of ZELS operation 168. 691. Corrections are also performed for energy lossrs in tbt.

super-cracks betweeri the F/BCAL aiid t lie R/ BCAL srct ions.

Another source of correction arises Froni back-splash of particles rebouriding off the

face of the F/BC.-\L. This so-called albedo effect is illustratecl in an event display of a

CC MC event in figure 5.3. Albedo causes an enhaiicement in ( E - Pz),, and thus in ttio

hadronic angle. -,. in equation 5.17. This can have a significant effect on the absolute

value and resolution of the kinematic variables. an effect on (E - Pz) of O( l ) GeV [69].

Page 87: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 5. HERA KINEMATICS AND EVENT RECONSTRUCTION

Regularizat ion

The back-splash and energy corrections were not derived with the assuniptions of an-

kinematic constraints. In particular. the following constraints w r e not iniposcd:

-4s a resiilt resolution effects ciln cause kinematic variables to bc calculatecl. ilc.cwrtling t o

the .Jacquet-Blondel method, with the previously tliscusseci correctioris applied. esceediiig

t heir liniits. A procediire was developcd aloiig wi t ki t lie correct ions (corandcut [69]) t o

restrict the Jacquet-Blondel variables to their kinematic limits. Thp dh and P-I-.h \ariablt's

used in the subsequent event sclection cuts are not regiilarized. Figiirc 5.4 illiistratrs the

resiilt of this regularizntion on th^ ! / J B variable for it samplc of CC .\IC t v n t s .

5.4 Electron/Positron Finding

.A crucial aspect of t his anaiysis is the clectron/positrrm finciing. For t«pologirs w h i d i

include a final state e= t he need is obvious but in the case of a neutrino in thc final

state the observation of a e' candidate is iiseful in the rcdiiction of backgroiinrls. H m w

correct and efficient identification of e I and precisc r~constrtiction of its position x i d

energv are of vital importance to this search. The r~construction algorithm i.ised in t liis

analysis is called em and is describeci in [33]. The em e' finder is based on detailed

parameterizations of the detector response for elect rons/ posi t rons. Several variables arc

iised to create stib-probability distributions for the calorinieter and CTD. Finally tliese

sub-probabilities are cornbined into a grand probnbility distribution which cari be uscd

as a selection criterion.

The outline of the algorithm is as folloivs:

Page 88: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

1. Cluster the calorimeter cclls into islarids.

2 . Loop m e r islands and accept an islancl slioiild it pass the following critt.ria:

The energy of the island is at least 4 Ge\*.

The energy fraction in the HXC section of the caiorini~ter rniist t ~ e lcss tlian

0.3 in FCAL and RCAL and less than O.: in BCAL.

0 The calorimeter probability must be greater than 10-?

3. If the polar angle of the island candidate satisfies 0.3 < H < 2-85 tlieii check For a

matching track. Tracks must satisfy the following criteria to br considcred:

Page 89: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHXPTER 5. HERA KINEMATICS AND EVENT RECONSTRL'CT~ON

0 The distance of closest approach of the track to the bcarnline niiist he less

than 2 cm.

0 The distance of closest approach of the track to the islanti niiist bc less tlian

50 cm.

le-- - ~ ' r l f i n d 1 < K/-!

Io truck - oislandl < I i / d

The tracking probability m u t be greatcr tliari 10-:'.

4. The grand probability must t ~ e greatcr tliari 10-".

Figure -5.5 shows the performance of the EM findiiig cfficiericy cornparcd to tliat, of

a neural network Finder SINISTRA! The findi~ig algoritlinis arc riiri uri NC DIS iiticl

photoproduction MC simulations. It should bc noteci that t h r EM finder siiffers Frorri

a slight inefficiency a t the regions between thtl CAL sections. Ttierc is &O ;i drop in

eficiency outside the CTD acceptanw as therc is no trnckirig inforniation to siipplrnit~rit

the grand probability determination. In the FCAL and BCAL rcgioris. wit h t tic escept ion

of the region inbetrveen these ttvo CAL sectioris. the EM tirider lias a an rtficieiicy o f o w r

97%.

5.5 Jet Finding

.Jets are an abstract construction used to relate measurements made a t the dctector level

to a primary particle of a hard scattering process. -1 large portion of the final statps

arising h m a potential squark decay contains multiple quarks. Jet couriting is central to

this analysis and will be discussed further in chapter 7 wtiich details the erent selection.

'SIRA 5 is a particular implementation of the SINISm finder.

Page 90: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

All events

Figure 5.3: The positron finding efitxicrer~cg us r i furtctcon o f erceryy. polar. u r ~ g l r t r i i d

10~,~(Q')[70] O/ the true positron /or Eiçl (crosses,) and SIR.4 5 (diumonds). The rn-

ner vertical lines indicate the CAL limits and the outer vertical lines indicate the CTD

limits.

Page 91: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

The number of jets may not directly correspond to the nurnber of partons resiilting frorii

a squark decay A lower number of jets than initial partons can be reconstructed when

the energv deposits from two or more partons are not well separatecl spatiallu arid ruorp

jets than partons may be reconstructed diie to higher order QCD eff~cts. The latter is

the source of background for the niultijet States.

The kinernatics of the jet are defined by the following equations:

wtiert. E;~. r f r t and de' are t hc transverse imrrgy. pseiidorapidit!-' and üziriiiit lia1 angk

of the jet respcctively. The sunis can be perfornied ori ilriy caloriirierrr ohjrcts. froni cc4s

to islands which bdong to a particular jet. Ir1 ttiis ;inalysis. ttir jet firiding is prrforriicvl

on the correcteci islands.

The jet reconstruction algorithm used in this thesis is the longitiiclirially inuriant Kr

algorithm which is described iri the literature [il. 721. The algorit hm works hy ralciilat in8

a distance measure.

d2 1 J = (Ar$ + ~ ~ ~ ~ ) r n i n ( ~ - ~ ~ . ET]) . (.5.:30)

and

for each pair of objects. The minimum of (d$ $) is fourid. If the niinimcirn is cl:. then

the object i is removed from the list and called a jet. Ot herwise the objects i and j are

merged by the ET weighted recornbination sclieme given in equations Z.27-5.29.

' q = - ln (tan 4 ) : where 0 is the polar angle.

Page 92: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

5.6 Squark Mass Reconstruction

The squark mass reconstruction met liods use reconstriicted jets. whicli take the cor-

rected islands ciescribed in section 5.3 as input to the jet algorithm. The longitiiclinal

conservation of energy in equation 5.10. b = 55 GeV. is also assumed in thcir derivation.

5.6.1 Channels with a ei in the final state

The tnass of the squark is reconstriicted as folloivs:

mhere ( E + Pz) is calculated iising the cz candidate arid the rcconstriicted jcts arid E,. is

the initial e-beam energu.

5.6.2 Channels with a u in the final state

The PT is attributed to the u in the firial state sucti t h :

meus -Pr.,

Ev = dl$., +$:.p. (3.323)

The right hand side of eqiiations 5.34. 5.35 and 5.37 are measurcd. Since the right haiid

side of equation 5.37 is a

a relation for p,,, cari be

constant. A. for each event. thcn froni equations 5.37 and 5.35.

derived as follon-s:

- Jn - -4 Pt," - Pl." + PZ,"

Page 93: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Herice the mass of the squark c m clerived:

Siibstituting eqiiation 5.49 into 5.45. the invariant nii~ss o f thil v and jets systrrri riin br

exprcssed in terms of measurable qiiantities.

where (E + Pz) is calculated using the reconstructed jets and y is regiilarized. as tlescrih~tl

in section 5.3. to be less than 1.

Page 94: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 6

Monte Carlo Simulation

Slonte Carlo (SIC) sirniilations play an tscnt ial role in plaririing and anelyzing tiigti m-

ergv scattering experiments. It allows for the desigriing of selection ctits arid calciilarion

of the acceptances. A Slontc Carlo generator simiilates pliysics bu cr~atirig ~wiits aword-

ing to probabilities of the desired process cross s~ctiori mt i proviclcs evrnt distxil~litions

basctl on an iincierlying theor-. Sincr thil espt.rirrieritii1 s c ~ ~ p is not prrfrrt iiritl i r n p w s

cuts in phase space. which are in general qiiite conip1ic;itccl ilricl ciirinot btl trratrd i i i i -

alytically. MC techniques allow for the stiidy of physics processes on a statisticd ba i s .

Generating events is but the first step of the coniplete simulation as other prograriis arp

siibseqiiently used to siniulate the interaction of t tie firial state particles mit ti t tic dctector

and the behaviour of the triggcr.

6.1 Background Simulation

The dominant background to e'q. e'qqq. and eiqqqqq final states is SC DIS. For the

e'q final state. the background is due to hard 2 i 2 scatters between the high-+ quarks

and the positron. Backgrounds to the multijet final states occur in NC DIS events mith

Page 95: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Luminosity ( 1 1

CC DIS Q' > 10 GcV' 24742 -596.0

Table 6.1: Surnmapj O/ yenemted buckyro~irid Monte Curlo .surnyle.s.

Events

Gencrated

Generator

Q' > 5000 G ~ V ?

Q2 > 10000 GcV2

Q2 > 20000 ~ e \ "

HERKIG L

higher order QCD effects. The background to rop«logies containing an P - is qiiitc srtiall.

since it occurs only if the positron charge is ivrongly reconstriictecl. ;\clditional sniall

D.JASG0

Process

148-42

-4981

49 1.3

PHP Direct

backgrounds can corne from ptiotoproduction ( y p or ptip) processes if a fake positroii is

Generator Cut

131234

24642

11641

1 1894

.j990.8

10396.1

l.jllü9.2 j 4

I PHP Resolved , P:("* > S Ge\-. ET > 50 GPY i 14886 !

P:"'" > Y G d . . ET > 50 G r \ - 1 9839 38.j

identified in the hadronic final statc.

SC DIS ' 126.8 1

1:36-4 i l

2 19.0

912.8 l

115.9 1 !

The prirnary background to v multijet topologies is CC DIS with again sniall ad-

Q' > 400 G ~ Y '

Q' > 1250 ce\*' Q' > 2500 Ge\-'

Q' > 5000 G ~ Y '

ditional background from photoproduction events for wliich the riieasured transwrse

momentum is large due to mismeasured jet energ- fiiial state muons or neutririos.

The background samples considered are summarized in the table 6.1.

HERICLES -l.fi.2[73]. which simulated elect roweak radiative effects. interfaced wit h

DJANGO 6.24[74] to hadronization programs aas used to simulate the backgrounds

Page 96: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 6.1: Examples of leading order dia gram.^ /or (u) direct czrrd Ib) resolued plrotopro-

duction processes. The proton remnunt is lubelled R.

coming frorii S C and CC DIS. The hüdronic fiiial statr is siniiilatctl iisirig ttir Color-

Dipole Uodel as implemented in ARIADSE[72] for ttic QCD cascade. Thr CTEQ-I[X!

parton density parameterizations were iiseci. Ttie partori densitits are an ttssrritial pi r t

of the cross section calculation ,as in the cross section equation 3.11.

Photoproduction events aere simulatecl using the HERKIG gencrator $Ti. ;\ dist in(--

tion is made betwvem twvo types of photoproduction. direct and recolved. botli o f which

were simulated and illustrated in figure 6.1. In the direct case of photoproduction the al1

the energy of the photon participates in the hard scatter whereas in the resolved case only

a fraction of the photon's momentum. associated a partonic constituent of the photon.

participates in the hard subprocess.

Page 97: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

6.2 SUSY Simulation

Over -LOO signal MC sets were generated using a modified version of SPYTHIA[3] and

SCSYGEN 3.0[78]. The decay q' + eTq was sirnulated ivitli PYTHIA 6.2[79]. These sets

are summarized in tables 6.2 and 6.3.

In an attempt to cover tlie SCSY phase space. several points were selectcd to grnerat(.

as they encornpassed the relevant gaiigino n i a s sp;we. as illiistratccl by figiirc 6.2. .Ar

each selected phase space point. each topologv \vas sirriulated a t ~~l l i i l rk niasses ranging

from 100 GeV to 280 GeV. These simulations allosecl the detcrrniriation of tlie signal sr-

lection efficiencies. The efFiciencics ;ire sensitive to the masses of t hc part icles potcnt ially

decaying in the ZEUS detector. Hence. by simulatirig eiicii topology listed in t 'abl~ 3 . 3

for several squark masses. one (*an determine thr eficiencics as a fiinction of the sqiiiirk

mas. l l o r ~ o ~ e r . by sclccting points iii the iriiiss pl;lncbs ( < y . < ; ) arid ( ï:. iy) o i i r b m i i

indirectly scan the SCSY parameter space of ( J I 2 . p. tan 3). Rwall tliat t l ip niasses of

the gauginos are fixed by a particular choice of .l12. IL and tan .j. Strategically rrhoosing

points to lie on the extrernities of the possible n i a s States pmri i ts the intcrpolatiori o f

efficiencies at non-sirnulated points in the SCSY p t i a s ~ spacc. Hcrice. a scari in the SCSY

phase space can be perforrned.

