airfoil design methods

Upload: jagath-chandra

Post on 21-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Airfoil Design Methods

    1/5

    2/12/2014 Airfoil Design Methods

    http://www.desktop.aero/appliedaero/airfoils2/airfoildesign.html

    Applied

    Aerodynamics:

    A Digital Textbook

    0. Preface0.1 Detailed Table of

    Contents

    0.2 Instructions

    1. Introduction1.1 Historical Notes

    1.1.1 Early Attempts

    1.1.2 Lilienthal

    1.2 References and Related

    Sites

    2. FluidFundamentals2.1 Origin of Forces

    2.1.1 Press ure Forces

    2.1.2 Shear Forces

    2.2 Dimensionless Groups

    2.2.1 Dimensionless Force

    Coefficients

    2.2.2 Reynolds Number

    2.2.3 Mach Number

    2.3 Conservation Laws

    2.4 Approximation

    Concepts

    2.5 Field Equations for Fluid

    Flow

    2.5.1Navier-Stokes

    2.5.1.1Navier-Stokes

    Derivation

    2.5.2 Reynolds Averaged

    Navier-Stokes

    2.5.3 Euler

    2.5.4 Full Potential

    2.5.4.1 Full Potential

    Derivation

    2.5.5 Transonic Small

    Disturbance

    2.5.5.1 Small DisturbanceDerivation

    2.5.6 Prandtl-Glauert

    2.5.7 Acoustic

    2.5.8 Laplace

    2.6 Relating Pressure and

    Velocity

    2.6.1 Bernoulli Derivation

    2.7 References

    3. Solution Methods3.1 Theory and Experiment

    Airfoil Design Methods

    The process of airfoil design proceeds from a knowledge of

    the boundary layer properties and the relation betweengeometry and pressure distribution. The goal of an airfoil

    design varies. Some airfoils are designed to produce low

    drag (and may not be required to generate lift at all.) Some

    sections may need to produce low drag while producing a

    given amount of lift. In some cases, the drag doesn't really

    matter -- it is maximum lift that is important. The section may

    be required to achieve this performance with a constraint on

    thickness, or pitching moment, or off-design performance, or

    other unusual constraints. Some of these are discussed further

    in the section on historical examples.

    One approach to airfoil design is to use an airfoil that was

    already designed by someone who knew what he or she was

    doing. This "design by authority" works well when the goals

    of a particular design problem happen to coincide with the

    goals of the original airfoil design. This is rarely the case,

    although sometimes existing airfoils are good enough. In these

    cases, airfoils may be chosen from catalogs such as Abbott

    and von Doenhoff's Theory of Wing Sections, Althaus' andWortmann's Stuttgarter Profilkatalog, Althaus' Low Reynolds

    Number Airfoil catalog, or Selig's "Airfoils at Low Speeds".

    The advantage to this approach is that there is test data

    available. No surprises, such as a unexpected early stall, are

    likely. On the other hand, available tools are now sufficiently

    refined that one can be reasonably sure that the predicted

    performance can be achieved. The use of "designer airfoils"

    specifically tailored to the needs of a given project is now

    very common. This section of the notes deals with the

    process of custom airfoil design.

    Methods for airfoil design can be classified into two

    categories: direct and inverse design.

    Direct Methods for Airfoil Design

    The direct airfoil design methods involve the specification of a

    This version of the

    textbook is

    provided without

    charge.

    Please support thiseffort by visiting our

    sponsors' links

    below.

    To purchase a

    complete copy

    without ads go to

    the Desktop

    Aeronautics' site.

