all materials by austin troy © 2003 lecture 12: more remote sensing 1.major types of satellite...

93
All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification ------Using GIS-- Introduction to GIS

Upload: beatrix-spencer

Post on 13-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Lecture 12: More Remote Sensing1. Major Types of Satellite Imagery

2. Remote Sensing Image Interpretation and Classification

By Austin Troy © 2003University of Vermont

------Using GIS--Introduction to GIS

Page 2: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Part 1:Major types of satellite imagery

------Using GIS--Introduction to GIS

Page 3: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Major satellite imagery products•SPOT

•Landsat TM

•Landsat MSS

•IKONOS

Introduction to GIS

Page 4: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Launched by France

• Stands for Satellite Pour l'Observation de la Terre

•Operated by the French Space Agency, Centre National d'Etudes Spatiales (CNES).

Introduction to GIS

Page 5: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•SPOT 1 launched 1986, decommissioned and the reactivated in 1997

•SPOT 2 launched 1990, still going

•SPOT 3 launched 1993 and stopped functioning 1996

•SPOT 4 launched in 1998, still going

•SPOT 5 scheduled for April 2002

Introduction to GIS

Page 6: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•SPOT satellites are in sun-synchronous orbit

•The satellite passes over the same part of the Earth at roughly the same local time each day

•Its “inclination” is about 8 degrees off of polar orbit

•The fact that the earth is not perfect sphere makes the orbital plane rotate slowly around the earth (this would not happen if it were perfectly polar)

Introduction to GIS

Page 7: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•The slow motion of that orbital plane matches the latitudinal motion of the sun in the sky over the year

•Maintains similar sun angles along its ground trace for all orbits

•That means that the area the sun flies over always get the same sunlight angle, which gives constant lighting

Introduction to GIS

Source:http://hdsn.eoc.nasda.go.jp/experience/rm_kiso/satellit_type_orbit_e.html

Page 8: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT

Introduction to GIS

Source:http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter6/chapter6.html

This is for LANDSAT, but the idea is the same for SPOT

Page 9: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Each SPOT satellite carries two HRV (high-resolution visible) sensors, constructed with multilinear array detectors, or “pushbroom scanners”, also known as “along track scanners”

•These record multispectral image data along a wide swath

Introduction to GIS

Source: http://www.sci-ctr.edu.sg/ssc/publication/remotesense/spot.htm

Page 10: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Pushbroom uses a “linear array” of detectors, so it senses single column at a time, and uses forward motion to generate second dimension

•GSD (ground sampled distance), or resolution is set by sampling interval . Normally results in just-touching square pixels making up the image

•Each spectral band of sensing requires its own array.

•Pushbroom scanners generally have higher radiometric resolution because they have longer “dwell time” than across-track scanners, which move laterally across landscape as also move forward

Introduction to GIS

Page 11: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•The position of each HRV unit can be changed by ground control to observe a region of interest that is at an oblique angle to the satellite—up to ±27º relative to the vertical.

•Off-nadir viewing allows for acquisition of stereoscopic imagery (because of the parallax created) and provides a shorter revisit interval of 1 to 3 days.

Introduction to GIS

Source: http://www.sci-ctr.edu.sg/ssc/publication/remotesense/spot.htm

Page 12: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Oblique viewing capacity allows it to image any area within a 900 kilometer swath; can be used to increase the viewing frequency for a given point during a given cycle. The frequency varies with latitude: at the equator, a given area can be imaged 7 times during the same 26-day orbital cycle. At latitude 45 degrees, a given area can be imaged 11 times during the orbital cycle, i.e. 157 times yearly and an average of 2.4 days, with an interval ranging from a maximum of 4 days to a minimum of 1 day.

•Any point on 95% of the earth may be imaged any day by one of the three satellites.

Introduction to GIS

Source:http://www.spot.com/home/system/introsat/acquisi/welcome.htm

Page 13: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Two modes: panchromatic and multispectral

•Panchromatic: single spectral band, corresponding to the visible part of the EM spectrum without the blue, from 0.51 to 0.73 µm. Single channel imaging mode, so yields black and white images. Resolution is 10 m. Pixels per line is 6000. Good for fine geometrical detail.

•Multispectral mode: three spectral bands are XS1 covering 0.50 to 0.59 µm (green), XS2 covering 0.61 to 0.68 µ m (red) and XS3 covering 0.79 to 0.89 µm (near infrared). Resolution is 20 m. Pixels per line is 3000.