SPYTHIA

SPYTHIA is a subset of the PYTHIA 6.2 generator. SP\THIA simulates particle pro-

duction in the SISSM and does not inclilde ie, processes. 'rloreover there is no prowss

for sparticle production at ep colliders. Fortunatelu. PYTHIA provides several ways for

including new processes and/or riew particles. PYTHIA contains the code to siniuiate

the production of a scalar leptoquark through the fusion of an e- and a quark in ep

collisions. This is the same process required to produce a squark via & at H E M . This

Page 98: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Generator JIP Range Topology

1 SPYTHIA 2.2 1 190 1 -200 1

.-

1 SCSYGEN 3.0 1 100 1 -60 1 100-280

/ SCSYGES 3.0 1 130 1 -200 1

l 1 SCSYGES 3.0 / 310 1 -140 1

Table 6.2: Sumnranj O/ generuted signal Monte Curlo .sumples iuith multijet final states.

Table 6.3: Summay of generated signal Monte Carlo samples with single jet final states.

ecl

1 (20 Ge\' intervals)

PE'THIA 6.104 100-280

Page 99: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figiiro 6.2: Ench srnnll dot reprrisents n pornt ln (1 g n d t h c h covers the (J-. p ) rpyzon

plane and (b) in the .\ffT us .Ilp plane.

process is used and as PYTHIA facilitates the inclusion of riew d e c q niod~s. ttic clrcys

to SCSY particles are added. -4s SPE'THIA conteins only .\ISSII decap the LSP wis

forced to be stable by setting the particle's width to zero. This au bypassed in the

routine which initializes the SCSY sector of the generator.

Al1 relevant information. such as widths. lifetinies arid branctiing ratios must be pro-

vided in the form of supplementary particle data used to define new decays. This can

be done using any number of other programs which calculate the needed information.

SGSYGEX- which is briefly described in the following section. was used for such sepa-

Page 100: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

rate information. No special matris eleinent treatment code is providecl to perform tlie

& decay The decays are performed via phase space. The cross sections clo not take irito

SUSYGEN

The SCSYGEN pachgc. initial1 y written to sti

account the interference between different processes[3].

y SCSY evrrits in e'e- (:dl'

estended bu E. Perez[80] to cover HER.4.s processes. Likc S PITHI.4 nlrnos t any prowss

can be generated excepl t h it perfornis al1 two or three body SCSY clcc-s accortiirig

ta full matris elements. The matris elernents for eacli harcl siibprocess arc giwn in [Z].

SCSYGEY provides useful routines to calculate the spectrurn of SCSY particle niasses.

dcc- midt hs and cross sections. .Usa t-(il) chnnnrl slrpton (sqiiark j escliarige i i i t hth

eq + q i ';: process is incliidtd.

Both SP'I'THIA and SCSYGES iniplenimt initial ii~i<l firial statv partons sliowrs

which have the effect of broadening t hc mass distribiit.iori -11, ( JI, = J-C;;) of the sqiiark

as seen in figure 6.3.

Severtheless. given the widths and branching ratios. SPYTHIA calctilat~s t h . cross

sections in agreement [3] with SCSYGES. ;is sliowri in tigurrl 6.4.

6.3 Detector Simulation

The generated events were input into the ZELS detector simulation callcd hIOZ.-\RT[29]

which is based on the GEANT 3.13[Sl] CERS package. It simulates the passage of parti-

cles though al1 the components of the ZEUS detector. Finally. the trigger is sirnulatecl by

the ZG.ANA[82] package. The full offline reconstruction of an event is performed by the

software package ZEPHkX[29]7 nhich takes al1 calibration constants into account and

treats data and Monte Car10 simulation in the same way.

Page 101: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 6.3: Eflect of initial and final state purton sho.wers on the mass recorist niction O/

a 200 Ge V quark undergomg the P, decay (i + eq . ISPS c~nd FSPS refer tu rnitznl und

final d a t e parton showers respectiuely.

Page 102: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

- Figure 6.4: o(e+d + q y l ) as a funct~on o j the SUSI' parameter p. Block points r i - /PT- t»

SUSYGEN and open stars refer to SP YTHI.4. Both p l o t s keep SIG = 200 Gr C' tarr.j=L. U .

Above: .& = Z O Ge V. Below: JI2 = 100 Ge Ca*.

Page 103: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Event Select ion

The analysis focused on two classes of events. One class contairis o. rrx-onstriictrd electrori

or positron and hence will be callecl SC-like. In th r other clas of rvcnts. thr final st.attl

lepton is a neutrino: thiis the signature is characterizcd by niissing txansvrrsr rriomrntiirn

(Pr ) and this class will be called CC-likt.. In eithcr rasch. one is s~arching for a higti niass

resonance and thresholds for cuts on Err and f i (:an hc set higti. sincr high thr~sholtls

would not affect a potential signal nliile significant ly rediicing backgrotiiid cont;iniinat ion.

7.1 Search Strategy

After selecting high Q' S C and CC DIS topologifs the let reqiiirernents are ttim of'

utmost importance. The- provide the greatest discrimiriant between the signal and major

background sources. The cascade squürk decays contairi t h r e ~ to fiw quarks whirh at the

detector level translate into a sharp peak at tno or niore good jets (figure 7.1). SIoreorcr.

the jets have high ET. whose mean increases with increasing squark m a s . A good jet

is defined to have q < 2.5 and ET > 10 Ge\;. The NC and CC events peak at one

reconstructed jet and fa11 sharply as shown in figure 7.2. Hence. the key cut in estracting

Page 104: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.1: Above: the number of good jets reconstn~cted in MC sirriulatzons /or ( ( I I the

eqqq final state and ( b ) the eqqqqq final stute. B e l o i ~ ~ : the Err distnbutzon of the hqhest

Er jet for ( c ) the eqqq Jnal state and ( d l the eqqclqq final state. The dashed histogrnrn

represents squarks iuzth a mass .Ili = 160 GeV a n d the solid histotjrarrr represerrts squurks

with a mass = 260 GeV.

Page 105: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

P -1 ' - 7 * 4 l0 O - 7 4

Num. good jets Num. g o d jets

Figure 7.2: T h e nunlber of good jets reconstructed rn .CIC .szmdat~oii.s for .VC «nd CC

DIS are s h o w in ( a ) and ( c ) respectivel?y. The ET distributions of the hiyhhest ET jet /or

NC and CC DIS are s h o m in ( b ) and (d) respectivel!y.

Page 106: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

O - 7 3 Num. good jets

Figure 7.3: ( a ) The rrurnber of good jets /or urc rq f i r d stntt. ( b } The ET oj the highcst EPr

jet foi. un eq @al state. The dashed Iii.stogram i-ripresertts .sq,irarks of rriavs -\I,j = 160 G d '

und the solid histogmm represerits squnrks of rrru.s.s = 260 GtK.

the cascade squark tiecay topologies is tu require at leest trvo well reconstr~ictrcl j ~ t s o f

significant ET.

One ivould espect a peak at one good jet for direct 4 squark decays (see figure 7 .3 ) .

since there are only two partons in the final state: a positron and a quark. This is the

same final state expected from NC DIS. Howeïer. the ET of both partons d l have higher

ET t han t heir cascade counterparts.

Page 107: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

7.2 Cut Optimization

In the following event selectiou. described in the next sections. some cuts are said to be

optimized. The optiniized variables deterniine thr final cffiriericy. c. of a signal. The! arc

set to rnavirnize the acceptance of the signal while miiiiniizing DIS backgroiiritl s« that

the best cross section limit. o~,,,,,. is obtained. Thc \-due of oit,,,( depends on the nuriiber

of data events. However. in deriving the cuts orle rriust riot be biasetl bu lorcknowltlclg~

of the data distributions. as one may formulate a cut to enhaiict. or siippress a possible

signal. The chosen variables must be optimized using only llontc Carlo sinidation.

where Job, is the nurnber of observeci tavents arid p is t h t~ nuriit~er of cspecteti tlvcrits frorii

backgroiincl Monte Carlo simiilat ion. Ttie nieiin liiii ir is a Poisson-ivrigtitd si1 t i i i3t.r.r ;il1

possible .Vob, and is independent of the data. Thr nr~,,l,l(.Vob.) is the cross sectiori litriit

which is discussed in chapter 8 and defincd in equation 8.5. Ttiis proccclure is repeatecl.

for the cut variable to be optimized. for rach scpark rnass. resulting in a selwtion ctit

which is dependent on the reconstructed invariant mas in the detector.

The SC-like events are selected primarily by the identification of a final state electron or

positron and secondly by high global Er. At the nest level of selection the subsequent

data set is segmented into rnultijet and single jet events. Finallx the charge of the ex

Page 108: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

candidate is used to partition the remaining sarnple.

7.3.1 Preselection

.ifter events survive the three levelled trigger system. a process of reconstructiori tiikrl~

place. At this stage a new level of filters are applied to the data and the rcsults arc

classifieci in Data Sumrnary Tapes (DST). These DSTs form additional bits wliich can

be iised as a first selection or presclwtion recpireriimr in offliric arialyses. Tlie Following

selection cuts form the first p a s over the data to select iveil reconstrricted events of high

ET -

DST (33 or 36) and 35 - - -

DST bit 35 selects events with ET > 20 G d - ~ ; ~ l ~ u l a t r ~ d from islancls.

DST bit 36 selccts cvents rvith ET > 30 G d - (:alciilatecl fror~i tlw CCAL crlls.

DST bit 35 selects pverits with ERC..IL < :> G d . c*al~~il ;~t 'c l from th^ RCAL cdIs.

Vertex requirement

A tracking vertex is recpired. which rnust satisfy lZL,t,l < 30 cm. Ttiis corifiries t l i ~

vertes to t lie central region of the cletector.

( E ~ ) u n c o r r e c t e d > 40 GeV and ( E - P:)uncorreded > 30

.A preselection is niade for events with high ET and tiigh E - Pz in order to prefer-

entially select high ET NC DIS rvhile removing a large fraction of photoproduction

( p hp) . These variables are calculated from the raw calorimeter energies wi t hoiit

any correct ions applied.

Page 109: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 7. EVENT SELECT~ON

7.3.2 Further NC Selection

Having selected a high ET event sample. the foliowing cuts were applied to select higli

SC events:

( E - Pz) > 44 GeV

-4 liarsh cut for removing photoproductiori.

X yood elect ron/positron foiiticl

- E, > 15 GeV with an em probability > 0.001

- E,,.(R = 0.25) < 1 GcV

The candidate miist be isolateci. Thc wiergy insidr a cbonr of r:itliiis R =

JLq2 + LO' = 0.25 in ( q . 0)-spacc not attributrd to ttic rlcctromagnctir rliis-

ter should be less tlian 1 G K . This is a less strict isolation critcria thiiïi t . h t

used in a standard S C DIS P = search (set. appcndis A.?) b~cai i s r in a sqiiark

cascade decay the P' COCI~CS fror~i a rriultip~rtoti srcondary drcay of ii gaitgino.

- 8, > 0.3 rad and a rnatchirig track with PFf1'" 2 GGe wiiich has a ciistanw

of closest approacti (DCA) r o the wiergy cliistrr DC.4 < S mi

O R.

6, < 0.3 rad and PT > 30 Gel'

h s s > 100 GeC'

This analysis is only concerneci with high rnüss events. as calculated by e c p t i o n

.5.33. This cut effectively removes low Q2 S C DIS backgrounds.

The control plots 7.4 and 7.5 are made with an additional cut reqiiiring at least one

reconstructed jet with qli < 3.3 and ET,,i > 30 Ge\'. In the data 3346 events were

selected while 3270 events were expected from NC DIS and php backgrounds. The data

Page 110: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

shown iri the control plots is in good agreement with espectations. As seen in figure 7.6.

the observed invariant mass spectrum agrees with MC simulation reasonably well up to

about 210 GeV. where there is sornewhat of an escess. These events can be characterized

as single jet events and low y.

7.3.3 Jet Cuts

-4s previously mentioned. inost of thp topologies iirider investigation contain more thiiri

two jets. Having selected a saniple of high mifis S C çxvents. the jct sigrial characteristic

is exploited in order to search for possible signals in tlic data beyorid wvtiat is eqwcted

from the S M processes.

If thc following ctit is satisfied tlien t t i ~ evmt is piit iri t l i ~ P jp ts sample: otlierwisc~.

the event is placecl in the e jet saniplc.

At least two good jets are reqiiirecl.