    http://www.desktop.aero/appliedaero/solnmethods/solutionmethods.htmlhttp://www.desktop.aero/appliedaero/fundamentals/bernoulli.htmlhttp://www.desktop.aero/appliedaero/fundamentals/laplace.htmlhttp://www.desktop.aero/appliedaero/fundamentals/pg.htmlhttp://www.desktop.aero/appliedaero/fundamentals/tsd.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fpe2.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fpe2.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fpe.htmlhttp://www.desktop.aero/appliedaero/fundamentals/rans.htmlhttp://www.desktop.aero/appliedaero/fundamentals/ns.htmlhttp://www.desktop.aero/appliedaero/fundamentals/equations.htmlhttp://www.desktop.aero/appliedaero/fundamentals/equations.htmlhttp://www.desktop.aero/appliedaero/fundamentals/approximations.htmlhttp://www.desktop.aero/appliedaero/fundamentals/conservation.htmlhttp://www.desktop.aero/appliedaero/fundamentals/mach.htmlhttp://www.desktop.aero/appliedaero/fundamentals/reno.htmlhttp://www.desktop.aero/appliedaero/fundamentals/dimforces.htmlhttp://www.desktop.aero/appliedaero/fundamentals/dimensionlessgroups.htmlhttp://www.desktop.aero/appliedaero/fundamentals/shears.htmlhttp://www.desktop.aero/appliedaero/fundamentals/pressures.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fundamentals.htmlhttp://www.desktop.aero/appliedaero/intro/references1.htmlhttp://www.desktop.aero/appliedaero/intro/birdflight.htmlhttp://www.desktop.aero/appliedaero/intro/towerjumping.htmlhttp://www.desktop.aero/appliedaero/intro/intro.htmlhttp://www.desktop.aero/appliedaero/preface/instructions.htmlhttp://www.desktop.aero/appliedaero/preface/contents.htmlhttp://www.desktop.aero/appliedaero/preface/contents.htmlhttp://www.desktop.aero/appliedaero/preface/contents.htmlhttp://www.desktop.aero/appliedaero/preface/preface.htmlhttp://www.desktop.aero/appliedaero/preface/welcome.htmlhttp://www.desktop.aero/appliedaero/preface/welcome.htmlhttp://www.desktop.aero/appliedaero/preface/welcome.htmlhttp://www.desktop.aero/appliedaero/preface/welcome.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoilhistory.htmlhttp://desktop.aero/http://desktop.aero/http://desktop.aero/http://www.desktop.aero/appliedaero/airfoils1/airfoilhistory.htmlhttp://www.desktop.aero/appliedaero/solnmethods/experiment.htmlhttp://www.desktop.aero/appliedaero/solnmethods/solutionmethods.htmlhttp://www.desktop.aero/appliedaero/fundamentals/references2.htmlhttp://www.desktop.aero/appliedaero/fundamentals/derivebernoulli.htmlhttp://www.desktop.aero/appliedaero/fundamentals/bernoulli.htmlhttp://www.desktop.aero/appliedaero/fundamentals/laplace.htmlhttp://www.desktop.aero/appliedaero/fundamentals/acoustic.htmlhttp://www.desktop.aero/appliedaero/fundamentals/pg.htmlhttp://www.desktop.aero/appliedaero/fundamentals/tsd2.htmlhttp://www.desktop.aero/appliedaero/fundamentals/tsd.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fpe2.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fpe.htmlhttp://www.desktop.aero/appliedaero/fundamentals/euler.htmlhttp://www.desktop.aero/appliedaero/fundamentals/rans.htmlhttp://www.desktop.aero/appliedaero/fundamentals/nsderive.htmlhttp://www.desktop.aero/appliedaero/fundamentals/ns.htmlhttp://www.desktop.aero/appliedaero/fundamentals/equations.htmlhttp://www.desktop.aero/appliedaero/fundamentals/approximations.htmlhttp://www.desktop.aero/appliedaero/fundamentals/conservation.htmlhttp://www.desktop.aero/appliedaero/fundamentals/mach.htmlhttp://www.desktop.aero/appliedaero/fundamentals/reno.htmlhttp://www.desktop.aero/appliedaero/fundamentals/dimforces.htmlhttp://www.desktop.aero/appliedaero/fundamentals/dimensionlessgroups.htmlhttp://www.desktop.aero/appliedaero/fundamentals/shears.htmlhttp://www.desktop.aero/appliedaero/fundamentals/pressures.htmlhttp://www.desktop.aero/appliedaero/fundamentals/forces.htmlhttp://www.desktop.aero/appliedaero/fundamentals/fundamentals.htmlhttp://www.desktop.aero/appliedaero/intro/references1.htmlhttp://www.desktop.aero/appliedaero/intro/birdflight.htmlhttp://www.desktop.aero/appliedaero/intro/towerjumping.htmlhttp://www.desktop.aero/appliedaero/intro/history.htmlhttp://www.desktop.aero/appliedaero/intro/intro.htmlhttp://www.desktop.aero/appliedaero/preface/instructions.htmlhttp://www.desktop.aero/appliedaero/preface/contents.htmlhttp://www.desktop.aero/appliedaero/preface/preface.htmlhttp://www.desktop.aero/appliedaero/preface/welcome.html
  • 7/24/2019 Airfoil Design Methods