A gmd jet is defined to tic! one with 11 > 2.5 arid 2it least 10 Gt4- in Er.

- T ~ I < 2.5 and ET,JI >

The highest ET jet lias to pus an optiniized .jet ciit as a fiinction o f tht!

invariant mass of the E jet(s) system. The ctit is illiistrnted in figiirr 7.7. I t

starts at .- 18 Ge\' at 100 Ge\' and reachcs a platmu of - 30 Ge\- abow

200 Gel'. The net affect of this cut is an increase in the acccptance for lowvcr

reconstructed invariant mas. in events mith two or more jets.

- rj12 < 2.5 and ETJ2 > 1.5 Ge\*

The second highest ET jet must h w e signifiant Er.

With multiple jets in the final state the jets ~ o u l d tend to have lowi-er ET than in the

single jet final state. Even if a real squark cascade decay does not pass the above criteria.

Page 111: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.4: Distributions u j jet uanubles for the preselccted sumple. .4 boue: the pseudoru-

pidit!) ( q ) and transverse energq (ET) /or th': htyhest ET jet. Beloi~.: thc pst~rdorapidi ty

(7) und transverse eriergg (ET) f u r the second hzqhest ET je t . The p o ~ n t . ~ wlth rrror h r m

are the data. The histogrum is the total expected hhackgro~und (~VC+php) . The backywirrid

histogram is n o n a l i r e d to the dota lurrrinosity.

Page 112: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.5: distribution^ of kinemutic variahles /or t he p~eselectrd sarnple. .-Lhove: the

polar angle of the positron candidate (O,) and the ratio of the t r n n s v e r s ~ nromrntrrrrl

(PT,h) to the transuerse energy (Er.h) !or the hudrorric finul stute. Below: the c«rinble

y. calcdated using the double angle rnethod (!/D;L). and the transverse ntonzentwn of the

electron candidate (PT..r). The points with error burs «re the duta. The hrstogmrri i.s

the total expected background (NC+phpj. The background histogram is norrnalized to the

data lurninosity.

Page 113: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.6: Aboue: dist7-ibution of loglo(QZ). culculated using the double ande rnethod

for the preselected sampie. Below: the reconstructed muss d i s t r ib~ t ion for the preselected

sample. The points with error bars are the data. The histogram is the total expected

background (NC+php). The background hzstograrn is n o n ~ d i z e d to the data lzrrninosity.

Page 114: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

................ r i - a ................. .................... J601-r.o*.o......... a . . . . . . ....................

P L -

240 260

Figure 7.7: The ET distribution of the highest ET j e t us cr filnction O/ the rrruuriant rrrn.ss

of the e + jet(s) system. The curue mdicates the optzrnized jet Epr cul. Eucnts uboue the

cut survive. The inlay depicts the cut /or clanty.

Page 115: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

it in- nevertheless pass the e jet sclection. In this nay. cascade decays which do not

pass the e jets selection may survive. thereby increasiiig the overall squark acceptance.

7.3.4 e jet Sample

A squark decaying via 41, will optimally only have a positron anci a jet in the final state.

As a result, the Er of the decay positron and jet will be very iiigh. The ciits u s d for

this s m p l e were:

At least 1 jet with 01 < 2.5 and ETJI > 30 Ge\.

P7 > 30 GeV

go.-\ > ~ ( - \ l < n u )

h scalar particle tias a Hat y distribution as secm in figiirr 7.8. This is an optiniiwd

ciit to further suppress the SC backgrouiid.

These cuts rvere derived from the search for a hi@ n i a s e t j e t leptoqiiark rcsonancr

search at ZECS[83]. The events resultirig in the excess mentioned carlier (sep figurr 7.6)

fa11 into this e jet sample since tliey contain only onc jet. Tlieir !/ distribution. ~ > < ~ i i k t ~ I at

loa y. is not consistent ni th that of the d e c q of a scalar resonancc. rvtiicti is Hat. Tliey

are removed by the final optimized y (see figure 7.8) ctit.

7.3.5 e jets Sample

In this c a t e g o ~ . the cvent contains at least two jets of high Er and a high PT

candidate. The following additional cuts are designed to further promote niultijet events:

Single jet events peak at PT/ET = 1.

Page 116: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

- * 9 . Y .

zmoF -] 1 NCDIS : ; Signai MC: e jets final state

17st * Z Signal MC: e jet flnal statr -

h 1 : . . . . - . 0.9 5:': . ' . . . . . . . . . . . . 0.8 i : * :. ..: ......... .. S . . . . . . .

0.7 i : : . : : . . , - . . +. . . . . . . . . . . I... i........ . .

Figure 7.5: (a ) The y distribution for iVC DIS cornpured to a sarnple cascade dccuy (r j r ts 1

and u sample P, decay (e jet) wzth arbitrary nonriulizatzons. ( b ) The optmrzed y (:ut a.s

a function of the rnvarinnt mass. Events aboue the ç z l n ~ survive.

Q;, > 800 GeV2

Since the e= arising from a sccondary clccay of a gaugino is predominantly recoti-

structed in the BCAL or FCAL. the effective Q2 due to the polar angle of the e= is

very large. See figure 7.9. The rnean effective Q2 increases with the rrconstriicted

squark mas.

0.4 < 1~0.4 < 0.95

As illustrated in figure i.8(a). multijet events of high invariant mass peak at high

y. Conversely. the main source of background. high Q2 NC. peaks at low y. so the

lower y acts as a very good discriminant between signal and background. The upper

cut on y is applied to remove photoproduction events where fake e= candidates in

Page 117: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

CHAPTER 7. EVENT SELECTION

the very forward region contaminate the sample.

4 %. - &30 - - NC DIS

M , ~ ~ = ~ w GeV

Figure 7.9: The Log,,(Q2) distnbution fo r iVC DIS coinpnred to that of a cascude .squurk

with arbitrarg nonnulzzation. The cut is irtdicnted by t h fine in the figvre.

The restilting data set is finally segmented by the charge of the identifiecl lepton.

Should the charge of the lepton candidate be identifieci as negative. it is classifiecl as an

e-jets event. othenvise it is classified as an c'jets candidate. .-\ track is deemed to be

negative if it should satisfy the following conditions:

Vertes Refitted Track

0 The track must have hits in at least the 1st superlayer and the 3rd superlayer

If a track does not have hits in a t least the first three superlayers. the curvature

and momentum measurements from the CTD are no longer sufficiently accurate[S4].

Page 118: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

The longer the track the better several track propertics becorne. For esample. the

momentum resolution improves with the square of the track.

The track charge must be negative at the 30 level

30 e - candidate was selected from the data.

7.3.6 Selection Efficiencies and Squark Mass Resolut ions

The efficiencies for cascade squark cfecays are illiistratccl iri figure 7.10. They range frorri

30% to 60%) from squark masses of 100 Gr\- to 280 Gd' . The m a s resoliition (figure

7.1 1) for the cascade squark dec-s ranges iror~i 3 - 7 Ge\'. slightly largcr tlian thr

&, squark decay resolutions which range froni 2.5 - 4 Gt4*.

7.3.7 Final NC-like Event Samples

The nunibers of observed events in the threc SC-likr diannels wwe in iigrrcnierit with t.hr

espectations froni SS1 backgroiinci and are suniniarizcd in table 7.1. So ovrrall r s w s s

of events is observed and no sign of a mass peak appcars in figures 7-12 iind 7-13. wtiich

show the invariant niass distributions Tor the c jet and e jets reconstriicted clièirincls

respectively. These distributions are an important result. They show that the ptiysirs of

the multijet topologies being considered is well described by the SM.

The selection of CC-iike events is not as dean as SC-like events. There is a lot of

contamination from non-ep processes due to the requirement of an imbalance of energ.

(yT). This background is comprised of cosmic and beam halo induced muons and events

containing sparking calorimeter cells. and has already been discussed in section 4.3.2. The

Page 119: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

rrtuss. The range of ef icf ic ie t~ies over the gmer-uterl SL,'Sk' pliiisr spuce points ut errch rnn.s.s

triggcr itself rejects sonie of the more obvious background events. but rejection beconi~s

complicated when these events overlap legitimate ep processes. 111 general. such events

have an extremely localized large energv deposit. usually al1 in a single cell. creating the

7.4.1 Cleaning cuts

This section details cuts which remove non-ep events. These are events arising frorn

beam-gas. halo or cosmic muons or detector hardware problerns. which are sufficiently

like ep events to pass through the trigger and DAQ chain. The following cuts were used:

Page 120: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

7 - - - - O ta, 120 IM 160 i i i iw rto wo a i ~ rso 100 IZO 1.10 160 1811 tûû 220 2.10 260 280

BIau ( CeV) %la.%s t CcV 1

Figure 7.1 1: (a ) The mass resolution for cascade squark decu!j.s lnto P jets os n junctlori

of the squark mass. f h ) The muss re.so1ution for the IP, sq~rurk decays ns n furictzorr oj

the squürk mnss. The range O/ resolutiorls o.ver the lenerutrd SUSY phuse spacr at rnch

mass is shown.

0.2 PT < 3

Sparks in cells overlapping a i t h an e p prowss givc n large PT. and woiild I~rcome

backgrounds. Isolated cells with a bad energi- inibalancc are rerriovd frorri the Pr

calculation described in equation 5.23 and the rernaining overall Pr is designatrti

h g o o d .

f i h z g h / y* < 0.8

Sparks can potentially cause a very large fake eriergy. Hence the event is rejected if

the PT measured by the calorimeter ce11 with the highest individual eriergv (PThigh)

is more than 80% of the total PT.

Page 121: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

1 Reconstructed Channel 1 .Yob, 1 .V,,, I r

e j e t

Table 7.1 : Svmmary of data sample everit nurnber.7 ccompared to expect ed background frorrr

NC DIS (Ariadne) and php ( H e m i g Resolued and Dir-ect ET > 50 G e ç 7 .

e' jets

e- jets

e+jet Invariant Mass

I 1

Figure 7.12: The reconstmcted ntuss distnbutiori for the ei jet final sample. The pozrits

Wth error bars are the data. The histoyrarri is the tutu1 e q e c t e d buckgro~und ( K t p h p ) .

The background hzstogmrn is normalized to the data hminosity.

70

66

O

S I 3~ 6 ,

X E k 5

0.20 & 0.01

Page 122: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

e+jets Invariant Mass

_ -* - L A -- +

ioo i20 140 ' 160 180 200 220 240 - 260 Mass(GeV)

Figure 7.13: The reconstmcted rnass distdution /or the e+ jets &na[ sample. The points

with error bars are the data. The histoyrum is the total eqected background (iVC+php).

The hackground histograrn is norntalized to the datu luirrinositg.

Page 123: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

a HAC fraction cuts

The particles emerging [rom genuine ep collisions in the interaction region miist

hit the EklC section beforc the H X . so one rvould not erpect these events to be

completely hadronic. The folloning cuts reject cosmic and halo muons which coulti

miss the EMC sections of the CAL.

This variable is defined as the ciifference betwcri the azimuthal ariglr of t h e as

measured by the CAL and bu the CTD. This rrcpirenicnt further rdiices cosniir

and halo muon backgrounds.

- f i > 20 Gel* and 19 < 2 radians

OR

< 20 GeC' and 14 < 1 radians

Cosmic and halo nliion identification

Pattern matching algorithms M u T R I G [ ~ ~ ] . ISITAMU. ahalo and comcos (8.51 are iised

to further suppress muon related non-rp backgroiinds.

Timing cuts

Non-ep backgrounds may give a timing measurement which is inconsistent with an

ep collision. The cuts performed a t the TLT and described in equation -4.10 are

repeated and tightened. See appendix A. 1 for details.

Page 124: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

7.4.2 Selection cuts

Analogous to the preselection performed in the NC-like case. this section outlincs ttic first

step in selecting a CC sample with high Q'. For CC events. well reconstructed events

with P)7 are preferentially chosen. Tracking and electron/positron firicling. in ortler to

remove any NC events. are important in the followiiig event selection:

DST (34 or 35 or 36) and 37

Along mith the high ET or high isllznd ET trigger selections whicti were comnion t,o

the YC-like selection. the CC DST bit 34 is also rccpired. htlditionally. DST l i t

37. which dernancis a reconstructd or TLT v e r t a o f -GO cm < Z,:,, < 120 (:m. is

reqiiired.

Vertex Requirement - -- - -- -

.-\ tracking vertex is requireti. idiich rriust satisfy Z,,,/ < 50 cm.

SC Re-jection

If a scattered e= is identified (em prohabi l i tp 0.001) in the calorinietrr thmi thrl

event is classified as a SC background and rcjectecl. See appendis A.3.

At least one good vertex track (Ngtrk)

A good vertex track is one fitted to the vertes and has a f i > 0.2 Ge\. in the

angular range of 15" < 0 < 165". the CTD ücceptance. Derriünding a good track

reduces non-ep backgrounds.