    2/5

    2/12/2014 Airfoil Design Methods

    http://www.desktop.aero/appliedaero/airfoils2/airfoildesign.html

    3.2 Analytic Methods

    3.3 CFD Overview

    3.4 Panel Methods

    3.4.1 Introduction

    3.4.2 Geometry

    3.4.3 AIC Matrix

    3.4.4 Boundary Conditions

    3.4.5 End Notes

    3.5Nonlinear CFD

    3.5.1 Finite DIfferences3.5.2 Finite Volume

    Methods

    3.6 References

    4. 2-D Potential Flow4.1 Basic Theory

    4.1.1 Uniform Flow

    4.1.2 Vortex Flow

    4.1.3 Doublet Flow

    4.2 Sources and Vortices

    4.2.1 Vortex Velocities

    4.2.2 Method of Images

    4.2.3 Cylinder Flows

    4.2.4 Circulation and Stokes

    Theorem

    4.2.5 Free Vortices

    4.3 Interactive Flow

    Computation

    4.4 References

    5. Airfoils, Part I5.1 Airfoil History

    5.2 Airfoil Geometry5.3 Airfoil Pressures

    5.4 Cp and Performance

    5.5 Geometry and Cp

    5.6 Interactive Airfoil

    Analysis

    5.7 Airfoil Analysis

    5.7.1 Conformal Mapping

    5.7.2 Thin Airfoil Theory

    5.7.2.1 Class ical Theory

    5.7.2.2 Basic Results

    5.7.2.3 Inverse Design

    5.7.2.4 Thickness Effects5.7.2.5 General Airfoil

    Analysis

    5.7.3 Surface Panel

    Methods

    5.7.3.1 Sample Source Code

    5.8 References

    6. 2-D Compressibility6.1 Basic Results from

    Theory

    section geometry and the calculation of pressures and

    performance. One evaluates the given shape and then

    modifies the shape to improve the performance.

    The two main subproblems in this type of method are

    1. the identification of the measure of performance

    2. the approach to changing the shape so that the

    performance is improved

    The simplest form of direct airfoil design involves starting with

    an assumed airfoil shape (such as a NACA airfoil),

    determining the characteristic of this section that is most

    problemsome, and fixing this problem. This process of fixing

    the most obvious problems with a given airfoil is repeated

    until there is no major problem with the section. The design of

    such airfoils, does not require a specific definition of a scalar

    objective function, but it does require some expertise toidentify the potential problems and often considerable

    expertise to fix them. Let's look at a simple (but real life!)

    example.

    A company is in the business of building rigid wing hang

    gliders and because of the low speed requirements, they

    decide to use a version of one of Bob Liebeck's very high lift

    airfoils. Here is the pressure distribution at a lift coefficient of

    1.4. Note that only a small amount of trailing edge separation

    is predicted. Actually, the airfoil works quite well, achieving aClmaxof almost 1.9 at a Reynolds number of one million.

    This glider was actually built and flown. It, in fact, won the

    1989 U.S. National Championships. But it had terrible high

    speed performance. At lower lift coefficients the wing

    seemed to fall out of the sky. The plot below shows the

    pressure distribution at a Clof 0.6. The pressure peak on the

    lower surface causes separation and severely limits the

    maximum speed. This is not too hard to fix.

    http://www.desktop.aero/appliedaero/compressibility/basiccompressibility.htmlhttp://www.desktop.aero/appliedaero/compressibility/compressibility.htmlhttp://www.desktop.aero/appliedaero/airfoils1/references5.htmlhttp://www.desktop.aero/appliedaero/airfoils1/lvfoil.htmlhttp://www.desktop.aero/appliedaero/airfoils1/surfacepanels.htmlhttp://www.desktop.aero/appliedaero/airfoils1/thickairfoiltheory.htmlhttp://www.desktop.aero/appliedaero/airfoils1/tatthickness.htmlhttp://www.desktop.aero/appliedaero/airfoils1/tatinverse.htmlhttp://www.desktop.aero/appliedaero/airfoils1/tatresults.htmlhttp://www.desktop.aero/appliedaero/airfoils1/tatderivation.htmlhttp://www.desktop.aero/appliedaero/airfoils1/thinairfoils.htmlhttp://www.desktop.aero/appliedaero/airfoils1/conformalmapping.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoilanalysis.htmlhttp://www.desktop.aero/appliedaero/airfoils1/interactiveaf.htmlhttp://www.desktop.aero/appliedaero/airfoils1/geometryandcp.htmlhttp://www.desktop.aero/appliedaero/airfoils1/cpandperformance.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoilpressures.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoilgeometry.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoilhistory.htmlhttp://www.desktop.aero/appliedaero/airfoils1/airfoils1.htmlhttp://www.desktop.aero/appliedaero/potential/references4.htmlhttp://www.desktop.aero/appliedaero/potential/vstream.htmlhttp://www.desktop.aero/appliedaero/potential/freevortices.htmlhttp://www.desktop.aero/appliedaero/potential/stokes.htmlhttp://www.desktop.aero/appliedaero/potential/cylinders.htmlhttp://www.desktop.aero/appliedaero/potential/images.htmlhttp://www.desktop.aero/appliedaero/potential/vortexv.htmlhttp://www.desktop.aero/appliedaero/potential/sourcenvort.htmlhttp://www.desktop.aero/appliedaero/potential/potentialdoublet.htmlhttp://www.desktop.aero/appliedaero/potential/potentialvortex.htmlhttp://www.desktop.aero/appliedaero/potential/uniform.htmlhttp://www.desktop.aero/appliedaero/potential/potentialtheory.htmlhttp://www.desktop.aero/appliedaero/potential/potentialflow.htmlhttp://www.desktop.aero/appliedaero/solnmethods/references3.htmlhttp://www.desktop.aero/appliedaero/solnmethods/finitevolume.htmlhttp://www.desktop.aero/appliedaero/solnmethods/finitedifference.htmlhttp://www.desktop.aero/appliedaero/solnmethods/nonlinearmethods.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethodnotes.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethodbc.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethodaic.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethodgeom.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethodintro.htmlhttp://www.desktop.aero/appliedaero/solnmethods/panelmethods.htmlhttp://www.desktop.aero/appliedaero/solnmethods/cfdoverview.htmlhttp://www.desktop.aero/appliedaero/solnmethods/analyticresults.html
  • 7/24/2019 Airfoil Design Methods