Ngtrk > O.X(Ntrk - 20)

Ngtrk is the number of good vertes tracks. defined above. and St rk is the total

number of reconstructed tracks. Beam-gas events typically have many tracks but

only a few of them are assigned to the primary vertes. This cut effectively removcs

Page 125: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

them. Figure 7.14 shows events in the (numher of good tracks)-(number of al1

tracks) plane, excluding the cut for al1 final candidates with at least one good jet.

A ( - l i r ) > 12 Ge\-

f i ( - l i r ) iç the net missing transverse momentuni calculated from al1 cells in the

calorimeter eacluding the first ring of FC.-\L cells immediately siirrounding the

beam hole. This f i ( - lir) ciistribution is shown in figure Ï . l j ( a ) . cscluding the

cut for al1 final candidates with at lcast otie good jet.

& > 15 GeC*

Significant net transverse nionientiirn is the priniary signature of a CC-like pvrnt .

This cut was optimized for the u jets topolugirs as ;i function of t h r sqiiark niass.

The optimal cut is slightly lowr at squiirk riiassc~s below 1'20 Gr\'. A lorver ciit

increases contamination frorri biickgrou~id. tliereforc tliis global (:ut was üssiimrd for

al1 masses and topologies. Figure ;.lEi( b ) shows t hr 47 clist ribiition before applying

the cut for al1 final candidates with nt least one good jet. The f i distribution in

figure 7-16 shows good agreement betwcn data and MC background.

These cleaning and selectiori cuts for the CC DIS sarriple and their effect on the data

sarnple are summarized in table 7.2.

The ZECS high Q2 CC analysis[66] applies al1 thesc ciits plus the kinematic ciits

Q' > 200 GeV2 and y < 0.9. By performing these cuts the same sample of events is

selected and agreement between the data and SIC background is obsened. as seen in

figures 7.16 and 7.17. This data sample contains 857 events. to be cornpared mith 880.7

events expected from CC DIS and photoproduction backgrounds.

Page 126: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

/ ( non-ep: halo p. cosrnic 11 1

Selection Cut

HAC fraction

Il 1

NC Cut I

1 89999 1 92.1 n

Events Selected

Table 7.2: Sumrnaq of the cleuniny and selection cuts /or. the CC DIS samplti. The CC

CC Efficiency 'Z

Eficzency is n o m a l i z e d to the DST tngger sefection.

100

100

DST Trigger

CAL Timing

46602s

35-4922

Page 127: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

' O 20 40 60 80 100 Ntrk Ntrk

Figure 7.14: D i s t ~ b ~ ~ t i ~ n . ~ of euerits in the (nirmbcr of good trucks)-(rrurnher of (111 truck.^)

plane for (a) Data and ( b ) CC DIS MC simulutioris.

7.4.3 Signal Enhancement

Once a sarnple of high Q2 CC events is isoleted. one can take advantage of the high mas.

high y. multijet cliaracteristics of the t o p o l o ~ t hat are b ~ i n g investigated. To ~ n h a n c r

the acceptance in the high Q' CC DIS sarrq.de rcsiilting from thc cleaning and selectiori

cuts. the following cuts rvere applied:

Mass > 100 Ge\-

As in the NC-like cases a high invariant mass of the u jets sytem. as calculated by

equation 5.50. is required.

y > 0.4

This cut is an effective cut on the E - Pz of the entire event. A high y cut selects

multijet events. as they are more likely to be spread out throughout the detector

Page 128: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.13: The (a) PT(- l i r ) und ( b ) PT distributions before the applzcatiun o,f their se-

lection. The points are the data und the I~istoyram is the eqec ta t iun /rom MC szmulations

normalzzed to the data luminosity. The cuts are i~idicated hy the lines.

Page 129: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Num good jets Y

Pt (GeV) O 50 100 150 ?DO

Et (GeV)

Figure 7.16: -4bove: the nurnber of good jets and y dist7-ib-utioirs after preselectiori. Beloru:

the PT and Er d i s tnbu t ion~ after preselection. The points rrpresent the datu und t h e

histogram represents the SM ex-pectution (CC+phpj normalzzed to the data luminusit?y.

Page 130: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Mass (GeV)

Figure 7.1 7: The log,, (Q') und in-uanant muss aber preselection.

Page 131: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

each contributing to a higher E - Pz rneasurement and hence a higher y.

0 Number of good jets 2 2

Again as in the XC-like multijet topologies. squark decays with a u in the final

state are high y events with two or more good jets.

The effects of the cuts are displayed in figure 7.1S(ii) for the gencratcd SCSY pliiisc

space points. Note that the range of efficiencies for rlir lowest tmo sqiiark niass bins arc

noticeably smaller than the range for the corresporiding squark masses above 120 G d ' .

This is the result of two effects. First. the PT riit dorriiriates the diciency at the lowrst

m a s bins. Second. a t lower squark niitsscs. fcww topologies esist. as a consi.clurriw of

t h assurnption that the LSP is tlic < y . Hmcr. if .\lit;. wtiich is cleterniinecl t ~ y thr choicr

of the SL'SY parameters. is greatcr ttinri thi. squark ninss. t.heri thet phase spacr point

will only contribute to the efficieiirit~s a t q u a r k niiissvs ; h o w the riiass of the LSP.

Typical values of the efficiency for sclerting sqiiarks range from 4 35% at .Wq <

120 Gel- to - 50% at .LI4 > 120 Gt-i-. Thr triii.ss resolutioii for cascadr ~(lliiiïk cicr*+-s

with a neutrino in the final state is roiighly constant at 12 Gel' as a function of ttir

squark m a s (figure T.lS(b)).

There are 33 events rcmaining after iill cuts. in agreement with the SM ~spectat ior i

- from .\lC background as summarized iri table 1.3. Figure 7.19 shows the iiivariant mass

spectrum of the selected events conipared ivith ttitb MC prediction. As for SC-like ewnts .

there is no evidence of a squark signal. and the data is well describeci bu the SM.

Page 132: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 7.18: (a) The eficiencies urid ( 6 ) resolutioil.~ / o r . (:uscride squnrk i iemjs into o . j r ts

us a function of the q u a r k muss. The range of efi:8iciencw.s und rtxol~~tzoris ourr the yeri-

erated SUSY phase space points at each muss is sho,wrc. The mass points helnu~ 140 C d *

are domznated b g the the PT cut.

Table 7.3: Summary of the number of events in the CC-iike data sample cornpared to

1 I Reconst riicted Channel 1 .Yah.$ i

expected background /rom CC DIS (.hiadne) und php ( H e m z g Resolved and Direct ET >

50 GeV).

;36 k 3 A

ujets 35

Page 133: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Mass (GeV)

Figure 7.19: The reconstructed rnass distribution for the v jets final nample. The points

wzth error bars are the data. T h e histograrn r s the total clrpected background (!VC+php).

The background histogram is nonnalired to the data furninosit~.

Page 134: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 8

Limit Setting Procedure

For an integrated luminosity. C. t h r cspwtcd differeiitial niass distribution in an;ilysis

channel c is the surn of the background. b,(.\I). iirid t h sigrial. s,(.\I: O). whcrt. t h r;ittl

of signal events is proportional to the sqiiark prodiictioti cross section. 0. The prohahilit-

density in the rnass for t tic events in a niass iriterval [.\ I l ' , . .llhIqh] is given by

The functions h,(.\l) w r e tletrrniirird ty fi ts to t h . iwkgroiiiid Ilontc. Carlo. Tho

.%iilh total expected background for channel r* is defincd as B, = J\I,ou, b,(.\l)dM. The mass

distribution for the signal. s,(.\l: a) . is taken to be a Gaussian with a root meari sqiiarp

( R M ) width which has been determined by fits to the signal Slonte Carlo sarnples. The

rnass window [ M l . . -Crhrgh] is taken to be a f 3 0 wiridow centered on JI4. The nornial-

.'fhi9h ization of s,(m: o) is given by CE,^ = J.lC\Lou, . s r ( JI: 0)dSL. n-ticre F , is the probatdit?-

that a squark ivill be accepted in channel c with .\4, < JI < .\Ihigh. It is cornputeci

as a sum over the decay modes. d, of the product of the branching ratio. &. and the

cross efficiency. cf. which is the probability for a squark which decays via mode d to be

Page 135: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

accepted in channel c: - v d t E ~ y s

C, = C J~c:. d= 1

The likelihood to observe Kbs events in charinel c in the mass interval [.\ll,. .\.fhLgh] is

written as a product of the Poisson probability to observe .yb" events and the probability

densities for the reconstructed masses ,El, of each observed event:

The likelihood for al1 channels is then givcii by

The 95% confidence limit (CL) on the cross swtioii is obtained hy solvirig

The upper lirnit on the coupling A' is calrulatod usirig the relation

where o,vrv,l is the cross section calculateci using the riiirrow widt h approsimation (NU )

and hl,,,, is the coiipling used in the c~lculation of thr o .~~ i . . -~ . Siricr the hrancfiing ratios

are functions of the coupling A'. the Likelihoods arc calculateci iterativcly givcn an initial

guess for S.

8.1 Inclusion of systematic uncert aint ies

A systematic error can in incorporated in the limit procedure by convoluting a Gaussian

with the Poisson probability and solving equation 8.5:

Page 136: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

where p, = Leo, = B, n = XobS From equation 8.3 and r; is the fractional systetnatic

uncertainty. The double integration over *y and p, (or alteriiatively o) is achieved by

performing a single integration dong the contour which ~r~c~i r r i izes the ititegrand in 8.1

witli respect to y for a given p,[86]. The valiies of ; for tvhich this is triie at a giwn 11,

are the roots of the following equation:

8.2 Interpolation and limits in the SUSY phase space

Limits on 0 and A' are derived at points «il a grid of t h SCSY paramtwrs ( p . .\L) w t i ~ r r

-200 < p < 200 ( in 20 Ge\' intervals) and SO c .\& < 310 ( i r i 10 Gt.1- int~rvals). .At

each grid point the limits are clerived as a [iinctioti of .\Id frorn 100 to 250 G d * in 1 Gc4'

intervals.

The masses of the gauginos are cletcrniirird by t hc SCSY parariietcrs. Monte Carlo

data sets are generated as descrihwi in srctiori 6.2 aritl not at each poitit of thcl l i r r i i t

grici. Eiglit phase space points were srle(:tcd siicti t h t thry mronipass thc niiLss apiicc

of the My:. .\f,o and Mt=. The conjecture is rtiacle that the rfficiericies. c,. and the cross ? 1

efficiencies. É:. depend on the masses of the gauginos. Hence in order to determine the

efficiencies at a phase space point which h a not been generatetl. a weighted linear comhi-

nation of the generated point efficiencies is calculateci. The weights. tc,. are proportional

to the square of the difference in gaugino niasses bctrvecri tlir desired and generated

SLSY phase space point such that

The weights are oormalized such that 12;' ,i = 1. Hence. the probability for a squark

Page 137: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

which decays via mode d to be accepted in channel c given in 8.2 is non written

.L;lccays + C l p d p

(S. IO)

8.3 S ystemat ic Uncert aint ies

The systernatic uncertainty considered in the derivation of the upper limit for & sqiiark

production is estimated to be 13%. Systematic errors c m affect factors in cquation 5.3

such as the luminosity. the background distribution or scl~ctiori rfficiency. T h r following

sources of systernatic error werc cunsirlercid:

0 Luminosity measurement

The systematic uncertainty on the p - p data saniple collectixl during ttw years 1994-

1997 is estimated to be 1.6%[87].

O Electron/Positron finding

An estimate of the em findirig cfficieti(ry is rstracted by rotriparing em witli thr

S INISTRA neural net elect romagnrt ic cliister fincler. The variation betwceri the tiw

e' finders is found to be less than .j%,[,I;O].

Calorimeter Energy scale

According to stiidies(88. 89. 901. the absoiilte energy scalc of the calorimeter is

unknoan to 13%. This translates into a riiliximuni change of 1.7% in the select ion

efficiency and is included in figure 8. 1.

0 Vertex

The vertex requirement was varied by I l 5 cm. which changed the squark selection

efficiency by 2% and is included in figure 8.1.

Page 138: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

0 SeIection cuts

.Al1 cuts based on CAL eriergies. E.. ET. f i . jet ET. 5 and invariant m u s were

varied by the uncertainty of energ. scale (3%) indiviclually. The effect was at niost.

2% in the signal selection. See figure 8.1.

0 Interpolation

The interpolation of the limits in the SCSY phase spacc clescribetl in section 8.2 was

evaluüted by using another weight. Instcaci of t h e wcight ansatz usecl in eqiiatiori

8.9 the following was used:

The effect ori the liniit was at rtiost 1%.