    3/5

    2/12/2014 Airfoil Design Methods

    http://www.desktop.aero/appliedaero/airfoils2/airfoildesign.html

    6.2 Effects on Airfoils

    6.3 Linear Theory

    6.3.1 Effect of Mach on Cp

    6.4 Transonics

    6.5 Supersonic Airfoils

    6.6 References

    7. Boundary Layers7.1 Viscous Drag

    7.2 Effect on Pressures

    7.3 Separation

    7.3.1 Laminar Separation

    7.3.1.1 Canonical Cp

    7.3.1.2 Effective Length

    7.3.2 Turbulent Separation

    7.4 Boundary Layer Theory

    7.4.1 Basic Theory and

    Definitions

    7.4.2 Laminar Boundary

    Layers

    7.4.3 Transition

    7.4.4 Turbulent Boundary

    Layers

    7.4.5 Summary of Results

    7.5 References

    8. Airfoils, Part II:

    Design8.1 Design Methods

    8.2 Typical Design

    Problems

    8.2.1 Thick Sections

    8.2.2 High Lift Sections8.2.3 Laminar Sections

    8.2.4 Transonic Sections

    8.2.5 Low Reynolds Number

    Sections

    8.2.6 Low Cm Sections

    8.2.7 Multiple Design Points

    8.3 High Lift Systems

    8.4 References

    9. 3D Potential Flow

    9.1 General Theory9.1.1 Biot-Savart Law

    9.1.2 Vortex Filament

    Subroutine

    9.2 Finite Wings

    9.2.1 Wing Models

    9.2.2 Lifting Line Theory

    9.2.3 Induced Drag

    9.2.3.1 Trefftz Plane Drag

    9.2.3.2 Trefftz Plane Lift

    9.2.4 Computational Models

    9.2.4.1 Interactive

    By reducing the lower surface "bump" near the leading edge

    and increasing the lower surface thickness aft of the bump,

    the pressure peak at low Clis easily removed. The lower

    surface flow is now attached, and remains attached down to

    a Clof about 0.2. We must check to see that we have not

    hurt the Clmaxtoo much.

    Here is the new section at the original design condition (still

    less than Clmax). The modification of the lower surface has

    not done much to the upper surface pressure peak here and

    the Clmaxturns out to be changed very little. This section is a

    much better match for the application and demonstrates how

    effective small modifications to existing sections can be. The

    new version of the glider did not use this section, but one that

    was designed from scratch with lower drag.

    Sometimes the objective of airfoil design can be stated more

    http://www.desktop.aero/appliedaero/potential3d/wingcalc.htmlhttp://www.desktop.aero/appliedaero/potential3d/wingcalc.htmlhttp://www.desktop.aero/appliedaero/potential3d/weissinger.htmlhttp://www.desktop.aero/appliedaero/potential3d/trefftzlift.htmlhttp://www.desktop.aero/appliedaero/potential3d/trefftzdrag.htmlhttp://www.desktop.aero/appliedaero/potential3d/induceddrag.htmlhttp://www.desktop.aero/appliedaero/potential3d/liftingline.htmlhttp://www.desktop.aero/appliedaero/potential3d/wingmodels.htmlhttp://www.desktop.aero/appliedaero/potential3d/finitewings.htmlhttp://www.desktop.aero/appliedaero/potential3d/vxyz.htmlhttp://www.desktop.aero/appliedaero/potential3d/biotsavart.htmlhttp://www.desktop.aero/appliedaero/potential3d/3dtheory.htmlhttp://www.desktop.aero/appliedaero/potential3d/potential3d.htmlhttp://www.desktop.aero/appliedaero/airfoils2/references8.htmlhttp://www.desktop.aero/appliedaero/airfoils2/highlift.htmlhttp://www.desktop.aero/appliedaero/airfoils2/multipleclsections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/lowcmsections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/lowresections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/xsonicsections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/laminarsections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/highclsections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/thicksections.htmlhttp://www.desktop.aero/appliedaero/airfoils2/airfoilproblems.htmlhttp://www.desktop.aero/appliedaero/airfoils2/airfoildesign.htmlhttp://www.desktop.aero/appliedaero/airfoils2/airfoils2.htmlhttp://www.desktop.aero/appliedaero/blayers/references7.htmlhttp://www.desktop.aero/appliedaero/blayers/blsummary.htmlhttp://www.desktop.aero/appliedaero/blayers/turbbl.htmlhttp://www.desktop.aero/appliedaero/blayers/transition.htmlhttp://www.desktop.aero/appliedaero/blayers/lambl.htmlhttp://www.desktop.aero/appliedaero/blayers/bldefns.htmlhttp://www.desktop.aero/appliedaero/blayers/blayertheory.htmlhttp://www.desktop.aero/appliedaero/blayers/turbseparation.htmlhttp://www.desktop.aero/appliedaero/blayers/effectivex.htmlhttp://www.desktop.aero/appliedaero/blayers/canonicalcp.htmlhttp://www.desktop.aero/appliedaero/blayers/lamseparation.htmlhttp://www.desktop.aero/appliedaero/blayers/separation.htmlhttp://www.desktop.aero/appliedaero/blayers/blandpressure.htmlhttp://www.desktop.aero/appliedaero/blayers/viscousdrag.htmlhttp://www.desktop.aero/appliedaero/blayers/blayers.htmlhttp://www.desktop.aero/appliedaero/compressibility/references6.htmlhttp://www.desktop.aero/appliedaero/compressibility/ssairfoils.htmlhttp://www.desktop.aero/appliedaero/compressibility/transonics.htmlhttp://www.desktop.aero/appliedaero/compressibility/cpplot3.htmlhttp://www.desktop.aero/appliedaero/compressibility/linearcompress.htmlhttp://www.desktop.aero/appliedaero/compressibility/compressairfoils.html
  • 7/24/2019 Airfoil Design Methods