0 Background estimation

The effect of an error on the hackgroiirid t>stitiiirt,e uscd iri the iipper limit is rliffic:tilt

to assess as it depends also oii the niiitiber o f ot)svrvetl tivritits. A siriiplt~ estiriiiitt.

can he obtained by the differcnce bettvcen two SIC background samples. Tlic

background MC SIEPS ivas iised as an alternatiw SIC. Tlie ~ffect \vas determinrd

to be 6.4%.

0 Theoretical uncertainty.

The parton density uncertainty should be takeri into account. Ckianging the par-

ton density function (PDF) used in the cross section calculation resulted in an

uncertainty of 9.4%.

Table 8.1 sunimarizes the sources of systematic uncertainty taken into account. The

various systematic errors are assumed EO be uncorrelated and are added in quadrature

to give the total systeniatic error of 13%.

Page 139: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola
Page 140: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Lumiriosity

e' findirig

CAL energ? sralr

Vert es

Selectiori Ciits

Interpolation

Background estirriatiori

PDF

Table 8.1: Sumnrun~ of syst emattc iir~crrturntces corisidernl.

1 TOTAL 1 3

Page 141: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 9

Results

The search for PC, supersymrnetric particles was pdorriiecl iising the 47.7 of r'p

data collected between 1994 to 1997 at a cc3ntrtb of riiilss ciiergy of 300 Ge\'. Sqiiarks

produced in e l quark fusion. via the 61, coiipling A;, , . cari (lrcay to r-quark o r gaugino-

quark via a supersymmetric gauge clemy. rpsulting in a final state with niiiltiplc j m arid

a lepton that could be a positron. electrori or neutrino.

There !vas agreement between t hc tiat a and t hr csptx: t at ion frorn the SM backgro tinds

consiciered in al1 the reconst rticted cliarin~ls. Thtl signal i4Ficieticy for any topology o r

SLSY phase space point ranges froni - 30% - 60%. In the absencc of any signal. limits

are set on the & coupling A;,, as a function of the sqiiark mass a ~ i d the SUSY paranietcrs

(AI?. p. tan 3). .A systematic error of 13% aas incluclcd in the determination of the liniit

as outlined in section 8.1.

Given a squark mass one can deriw an upper limit on the coupling Xij,. To obtain these

limits one combines the different squark decay channels. Therefore. it is necessa- to

Page 142: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

know the branching ratios for each channel. These depend on the mass of the sqiiark.

the coupling Xi,, and also on the SCSY parameters. Recall that the phenonienology

depends on the nature of the LSP. The possible channels are the same whether the LSP

is 7 dorninated or 2 dorninated. but the branching ratios are nevertheless different.

The search was performed at points on a gricl in (-14. p. .&) in the region 80 5 JI2 5

310 GeC'. -200 5 p 5 200 Ge\* and 100 5 .Il4 < 230 Ge\*. The gricl spacings w r r

10 GeV. 20 GeV and 1 Ge\- for A&. p and .\fi respcctively. Two values of tan .i wcre

considered. 2 and 10. Limits aere orily calculated at points where thc LSP is tlic <y w i t h

a mass exceeding 40 GeV.

The erpected limits follow the actiial 95% CL lir~iits as secci in figure 9.1. whicli is

another indication that there is rio significarit t3scrss of data over the SIC expcctatioii in

ttic range of masses concerneci.

The limits do not var- çreatly over the SCSY pli;~sil space. Huw~ver. tlir liniits arr

somewhat better when the is lieavier (figiirc 9.2) . Recirll from figiirr 3.3 tha t .Uiy

scales mith JI2.

One other point to note is that t h r branching ratio to eT jets is larger tlian to e- j r r s

because the f; can only decay into an P - . Apperidis B shows the brarichirig ratios and

efficiency curves for various phase spact. points.

The limits a t large squark mass rend to converge to the same liniit as illiistrated hy

figure 9.3. This esplains that at large mus w~ are riot sensitive and set large iipper lirnirs

on A;,,. At large couplings. the cross section for eq + (i + eq. is not depindent on the

gaugino masses and hence the SCSY pliase space.

Xo strong variation in the limits with 16. p . and tan J = 2.10 aas observed. The

95% CL upper limits on the coupling A;,, ranged froni 0.01 for squark masses of 100 Ge\*

to about 0.8 for squark masses of 280 Gel-. If we select a X i J I = 0.3 then we can rule

out squarks below a mass of 251 - 262 GeV depending on position in the SCSY phase

Page 143: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

J Ili -

Figure 9.1: A;,, limits as a /unclion O/ .LIq /or f i e d -14 = 290 GeV. I L = -200.200 Gei'

and tan 3 = 2 . The thick cunie represents the uctual limit and the thin curue indzcatrs

the ezpected limit.

Page 144: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 9.2: The 95% CL upper lirrrzt on A;, , rn thrl SCSY pornmeler (.\-. I L 1 s p u w for

.\lj = 200 Ge\'. (a ) tan .j = 2. ( b ) tan 3 = 10. The scule on the range indzccttr.~ thr ridur

of A',,, . Recall that the mass f~incwa.ses with ~rrcrrri.srrig .\-. .4 lirnxt w(ts not .wt rn the

central white region. il region o / p l ~ u s e spaw whfrre thr LSP is the lightest chargino.

space (figure 9.3).

9.2 Ot her experiments

While o t her HEP erperiments Iiaw performed S CSY particle searclies. HERA reniains

one of the rnost cornpetitive n i th respect to the A:,, & coupling.

Extensive 41SShI searches with R-paritu conservation have been performed iit HERA.

LEP and the Tevatron. al1 of which resultcd in the absense of a signal. R-ithin ZECS. a

search for selectron-squark production via the diagram given in figure 9.4 aas performed

at ZECS. That analysis excluded (rn; + m,#? < 77 GeV at 95% CL for mil = 40 Ge\'

Page 145: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Unconstrained MSSM

- , - . - Neutrinoless

Figure 9.3: 95% CL ezcfrisron upprr hrrt~ts orr tlw P, coupling as a ji~rictron of t he

squark mass. For each squark rnass. a scan O/ the SCTSY parumeter space (1b. p ) huas

been perfonned wzth the ma~inium (mrnzrnurrr) value O/ the coupiing lirnit represerited

by the upper (lower) curves. The solrd (dashed) line tndzcates the pliuse spuce scan

wzth tan 3 = 2 (10). .Usa piotted am the limits on A;, , !rom neutrinole.ss 33 decug

e q e n m e n t s und the lirnzts on A;,, /mm .Ltoniac Punty Violation experirnents. Regzons

aboue the curues are excluded.

Page 146: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 9.4: Dingrnrn for the ndection ~pmrk. production process (11 HER.4.

and large .\ISSII paranieter Ip( v;tliii~s[I)l]. H o w w r . tlicse rcstilrs. ils n-itli ariy d i v r

SISS'VI search wit h strict R-pari ty coristnat ion. do tiot apply to the rt?sults pr~senrrd in

this thesis.

Both ZECS[92] and H1[93] have perfornied lepton fiavour violation srerrhes. t J q ->

pq. rq. Tliese searches whose results cün be interpretrcl in terms of @, couplings A!,,, and

A\,, and limits are gerierally set. on the prodiict of t h two couplings. Tticse coiiplings

do not fa11 into the scope of topologirs coverctl iii tliis thesis.

The LEP experiments influenccd the consideratioti to set limits only rvliere the 31,? >

40 Ge\' due to their constraints on the SCSY parartictcr sprice in their gaiigino searchesi941.

The result obtained by this analysis is compared to the most stringent indirect limits

in figure 9.3. The production of a ü squark via a A;,, coupling is severel- constrainetl bu

the non-observation of neutrinoless double beta decay[95]. Atomic Pari ty Violat ion[OG]

(APV) experiments set limits on L: (as well as i!) but are only better than the ZECS

limits at the very high masses. Otherwise HERA provides the best limits on A;,,. where

Page 147: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

j = 2.3. The D0[97] and CDF[98] esperirnents at tlie Tevatron have performed searclies

for scalar leptoquarks which effectirely rule out ü', squark masses below 205 Gel ' as long

as the branching ratio 6; + eçq is greater than 50%. Since tliis P, branching ratio

can be quite small. these constraints become weaker as the branching ratio via direct

& decreases.

The only true cornpetitor for the ZEUS results corne frorn ttir other collider esperi-

ment at H E R L H l . The H 1 analysis[99] ha roiighly the samc sensitirity and rfficieiicy

as this analysis and hence their resiilts are comparable to those froni this analysis.

Al1 the searches discussed abow liave prover) to bo a Fiirther confirniat,ioti of th. SU.

Yet SCSY remains to be the favourrtl theory for ptiysics bcyorid the S5t by tlieorists. Thr

clifficulty in presenting limits from SCSY searclies is tliat SCSY lias a rniilticlini~risional

phasespace but results can only bt. prcwritd iri iit riiost three dimensions. Ttic rcsiilts

given in figure 9.3 show the tmo variables. A;,, irnti squark rnass. wliich HERA can sct

the most stringent limits.

Page 148: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Chapter 10

Conclusion

-1 search for R-parity violatirigsupersyriitiit~tric piirtic4t.s has been perforniecl iising 47.7 ph-'

of e - p data taken using the ZEUS (imvxor iit LIER;\ froni 1994 to 1997. So wiclciicc~

\vas discovered for squarks. which are procliict!tl via an & couplirig A',,,. decayiiig into

e jet. e jets or u jets. Cpper limits at 9.5% CL oii the coupling A;,, as a hinction of the

squark mass frorn 100 - 280 Gd' arr derivrcl. for points in the SCSY parairieter spwr

(JG. p. tan 3). This analysis constitutes the tirst sucli search for ZEUS.

The limits were found iiot to vary grwtly nwr tlir SLSY pararritlt,cr spacr im(l t g i c i t l l ~

range from 0.01 at a squark n i a s of 100 Ge\- to 0.8 at 280 Ge\'. At a fisctl squark niiLss

an iipper limit on the coupling strength can he es t rx t ed or conversely at a given coiipling

strength. one can exclude squark niasses below a certain limit. inferred froni figure 9.3.

For example. at a coupling strength on the orcler of the electromagnetic scale. A;,, = 0.3.

squarks below 254 GeV are excludeci over the entire SLSY paranieter space considerecl.

The invariant n i a s distributions in figures 7.12. 7.13 and 7.19 show ttiüt the SN

explains the specific high mass rnultijet topologies considered iri the contest of t his t hesis.

HERA has a unique ability to directly search for couplings L , Q , P ~ due to the lepton

and quark flavours in the initial state. In 1998 and 1999. H E U operated with e - rather

Page 149: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

than ef . The analysis here forms a template for the search to be made in this data

set. which opens up HERA's seiisitivity to d i sqiiark production. Moreover. the proton

beam energy was increased in 1998 to 920 Ge\*. corresponding to the larger centre of

mass energ-y of 318 GeV. Since the &, scparks are produced via the s-channel right iip

to the kinematicai Iimit. the new data set will i~icrec~se the i~iass reach of this search.

The HERA facility was being upgraded to increase Iiiminosity a t the tirne this thesis

was being written. With a five-fold increase in HERXs luminosity eupectcd for the post

lumi-upgracle of t hr niachine. the poterit ial for discowry tvill be miicli greatw.

Page 150: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Appendix A

CC-like Cleaning Cuts

A. 1 Calorimeter Timing cuts

The following timing cuts were applied t o hc cwisistcrit with ep collisions:

Page 151: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Xy is the number of PSITs which are uscd in the tinie measurement for the region .Y.

A.2 NC positron/electron criteria

The candidate DIS e' had to satisf!, the stürid;ird NC DIS e' criteria (100i rvith ari

energy greater then -I Ge\- and fi > 30 Ge\-. Otlirr ctits w r e as follows:

El*, < 5 Gel-

The candidate hacl to be t v d l isolateci. T l i ~ t!ricrgy not assigned to th<. t.lcc*troni;ig-

netic cluster within a cone of R = 0.8 in ( 1 1 . (1)-spacc ccntrcd irroiinci thr r.' haci t o

be Iess than 5 Gd*.

If found in the FChL a large elwtron E+r is rrquirecl.

15' < de < 16-1" + P;,/Ee > 0.25

If found within the CTD scceptaiice. a rriatching track (with a DCA of 8 (Sm) is

required with the momentuni as rneasuretl bu the CTD (Pck) to be consistent with

the energy measured by tlir CAL.

RChL candidates are required to have a minimum ET.

Page 152: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Appendix B

Branching Ratios and Signal

Efficiencies

The branctiing ratios and signal efh:ii!ticits for al1 ttw quark clecays rorisiclerecl. arp

presented here for a few representatiw ptiascb s p m l points. The hranching ratios ancl

efficiencics are plotted as a furictiori of t h quark n i a s aiid are evaiiiatetl at t he

limit for that squark mass and phase spacc point.

Page 153: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX B. BRANCHING RATIOS AND SIGNAL EFFICIENCIES

III 11, ---+ ---- 1 1 1 ) ~ ( M I I ~ M I ? i n ~ IIMI r n )

1 0 -

111

III

Figure B.l: Branching rutios r r s u function of squurk rntrss in Gr V.

Io r 111

:Y- .,f X . 2 ' " "CC

Figure B.?: Branchiny ratios as a function of squark mass in Ge C:

Page 154: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure 8.3: Brunching rutios o s a fmc t ion of squark rrcuss in Gr C'

-2 : lu .,FI. p q c c II)

II~) an

1 0

Ili

111

Figure B.4: Branchzng ratios as a Junction of squark mass in Ge V.

Page 155: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Figure B.5: Ef i c i enc ;~~ us u /unction O/ sqtrark mass in Gr? Ce.

Page 156: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX B. BRANCHING RATIOS AND SIGNAL EFFICIENCIES

-r c C! -. C' e- ; . . r C!-. . . Cm: -;:21

1 C F - - - - - .I--- "' 3 .l : c 1 ' r r r r O .: :

*: Io . -

r K 1 p.- ...

L r - - - - . -:. - -__ --- i - - . __-- LI I IMI 31i

w - - - 7 - - ' -

.I - 'W - -

II) 2 ' S C .J :

III ----a -- -+- - -- --.-----

I I

111 1

II) J

II)

Figure B.6: E ' c i e n c y as ( r junction u,f quark muss in Ge CF.

Page 157: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Appendix C

The ZEUS Collaboration

J . Breitweg, S. Chehnov. .II. Derrick. D. tirakauer. S. hlagill. B. Musgrave. A. Prllegririo.

J . Repond. R. Stanek. R. l'oshida

..lr-]onne National Laboratory. .4 rgonrrr. IL . ITS.4

b1.C.K. Mat tingly

.4ndre,ws University. Berrien Sprinqs. MI, I3.4

P. Antonioli. G. Bari. SI. Basile. L. Bellagamba. D. BoscheriniL. A. Bruni. G. Briirii.

G. Cara Romeo. L. Cifarelli'. F. Cinciolo. -4. Contin. hl. Corradi. S. De Püqualti.

P. Giusti. G. Iacobucci. G. Levi. A . Slargotti. T. Massam. R. Sania. F. Palmoilari.

-4. Pesci. G. Sartorelli. -4. Zichichi

University and INFN Boloynu. Bologna. Italg f

Page 158: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

C. hmelung3. A. Bornheim4. 1. Brock. K. Coboken". .J. Crittenden. R. DefFlierG. H. Hart-

mann, K. Heinloth7, E. Hilger. P. Irrgang. H.-P. .Mol>. .-\. Kappes8. U.F. Katz. R. Iierger.

E. Paul. .J. Rautenberg.

H. Schnurbusch. A. Stifutkin. J . Tancller. K.C. Voss. A. Weber. H. \Vieber

Phpikalisches Institut der lini.uersitat Bonn. Bonn. Germany

D.S. Bailey. O. Barret. N.H. Brook" B. F o s t d G.P. Heath. H.F. Heath. E. R ~ t l r i ~ u e s ~ ~ .

.J. Scott. R. J . Tapper

H. H. Wills Phgsics Laborutonj, Urriuersit,y (1 f Bristol. Bristol. U. K. "

hI. Capua. .\. 'vlastroberardino. SI. Schioppii. Ci. Siisiiino

Calabria Uniuersit2/. Ph?/iiics Dept-and LVFiV. Cownzti. Itulp f

H.Y. .Jeoung. .].Y. Kim. J.H. Lce. I.T. Lirii. K.J. LIit. '\[.Y. Pacl'

Chonnam National Uniuersit?j. Kiunnyju. Korm "

A. Caldwell. . Liu. S. Liu. B. '\lclla(lo. S. Pagariis. S. Sampson. W.B. Srhniitlkr.

F. Sciulli

Columbia University. Nevis Labs.. Irvingtorr on Hudson. IV. Y.. USA f1

.J. Chwastowski. .A. Eskreys. .I. Figiel. K. Klimck. 1';. Olkicwicz. K. Piotrzkowski? .\[.B. Przy-

bycieri. P. Stopa. L. Zawiejski

Inst. of Nuclear Physics. Craco,w. Poland

B. Bednarek. K. Jelen. D. Kisielelvska. A.'\I. Kowal. T. Kowalski. 'vl. Przybycien. E. Riilikowska-

Zarqbska. L. Suszycki. D. Szuba

Faculty of Physics and iVuclecrr Techniques. dcadern!j O/ iCIining and h ie ta lhry j . Cracow.

Poland J

Page 159: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

A. Kotanski

.Jagellonian Uniu., Dept. of Phgsics. Cracoru. Polcind

LAT. Bauerdick. L. Behrens. .1.11. Bietilein. K. Borras. Y. Chiochia. D. Dannheirn.

K. Desler. G. Drews. A. Fox-Slurphy. C. Fricke. F. Goebel. S. Goers. P. Gottlichcr.

R. Graciani. T. Haas. W. Hain. G.F. Hartner. D. Hüsell". K. Hebbel. S. Hillert. SI. Kaseriiannl'.

W. Koch". C. Kotz. H. Kowalski. H. Lalws. L. Liridemannl'. B. Liihr. R. Slirnkel.

J . Slartens. SI. SIartinez. SI. Slilitt:. SI. Sluritz. D. Sotz. S I C Pctrucci. -4. Polirii.

.II. Rohdei. A..-\. Savin. C. Schneekloth. F. Selorib. SI. Sicvers'? S. Stonjek. G. \Wf.

C. Wollmer. C. lbungman. W. Zeuner

Deutsches Elektronen-Synchrotron DESK H«mburg. Genriany

C. Coldewey. A. Lopez-Duran Viarii. A. . \ I t y i b r . S. S(:tilonsteclt. P. B. Srraiil)

DES Y Zeuthen. Zeuthe~i . G e m r w ~ ! ~

G. Barbagli. E. Gallo. A. Parenti. P. Ci . Pelkr

Uniuersit?, and INFN. Florence. i t ( r l ;y f

A. Barnberger. A. Benen. S. Coppola. S. Eisenliardt". P. Markun. H. Raacti. S. \\*GlHr

Fnkultat fiir Physik der Uniuersitüt Frtzburg i. Br.. Freiburg i. Br.. Germanjy '

P.J. Bussey. .\I. Bell. -4.T. Doyle. C. Glasniiinl'. S.\\*. Lee. -4. Liipi. S. SIa~tloniilcl.

G..J. McCance. D.H. S a o n .

L.E. Sinclair. 1.0. Skillicorn. R. Waugh

Dept. of Physics und ..lstronom y, h i u e r s i t y O/ Glasgow. Glasgow. li. K.

1. Bohnet. N. Gendner. C. Holm. A. Neyer-Larsen. H. Salehi. K. Wick

Hamburg University. 1. Institute of E q . Physics. Humburgo Germamg "

Page 160: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDEX C. THE ZEUS COLLABORATION 1-42

T. Carli. A. Garfagnini. 1. Gialaslg. L.K. Gla~lilin'~. D. KÇiraH . R. Klanner. E. Lohrmarin

Harnbvrg Llnive~ssity, II. Institute of Exp. Phgsics. Harnhurg. Germany

R. GonçaloLo, K.R. Long. D.B. hIiller. A D . Tapper. R. Rvalker

Imperia1 College London. High Energy JTuclear Physics Group. London. U.K. "

t-. blallik

University of Iowa. Phpics and Astrurrotny Dept.. IUWU City, USA

P. Cloth, D. Filges

Forschungszentn~m .]dich. Institut jiir Keniph!gs~L. .Jiilich. Gerrnuny

T. Ishii. SI. Kuze. K. Nagano. K. Tokiishiikii". S. Yuriada. Y . 'Ikniazaki

Institute o j Particle and N d e a r Stur1ie.s. KEK. Tsrrk~~bri . .lapan

S.H. Ahn. S.%. Lee. S.K. Park

Korea University. Seoul. Korea

H. Lim. I.H. Park. D. Son

Kyrngpook National Univeruit y. T u e p . K o n x "

F. Barreiro. G. Garcia. O. Gonzalez. L. Labarga. .1. clcl Peso. I. Redonclo'? ..I. Trrr6ri.

M. Vazquez

Univer. Autonoma Madrid. Depto de Fisica Tecincu. ikladnd. Spnzn ''

M. Barbi. F. Corriveau. D.S. Hanna. A. Ochs. S. Padhi. D G . Stairs. SI. LYiiig

iIlcGill University, Dept. of Physics. Moritréul. Québec. Canada ".

T . Tsurugai

Meiji Gakuin University. Faculty O/ General Edttcation. Yokohama. .lapan

Page 161: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORATION 143

-4. Antonov. V. B a s h k i r o ~ ~ ~ . .LI. Danilov. B.A. Dolgoshein. D. Gladkov. \'. Sosnovtsev.

S. Suchkov

Moscow Engineering Ph pics Institute. hiosco W . Russiu '

R.K. Dementiev. P.F. Ermolov. Eu.A. Golirbkov. 1.1. Katkov. L A . Khein. S.A. lio-

rot kova.

I.A. Korzhavina. V..4. Kuzmin. O.\u. Lukitii\. .-\.S. Proskuryakov. L.11. Shcheglova.

.LX. Solomin. N.N. Vlasov. S.A. Zotkin

Moscow State Universitg. Institute of Yuclear Phgsics. Moscoiu. Russia "

C. Bokel. 51. Botje. 5. Brümnier. .J. Erigelrri. S. Ckijpink. E. Koffcinan. P. K.;ooijnian.

S. Schagen. A. van Sighern. E. Tassi. H. Titlckc. S. Timing. .J..J. Wtliiiis. . J . \i)ssr~brld.

L. Wiggers. E. de Wolf

NIKHEF and Urriversit y of .-Imsterrluirr. .4 nisterdurrr, :Vdherlarid.s '

B. Bylsnia. L.S. Durkin. .J. Gilmorc. C.!L Girisburg. C.L. Kim. T.Y. Ling

Ohio Stnte Universitg. Physics Deprtnrcnt. Colurnbi~s. Ohio. CrS.4

S. Boogert. A.11. Cooper-Sarkar. R.C.E. Deveriish. J . GroBe-t<nettei2". T. htsi is l i i ta .

O. Ruske.

1I.R. Sutton. R. Walczak

Departnient O/ Physics. Unzversity O/ Oxford. Oxjurd U. K. O

A. Bertolin. R. Brugnera. R. Carlin. F. Da1 Corso. C. Dosselli. S. Dusini. S. Limentani.

11. Morandin. 11. Posocco. L. Stanco. R. Stroili. 11. Turcato. C. Voci

Dipartirnento d i Fisica dell' Uniuersztii criid INFN. Paduvu. Italy 1

Page 162: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORATION 144

L. ~ d a r n c z ~ k ~ ~ , L. I a n n ~ t t i ' ~ ? B.Y. Oh. J.R. Okrasinski. P.R.B. Saull? W.S. Toot hackerl.'i.

J . J . Whitmore

Pennsyluania State University, Dept. of Physics. Uniuersity Park. PA, USA

Y . Iga

Polytechnic University. Sagarniharu. .lapan

G. D'Agostini. G. Marini. .A. Nigro

Dipartimentu ùi Fisica. Uniu. 'Lu Supienzu' ond IiVFiV. Rome. [tnly 1

C. Cormack. J.C. Hart. S.A. !dcCtibbin. T.P. Shah

Rutherford Appleton Laboratoq. Chilton. Dzdcot. &On. II. K. "

D. Eppmon . C. Heuscti. H.F.-\\.. Sidroziriski. -4. Sridm. R. \\'ichiriann. D.C. C\'illiirrris

Unioe~sztg of Calzjornia. Santa Cm-. CA. W.4

5 . Pave1

Fachbereich Phgsik der Lini~ue~.sitüt-Ge~su7nt~~0c~t.~~:i~~1~1~ Siegen. Gsrmuny '

H. . - \brarnowic~~~ . S. Daganz8. S. Kaiianov2*. .A. Krrisel. A . Levf'"

Rqrnond und Beverly Sackler Facalt;~/ of Emçt Sçicnces. School o j Pl~jszcs. TeL.4 I,W

Uniuersity. Tel-rlviv. Isruel '

T. Abe. T. Fusayasu. K. Cmemori. T. 'i'arnashita

Department o j Phpsics. Untversity of Tokyo. Tukgo. .lupan

R. Hamatsu. T. Hirose. 51. inuzuka. S. Kitarnura? TT. Xishimura

Tokyo Metropolztan Uniuerssit y. Dept. o j Phl/sic.s. Tokyo. .lapan

Page 163: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORATION

hl. ArneodoJ0? Y. Cartiglia. R. Cirio. SI. Costa. 11.1. Ferrero. S. hlaselli. Y. llonaco.