    4/5

    2/12/2014 Airfoil Design Methods

    http://www.desktop.aero/appliedaero/airfoils2/airfoildesign.html

    Computation

    9.2.5 Simple Sweep Theory

    9.2.5.1 Forward-Swept

    Wings

    9.3 Slender Bodies

    9.3.1 Flow over Bodies

    9.3.2 Slender Body Theory

    9.4 References

    10. Compressibility in3D10.1 Subsonic Effects

    10.2 Supersonics

    10.2.1 Sears-Haack Bodies

    10.2.2 Supersonic Wing

    Game

    10.2.3 Simplified Wave Drag

    Est

    10.2.4 Oblique Wings

    10.3 References

    11. Viscosity in 3D11.1 3D Boundary Layers

    11.2 High Angles of Attack

    11.3 References

    12. Wing Design12.1 Wing Design

    Parameters

    12.2 Lift Distributions

    12.2.1 About Lift

    Distributions12.2.2 Geometry and Lift

    Distribution

    12.2.3 Lift Distributions and

    Performance

    12.3 Wing Design in More

    Detail

    12.4Nonplanar Wings

    12.5 References

    13. Configuration

    Aerodynamics13.1 Multiple Lifting

    Surfaces

    13.2 Longitudinal Stability

    and Trim

    13.3 Horizontal Tails

    13.4 Canard Aircraft

    13.4.1 Stability and Trim

    13.4.2 Drag

    13.4.3 Pros and Cons

    13.4.4 Interactive

    Calculations

    positively than, "fix the worst things". We might try to reduce

    the drag at high speeds while trying to keep the maximum CL

    greater than a certain value. This could involve slowly

    increasing the amount of laminar flow at low Cl's and

    checking to see the effect on the maximum lift. The objective

    may be defined numerically. We could actually minimize Cd

    with a constraint on Clmax. We could maximize L/D or

    Cl1.5/Cdor Clmax/ Cd@Cldesign. The selection of the figure

    of merit for airfoil sections is quite important and generally

    cannot be done without considering the rest of the airplane.

    For example, if we wish to build an airplane with maximum

    L/D we do not build a section with maximum L/D because

    the section Clfor best Cl/Cdis different from the airplane CL

    for best CL/CD.

    Inverse Design

    Another type of objective function is the target pressure

    distribution. It is sometimes possible to specify a desired Cp

    distribution and use the least squares difference between the

    actual and target Cp's as the objective. This is the basic idea

    behind a variety of methods for inverse design. As an

    example, thin airfoil theorycan be used to solve for the shape

    of the camberline that produces a specified pressure

    difference on an airfoil in potential flow.

    The second part of the design problem starts when one has

    somehow defined an objective for the airfoil design. This

    stage of the design involves changing the airfoil shape to

    improve the performance. This may be done in several ways:

    1. By hand, using knowledge of the effects of geometry

    changes on Cpand Cpchanges on performance.