C. Peroni. hl. Ruspa. R. Sacchi. A. Solario. A. Staiano

Università. di Torino. Dipartinrento di Fiszca Sperirnentale and INFiV. Tonno. Itulg f

D.C. Bailey C.-P. Fagerstroem. R. Giilea. T. Koop. G.U. Levmari. .J.F. Martin. A. Ilirea.

R.S. Orr. S. Polenz. A. Sabetfakhri, D. Sinimons

University of Toronto. Dept. of Physics. Toronto. Ont.. Canada *

. J . X Butterworth. C.D. Catterall. L E . Hqcs . E.A. Heaphy. T.K. .Jones. .].B. Laiie.

B..]. West

u'niversity Colleye Londorr. Ph?~~sics und .~ .~1ror~orr~j Depl . . Londur~. l:.h'. "

.J. Ciborowski. R. Ciesielski. G. Grzclak. R..J. Xowak. .T.U. Pawlak. R. Pawlak. B. Srrial-

ska.

T. Tymieniecka. ;\.K. M-roblewski. .I.A. Zakrzewski. A.F. Zarriccki

CVarsaw Unzversity. Institute of Eqenrnerr td Ph!j.slc.s. CVursaw. Polrind

M. Adamus. T. Gada-j

Institute for iVuclear Studies. LVursu~w. Pulard

O. Deppe. Y. Eisenberg. D. Hochrnan. L. I<arslion2'

Mieizrnann Institute. Depurtnient of Pmtzcle Plr!ysics. Rehovot. Israel '

K.F. Badgett. D. Chapin. R. Cross. C. Foiidas. S. Nattingly. D.D. Reeder. W H . Smith.

A. Vaiciulis3'. T. \VilcIschek. 'il. LVoclarczyk

University of Wisconsin. Dept. of Physics. Maifison. LW. USA

A. Deshpande. S. Dhawan. V.W. Hughes

Yale Lrniuersity, Department of Phgsics. iVe,~u Haven. CT. USA *

Page 164: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORATION 146

S. Bhadra. C. Catterall. J.E. Cole, W.R. Frisken. R. Hall-Wilton. hl. Eihakzad. S. Menary

York University, Dept. of Physics. Toronto. Ont.. Canada a

l now visiting scientist at DESY

now at L'niv. of Salerno and INFX Sapoli. Italy

hoow at CERX

' now a t CalTech. CSA

" now at Sparkasse Bonn. Gerrnany

"oow a t Siemens ICN. Berlin. Gcrnianny

' ret ireci

'bsiipported by the GIF. contract 1-523- 13-7/97

"PARC Advanced fcllow

'O supported by the Portiiguese Foiintlatiori for Science and Technology

l 1 now a t Dongshin Cniversity. Xajii. i<orea

l 2 now at Massachiiset ts Instit ut^ o f Tditiology. Cattibriclge. II.\. CSA

l h o w at Fermilab. Batavia. EL. CS.4

la' cleceased

'" now at SAP A.G.. &lldorf. Gerriiariy

l6 now a t Netlife AG. Hamburg. Gerniany

l Ï now at Cniversity of Edinburgh. Edinburgh. C.K.

l8 supported by an EC fellowship iitimber ERBFSIBICT 972523

visitor of Cniv. of Crete. Greece. partially siipportrd by DAAD. Bonn - Iiz. .4/98/1676-4

" on leave from MSC. supported by the GIF. contract 1-0444-176.07/95

'' supported bu DAAD. Bonn - Iiz. ;\/98/12712

'* aalso a t University of Tokyo

23 supported by the Cornunidad Autonoma de Madrid

'%ow at Loma Linda Cniversity. Loma Linda. CA. CSA

Page 165: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORATION 147

" supported by the Feodor Lynen Program of the Alesander von Humboldt foundation

xi partly supported by Tel Aviv University

2i an Alexander von Humboldt Fellow at Cniversity of Hamburg

supported by a MINER\:\ Fellowship

'M present address: Tokyo 'iletropolitan University of Healt h Sciences. Tokyo 1 16-855 1.

.Japan

" now also at Cniversità del Piemonte Orientale. 1-28100 Xovara. Italy

" noiv at University of Rochester. Rochester. SI-. CS;\

Page 166: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

supported by the Yatural Sciences and Engineering Research Coiincil of

Canada (XSERC)

supported by the FCAR of Québec. Canada

supported by the German Federal Mnistry for Education and Scimce.

Research and Technologv (BS LBF). uncler cont ract nurnbers OfiTBN NP.

05ïFR19P. OXHH19P. OXHHLSP. O 5 l S I I 3

supported I>v the MINERVA Cesellschaft für Forschung GtnbH. the Gernian

Israeli Foundation. the Israel Science Foiinciation. the C.S.-israel Binational

Science Foundation. the Israel Mnistry of Sc-iencc arid the Benozyio Center

for High Energy Physics

supported by th^ Gernian-Isradi Foiiridat ion. t htl Israel Sciencr Foiindiitiori.

the C .S.-Israel Biriat iorial Scieriw Foii~daciori. ;met by t hc Israr4 Miriist.ry of

Science

supported by the Italian National institiitr for Suclear Physics ( I N F N )

supported by the .lapanese Slinistry uf Education. Science and Cuittire ( the

Monbusho) and i ts grants for Scierit ific Rcsearch

supported by t hc Koreari Slinist ry o f Edi iw iori arid Korea Scieric~ ancl Erigi-

neering Foundat ion

supported by the Setherlands Foundation for Research on SIatter (FOSI)

supported by the Polish State Conimittee for Scientific Research. grant No.

i 12/E-356/SPLB/DESk'/P03/DZ 3/99. G'LOIE-77/SPCB/DESY/P-031 DZ

1/99. 2P03B03216. 2P03BO.1616. 2P03B03517. and by the Gerrnan Federal

Ministry of Education and Science. Rcsearch and Technolog' (BSIBF)

Page 167: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

APPENDIX C. THE ZEUS COLLABORAT~ON

supported by the Polish State Comniittee for Scientific Research ( g a n t No.

'2P0380861-1 and 2PO3BO6116)

partially supported by the German Federal Mnistry for Education and Science.

Research and Technology ( BhIBF)

supported by the Fund for Fundamental Research of Russian Slinistry for

Science and Education and by the Gcrniaii Federal SIinistry for Education

and Science. Research and Teclinology ( BSIBF)

supported by the Spanish Mnistry of Editcrrtion ancl Science tlirough fiincls

provideci by CICYT

supported by the Part icle Physic.s ;itid Ast rorioniy Researcli Coiiric-il

supported by the US Departnient of Etiergy

Page 168: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Appendix D

Glossary

BAC : Backing Caloririit?ter.

BCAL : Barre1 Calorimeter.

BMUON : Barrel !duon chambers.

CAL : Calorimeter.

CC : Charged Current.

CTD : Central Tracking Detector.

DAQ : Data Acquisition System.

DESY : Deutsches Elektronen Synchrotron. t h t h Gernian national high energ? physics

laboraton located in Hamburg. Gerrriany.

DIS : Deep Inelastic Scattering.

DST : Data Summary Tape.

Page 169: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

EMC : Electromagnetic section of the CAL.

EVB : Event BuiIder.

FCAL : Forward Calorirneter.

FDET : The combination of the FTD and TRD.

FMUON : Forward Muon chanibers.

FTD : Fonvard Tracking Detector.

GFLT : Global First Level Trigger

GSLT : Global Second Level Trigger.

HAC : Hadronic section of the CAL

HERA : Hadron Elektron Ring Ariliigc.

LHC : Large Hadron Collidcr.

LSP : Lightest Supersymnwt ric Piirticitl.

LUMIE : Part of the luminosity irioriit or for riirasilring Elcct rom from t tic Bct tic-Heit lcr

process.

LUMIG : Pan of the luminosity monitor for nieasuring Gammas from the Bethe-Heitler

process.

-UPlonck: The Planck Scale. If distance scales become &on enough (of atornic dimensions

or smaller). the theory of quantum mechanics must be used. Therefore. as one

extrapolates back in time to the beginning of the Cniverse, eventually one would

reach a state of sufficient temperature and density that a fully quantum mechanical

Page 170: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

theory of gravitation would be required. This is called the Planck era. and the

corresponding scales of distarice. energ-. and timc are called the Planck scale.

MC : Monte Carlo.

MOZART : SIonte Carlo for ZELS Analusis. Reconstruction and Trigger.

MSSM : The Minimal Supersymrrictric estension to the Standard .\loclel of piirticlr

p hysics.

NC : Seutral Currerit.

NWA : Yarrow Width Approsirriatiun.

PDF : Parton Density Fiinctio~i.

PHYTIA : Monte Carlo simtilation iiiiploriicwtiiig a string mode1 for hatlronizatiori.

PMT : P hotornultiplier Tube.

QCD : Quantum Chromo-Dynaniics.

QFT : Quantum Field Theory.

RCAL : Rear Calorimeter.

RAMUON : Rear Uuon charnbers.

RTD : Rear Tracking Detector.

SM : Standard Model of particle physics.

SPYTHIA : Supersymmetric extension of PYTHIA simulating superqmmetric parti-

cles and t heir interactions.

Page 171: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

SUSY : Supersymmetry.

SUSYGEN : blonte Carlo simulation for SLSY interactions at e ie - and ep colliders.

TLT : Third Level Trigger.

TLTZGANA : The offline TLT sirnuiatiori.

TRD : Transit ion Radiation Detector.

TOE : Theory of Everything.

UCAL : Craniurn Calorinleter.

VCTRA K : CTD Track reconst riir t ion packiigt..

Page 172: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

Bibliography

(11 R. Galea. Exotic searches wit t~ t hi. z ~ u s drtector. .Vucl. Ph;rp.. B79: 162- l65. L999.

1'2) R. Galea. Searches b e p n d the stariclard riioclcl at hera. Proceedings to thi. Liike

Louise Winter Institiite. Febriiary '2000.

[3] A.T.Doyle et. al.. cditor. Procr:rding.s of the Ct'orkshop on Monte Carlo Genemtors

/or HERA Physics. 1998- 1999.

[-LI F . Abe et al. Evitience for top qiiark production in anti-p p collisions at \/; =

1.8 tev. Phys. Reu.. D50:2966.-3026. 1994.

[5] FERhIILAB. Tau neutrino cliscovery. Press Relcase. So prcprint y t availabl~..

.July 2000.

[6] L3 ALEPH. DELPHI and OPAL Collaboratioris. Searchcs for higgs

bosons:preliminary combined results iising lep data collected at eriergies iip t u

209 gev. Submitted to ICHEP'2000. Osaka. .lapan. . M y 17 - ;\ugust 2 2000.

[il The ATLAS collaboration. Detector and phvsics performance technical design

report. LHCC 99-14/lS.

[a] h i c h i Oyama. K2k (kek to karriiob) neutrino oscillation esperiment at kek-ps.

1998.

Page 173: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[9] C. Caso et al. Review of particle physics. Eur. Phys. J.. C3:l-794. 1998.

[IO] S . Glashow. iVucl. Phys.. 22579. 1961.

[ I l ] S. Weinberg. Phps. Rev. Lett.. 19: 1-64, 1967.

[12] A. Salam. Elemeniaq Particle Tlieoq: Rcl(~tivzstic Groups and ..Lnalgtictty. S'obrl

Symposium No. 8. ed. N. Svartliolrii (Mniclrist and Wiskeil. Stockholni.

[13] W. de Boer. Grand iinified tlicorirs and siipersymmctry in particlr pliysics aiitl

cosniology. h g . Part. :VILCL. Pli!p.. 33:'1O 1 -302. 1994.

[Id] .I.A. Bagger. edi tor. Supers?mmctrg. Suprrglavrtg and SuperCo1lider.s. 1997.

[l5] Stephen P. Martin. A supersyriiiiitwy pririit~r. 1997.

[lG] Serses Tata. \ \ h t is supersyrirrictry iirl<L tiow do we fincl it.? 1997

il;] .J.F. Gunion and H.E. Habcr. :Vucl. Ph!p.. BZ;?: 1. 1986.

[18] Manuel Drees and Stephen P. Slartin. Iriiplicatioris of siisy mode1 biiiiding. 1895.

[19] Luis E. Ibancz and Graham G. Ross. Discrete gauge symmetries and the origin of

baryon and lepton number corisrrvatiori iri supersyrnmetric versions of the standard

model. Nucl. Phys.. 83655-37. 1 XE.

[20] D. E. Groom et al. Review of particle physics. Ear. Phys. .J.. Cl;: 1. 2000.

[XI S. ;\id et al. A search for squarks of rp-violating susy at hem. 2. Phys.. C71:211-

226. 1996.

[22] J . Butterworth and H. Dreirier. R parity violation at hera. ivucl. Phys.. B397:3-3.1.

1993.

Page 174: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[23] W. Buchmuller, R. Ruckl. and D. Wyler. Leptoquarks in lepton quark collisions.

Phys. Lett., 8191:442. 1987.

[24] .A search for squarks of r-parity violating susy at hera. Contributed to 29th In-

ternational Conference on High-Eriergy Pliysics (ICHEP 98). Vancouwr. Canada.

23-29 Jul 1998.

[25] Wuji Liu. Search for resonances tlrcaying to etjet and limits on first gcneration

leptoquarks in e - p interactions at hcni. ZEUS-Note 00-018.

[26] Keit h A. Olive. Introduction t o siipcrsyriiriiotry: Ast rophysical and plic.n«rntwo-

logical constraiiits. 1999.

[27] Ernanuelle Perez. Recherche de P«rt icdes St~persymétriq~res dans I ' r q 6 n e n c r Hl.

PhD thesis. Ctnivcrsité Paris V I . 1996.

[?SI E. Perez. Estension of the siisyg~ri piickiigt) t o supersynirriet ry at. vp rolliclcn.

Prepared for LVorksliop or1 Slo~i t t~ Carlo Gcnerators for HERA Ptiysics (Plenary

Starting .Ileetirig). Hanibiirg. G(~r111;iriy. 27-30 Apr 1998.

[29] ZECS Collaboratiori. Status of t h t1etcv:tor: Status report 1993. Trchniciil rt!port.

DESY. 1993.

[30] B. Wiik and G. Toss. ;Inn. Reu. ivucl. Purt. Sei.. 32333. 1982.

(311 5. Harnew et. al. Xucl. Instrunr. L\Ieth«tfss. ..-\279:290. 1989.

[32] B. Foster et. al. Nucl. P h p . (Pr-t-)c. Suppl.). 32181. 1993.

[33] B. Foster et. al. Nucl. Instrum. Methods. .4338:254. 1994.

[34] F. Sauli. Principles of operation of multiwire proportional and drift chambers.

CERN 77-09, 1977.

Page 175: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[35] R. Fernow. Introduction to Experirnentul Particle Phgsics. Cambridge Lniversitv

Press, Xew York.

[36] .J . Breitweg et al. Measurernent of high-q' chargebcurrent e-p tleep inelastic scat-

tering cross sections at hera. EUT. Ph?js. I.. C H A l l . '2000.

[37] Paul de .long. The iVeasurerrrrint oJ the Hm.iroriic Eriergg Flow mrl .Jet Production

iuith the ZEUS Calorimeter in Deep Irdostic Scutteritrg Euents ut HER.4. PhD

t hesis. University of .\msterdam. 1993.

[35] hl. Derrick et. al. iVtrcl. Irist. Methurls. .-\309:77. 1 991.

[39] A. Bernstein r t . al. Xuel. Irist. .l!rtliorl.s. ;\336:294. 1994.

[dl] H. Abramowicz et al. Iriterca1it)r;itioii of t lw mis high resoliitioti arid backing

calorimeters. ~ V U C ~ . Instrunl. :Cl&. A3 13: 126-134. 199'1.

[-l'LI G. Xbbiendi et al. Ttie mus harrol and rmr niiiori detector. i V i d I n s t n ~ m . :Cl~th..

.I333:34f2-%4. 1993.

[43] H. Bethe and W. Heitler. Proc. Rog. Soc.. A 1-683. 1934.

[44] .LI. Derrick et. al. 2'. Phys.. C63:391. 1994.

[45] G. Hartner. Lctrak briefing: Progroni and niath. ZECS-Sote 98-0.58.

[46] Frédéric Bénard et al. The 1995 tlt filter software. ZECS-Note 95-164.

[ D. Bandyopadhya';. hlutrig: h third level trigger muon finder. ZEUS-Sote 93-013.

[48] G. Abbiendi et. al. ZECÇ-Note 93-120.

Page 176: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[Ag] R.J. Teuscher. C h a m and C h a n - S t r a n g e Hadron Production i n ep Collisions ut

HERA as probes of Confinement. PhD thesis. Lniversity of Toronto. 1997.

[jl] R. Sinkus. A novel üpproacli to crror fiirictiori niininiization for feecl forward rieural

networks. Nucl. Instr. und Meth.. A361:190-296. 1995.

[ S I R. Sinkus and T. Voss. Particlc ideritificatiori with neural networks iising a rota-

t ional invariant momentiim rcprcsrntat ion. :Vucl. Instr. and Meth.. A39 1 :360-?68.

1997.

4 L. Sinclair. Hard Diflructiue Scuttenng tri Pl~otoproduction ot HER.4. PIiD t licsis.

McGill University. 1995.

[55] ACP Group. Brarich bus specifi(:iltioris. FER..\IIL.-\B (1987).

[56[ A FD D I based processor furni for the ZEUS Thtrd Leuel Tnyger. 1997

[SI R. Galea and A. Slirea. Zeus triggrr parailel session. ZEUS Collaboration l l r ~ t i n g

in Toronto. .June 2000.

[58j W. Buchmuller and G. Ingelrtiari. editors. Proceedings of the work.shop o n the

phpics ut HER.4. 1991.

[59] L. Amaldi. editor. Procsedinp of the s tud?~~ of an e p facility jor Europe. 1979.

1601 J . Biltzinger. Craniurn calorinleter rioise of 1994 data. ZEL'S-Sote 95-072.

1611 S. M. Wang. ZEUS-Note 96-121.

(621 -4. Savin. ZECS-Note 98-007.

Page 177: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[63] C. Catterall and F. Pelucchi. Cornparison of ctd and calorimeter riieasurernent of

the dis positron angle in high q" events. ZECS-Note 97-056.

[64] Ali Sabetfakhri. A Search /or Electron und iveutrino Cornpositeness in e p Collisions

ut HERA. PhD thesis. University of Tororito. 2000.

[65] .I. Labs. Calcorr. ZELS Pliantorri Iibrary ( 1996).

[66] Kunihiro Xagano. Meusurement of Clrarged-Current e i p Deep Irielastic Scattering

Cross Sections ut fi = 300 Ge\-. PIiD tliesis. University of Tokyo. 1999.

1671 Gennady !VI. Briskin. Diflructr L J ~ D w s o c r d iorr rri ep Deep Inelastzc Scnt t rnng . PIiD

thesis. Tel Avir Ciiivrrsity. 1998.

[6S] .J. Grosse-Knetter. Encrgy corrt!ctiori for isl;iritls. ZECS-Note 97-039.

[69] J. Grosse-Knetter. Corrections for tlir haclroiiic final state. ZEUS-Notr 98-03 1.

[ ;O] .A. Lopez-Duran Viani and S. Sr4ilcnstrrlt. Elvcmwn finder ~fficiencics and iniptiri-

tics: -4 cornparison bctween sinist ra95. c~rt and eninet. ZEUS- Yotc 99-077.

[ i l] S.D. Ellis and D.E. Soper. Siiccessivr cotnbination jetalgorithm for hadron colli-

sions. Phgs. Reu. D.. 48(7):3160.

[72] Yu. L. Dokshitzcr et. al. Bettcr jet cliistering algorithms. Cavendish-HEP-97/06.

[T3] .A. Iiwiatkowski. H. Spiesberger. and H. J . Ilohring. Heracles: An event generator

for e p interactions at hera rrirrgirs iricliiding radiative processes: Version 1.0.

Comp. Phys. Conrrnun.. 69: 135-172. 1999.

[74] K. Charchula. G. A. Schuler. and H. Spiesberger. Cornbined qed and qcd radiative

effects in deep inelastic lepton - proton scattering: The monte car10 generator

djangoô. Comput. Phys. Commun.. 1-402. 1994.

Page 178: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[75] Leif Lonnblad. Ariadne version 4: A program for simulation of qcd cascades im-

plementing the color dipole model. C o m p u t . Phys. Commun.. i l : 15. 1992.

[76] H. L. Lai et al. Improved parton distributions from global analysis of rpcent deep

inelastic scattering and inclusive jet data. Phgs. Rev.. D55:12SO-1296. 1997.

[TT] G. Marchesini et al. Herwig: A riiontc ciirlo cvent gcnerator for simulating hadron

ernission reactions with interfering gluoris. version .5. l - april 199 1. Cornput. Ptqs.

Commun.. 67:465-508. 1992.

[78] 3. Ghodbane et. al. Siisygcii Z.0/0.6: -4 monte cürlo went gtm-

erator for mssm sparticlr prodiict i o i i For C - P - . L ancl r p c.ollidrrs.

http://Iyoirifo.inZp3.fr/susygen/siisygr~ri3.litml.

[79] Torbjorn Sjostrarid. Higli-entlrg ptiysic:~ wrn t gcneratioii wit h PYTHI.4 5.7 iind

JETSET 7.4. Comput . Phys. Cotntrr uir.. Y 2:T-l - 90. 1994.

[80] X.T.Doyle et. al.. editor. Procrrdm!js Ihr CVorkshop on Monte Cnrlo Genrirutors

j07' HER.4 Physics. 1998- l%B.

[81] R. Brun et al. Gwnt 3.13. CERS DD/EE/S-L-1 (198:).

[82] Els de Wolf (cditor) et al. Zgana: Zriis triggw sinidation library.

[53] J. Breitweg et. al. Searcli for rrsonances dec-ing to e- - je t in e - p interactions

a t hera. European Phpical .Jourrial. C16:233-1264. 2000.

[84] .J. Hart and the CTD group. p r i u t e coiiiniuiiication.

[S5] ZEUS Collaboration. http://wlvlv-zeiis.clt.syde/iarah/phantom/phantorn.html.

[86] D. Acosta et. al. A search for escit.ed fermions in eP collisions. ZEUS-Note 96-110.

Page 179: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[87] S. Schlenstedt and the L CM I group. ht tp://www-zeus.desy.de/ph~s/lumi/.

[88] B. Mellado A. Caldwell. W. Liu and B. Straiib. Bcal electron studies-part i:mc and

test beam energy studies. ZECS-Tore 98-00?.

[89] W. Liu A. Caldwell and B. Straub. Electron studies-part ii:energy scale calibretion.

ZELS-Note 98-015.

[go] A. Meyer H.J. Grabosch and S. Schleristctlt. s,, clcterrriiiiation and elrctron mierg?

correction wit h the presanipier. ZECS-Sottl 98-045.

[Sl] J . Breitweg et al. Search for st!lcctrori ; i i d squarli production iii e+ p collisions ar

hera. Phqs. Lett.. BA3-M 14-930. 1998.

(921 SI. Derrick et al. Search for lepton Hiivor violiitiori in e p collisions at 300-gev centPr

of mass energy. 2. Php. . C73:613 - 6%. 1997.

1931 C. Adloff et al. A search for lq~toqiiarli t~osoris arirl lrpton Ravor vi rht ion 111 t.s p

collisions at hera. EUT. Phj s . -1.. C l l : - K 411. 1999.

[94] The ALEPH Collaboration. Seürch for charginos ancl neutraiinos i r i ~ + c collisioris

at centre-of-mass energies near 183 gev and ronstraints on tlic mssni parameter

space. European Ph?~szcul o . C 1 1: 193 - "16. 1999.

[95] M. Hirsch. H. Y. Klapdor-Klcirigrot ~ I ~ L I I S . ancl S. G. Kovalenko. Sew coiist rairits on

r parity broken supersynimetry frorn ricutririoless double beta decay. Phys. Rerv.

Lett.. 15:17. 1995.

[96] Herbi Dreiner. An introduction to esplicit r-parity violation. 1997.

[97] B. Abbott et al. Search for first generatioo scalar leptoquark pairs in p anti-p

collisions at fi = 1.8 tev. Phys. Rev. Lett.. SO:2051-2056. 1998.

Page 180: A SEXRCH FOR R-PARITY VIOLX~INC; AT HERA …...I hwe to especially niention my house mates, Dr. Salvatore DePasquale. Dr. Stefano ':Vostro Huomo' Dusini. Dr. Sicola 'Cippolone' Coppola

[98] F. Abe et al. Search for first generation leptoquark pair production in p anti-p

collisions fi = 1 .S tev. Phys. Rev. Lett.. Î9:132i. 1997.

[99] H l Collaboration. .-\ search for sqiiarks of r-parity violating susy at hera. Subniittcd

to ICHEP'2000. Osaka. Japan. .Jiily 27 - Aiigiist 2 2000.

[100] -1. Breitweg et. al. Euro. Phys. J.. CW7. 427.