    2. By numerical optimization, using shape functions to

    represent the airfoil geometry and letting the computer decide

    on the sequence of modifications needed to improve thedesign.

    http://www.desktop.aero/appliedaero/potential3d/wingcalc.htmlhttp://www.desktop.aero/appliedaero/airfoils1/tatinverse.htmlhttp://www.desktop.aero/appliedaero/configuration/canardcalc.htmlhttp://www.desktop.aero/appliedaero/configuration/canardprocon.htmlhttp://www.desktop.aero/appliedaero/configuration/canarddrag.htmlhttp://www.desktop.aero/appliedaero/configuration/canardstability.htmlhttp://www.desktop.aero/appliedaero/configuration/canards.htmlhttp://www.desktop.aero/appliedaero/configuration/tails.htmlhttp://www.desktop.aero/appliedaero/configuration/stability.htmlhttp://www.desktop.aero/appliedaero/configuration/multiplesurfaces.htmlhttp://www.desktop.aero/appliedaero/configuration/configuration.htmlhttp://www.desktop.aero/appliedaero/wingdesign/references12.htmlhttp://www.desktop.aero/appliedaero/wingdesign/nonplanar.htmlhttp://www.desktop.aero/appliedaero/wingdesign/wingdd.htmlhttp://www.desktop.aero/appliedaero/wingdesign/ldistnperf.htmlhttp://www.desktop.aero/appliedaero/wingdesign/geomnldistn.htmlhttp://www.desktop.aero/appliedaero/wingdesign/aboutldistn.htmlhttp://www.desktop.aero/appliedaero/wingdesign/liftdistn.htmlhttp://www.desktop.aero/appliedaero/wingdesign/wingparams.htmlhttp://www.desktop.aero/appliedaero/wingdesign/wingdesign.htmlhttp://www.desktop.aero/appliedaero/viscous3d/references11.htmlhttp://www.desktop.aero/appliedaero/viscous3d/highalpha.htmlhttp://www.desktop.aero/appliedaero/viscous3d/bl3d.htmlhttp://www.desktop.aero/appliedaero/viscous3d/viscous3d.htmlhttp://www.desktop.aero/appliedaero/compress3d/references10.htmlhttp://www.desktop.aero/appliedaero/compress3d/oblique.htmlhttp://www.desktop.aero/appliedaero/compress3d/ssdragest.htmlhttp://www.desktop.aero/appliedaero/compress3d/sswinggame.htmlhttp://www.desktop.aero/appliedaero/compress3d/searshaack.htmlhttp://www.desktop.aero/appliedaero/compress3d/supersonicaero.htmlhttp://www.desktop.aero/appliedaero/compress3d/subsoniccompress.htmlhttp://www.desktop.aero/appliedaero/compress3d/compress3d.htmlhttp://www.desktop.aero/appliedaero/potential3d/references9.htmlhttp://www.desktop.aero/appliedaero/potential3d/slendertheory.htmlhttp://www.desktop.aero/appliedaero/potential3d/bodies.htmlhttp://www.desktop.aero/appliedaero/potential3d/slenderbody.htmlhttp://www.desktop.aero/appliedaero/potential3d/fsw.htmlhttp://www.desktop.aero/appliedaero/potential3d/sweeptheory.htmlhttp://www.desktop.aero/appliedaero/potential3d/wingcalc.html
  • 7/24/2019 Airfoil Design Methods

    5/5

    2/12/2014 Airfoil Design Methods

    http://www.desktop.aero/appliedaero/airfoils2/airfoildesign.html

    13.5 Tailless Aircraft

    13.6 References

    14. Appendices14.1 Standard Atmosphere

    Calculator

    14.2 Universal Unit

    Conversions

    14.3 Vector Identities

    14.4 Video Clip Index

    14.5 Interactive Calculation

    Pages

    15. Problems

    16. Index

    http://www.desktop.aero/appliedaero/appendices/indexpage.htmlhttp://www.desktop.aero/appliedaero/problems/problems.htmlhttp://www.desktop.aero/appliedaero/appendices/java.htmlhttp://www.desktop.aero/appliedaero/appendices/movies.htmlhttp://www.desktop.aero/appliedaero/appendices/vectorid.htmlhttp://www.desktop.aero/appliedaero/appendices/unitconverter.htmlhttp://www.desktop.aero/appliedaero/appendices/stdatm.htmlhttp://www.desktop.aero/appliedaero/appendices/appendices.htmlhttp://www.desktop.aero/appliedaero/configuration/references13.htmlhttp://www.desktop.aero/appliedaero/configuration/tailless.html