Introduction to GIS

Page 14: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•Some examples: mosaic false color tiles of Australia

Introduction to GIS

Page 15: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT

Introduction to GIS

Page 16: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

SPOT•SPOT can be purchased online using a browser to select your area and product

Introduction to GIS

http://www.spot.com/HOME/PROSER/USASelect_On-Line/usa_select_on-line.htm

Page 17: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•first started by NASA in 1972 but later turned over to NOAA

•Since 1984 satellite operation and data handling are managed by a commercial company EOSAT

Introduction to GIS

Source: http://www.sci-ctr.edu.sg/ssc/publication/remotesense/landsat.htm

Page 18: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•LANDSAT-1 launched 1972 and lasted until 1978.

•LANDSAT-2 launched 1975

•Three more satellites were launched in 1978, 1982, and 1984 (LANDSAT-3, 4, and 5 respectively).

•LANDSAT-6 was launched on October 1993 but the satellite failed to obtain orbit.

•LANDSAT-7 launched in 1999

•Only 7 and 5 are still working

Introduction to GIS

Page 19: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•Like SPOT, LANDSAT is sun-synchronous, and is about 8 degrees off a polar orbit

•Its repeat cycle is about 16 days and always crosses equator at around 10 AM.

•Orbit takes about 99 minutes (14.5 per day)

•Distance between ground tracks of consecutive orbits is 2752 km at equator because of the earth’s rotation

•By following earth’s rotation with each pass, it can keep crossing the equator at the same time

Introduction to GIS

Page 20: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•Swath is 183 km wide, although that includes overlap, since data frame is 170 km

•233 orbits, for each 16 day cycle

Introduction to GIS

Source: http://eosims.cr.usgs.gov:5725/DATASET_DOCS/landsat7_dataset.html

Page 21: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•Scenes are then indexed by the path and a row

Introduction to GIS

Source: http://eosims.cr.usgs.gov:5725/DATASET_DOCS/landsat7_dataset.html

Page 22: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT•LANDSAT 4 and 5 had two types of sensors, MSS (multi-spectral scanner) and TM (thematic mapper):

•MSS:Started on LANDSAT 1, terminated in late 1992. 80 m resolution with four spectral bands from the visible green to the near-infrared (IR) wavelengths. Only Landsat 3’s MSS sensor had a fifth band in the thermal-IR.

Introduction to GIS

Page 23: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT 4 and 5MSS:

•TM:

Introduction to GIS

*

*

* Mid infra red

Page 24: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT MSS•MSS has a square instantaneous field of view (IFOV), with an 11.56 ° field of view.

Introduction to GIS

Source: http://edcwww.cr.usgs.gov/glis/hyper/guide/landsat

Page 25: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT MSS•This is a “whiskbroom” rather than “pushbroom” scanner. AKA Across track scanning

•Satellite motion provides one axis of the image and other axis provided for by oscillating mirror

•Has poor radiometric resolution- only 6 bit, or 64 values

Introduction to GIS

Page 26: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT TM•Thematic Mapper: more bands, better spatial and radiometric resolution(256 DNs instead of 64)

•Both resolution improvements, plus the fact that the green and red bands are narrower make it better for vegetation discrimination than MSS; also near IR in TM is narrower and centered in a region that is highly sensitive to plant vigor.

Introduction to GIS

Page 27: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT TM: applications

Introduction to GIS

Band Nominal Spectral location

applications

1 Blue Water body penetration, soil-water discrimination, forest type mapping, cultural feature ID

2 Green Green reflectance peak of veg, for veg ID and assessment of vigor, cultural feature ID

3 Red Chlorophyll absorption region, plant species differentiation, cultural feature ID

4 Near infra red Veg types, vigor and biomass content, dilineating water bodies, soil moisture assessment

5 mid infra red (1.55-1.75 m)

Veg moisture, soil moisture, diff of soil from clouds

6 Thermal infra red Veg stress analysis, soil moisture, thermal mapping

7 mid infra red(2.08-2.35 m)

Discriminating mineral and rock types, veg moisture

Page 28: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT TM•An example:August 14, 1999 (left) and October 17, 1999 (right) images of the Salt Lake City area

• differences in color due to growing season

Introduction to GIS

Page 29: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT 7•Uses a new sensor called Enhanced Thematic Mapper Plus (ETM+)

•Stresses continuity with LANDSAT 4 and 5 in that uses similar orbit and repeat patterns, as well as a similar 185 km swath width for imaging

•Check out the movie

Introduction to GIS

Source: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter2/chapter2.html

Full info at http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html

Page 30: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT 7•Spatial resolution of bands

Introduction to GIS

Source: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter2/chapter2.html

Table 6.1 Image Dimensions for a Landsat 7 0R Product

BandNumber

Resolution(meters)

Samples(columns)

Data Lines(rows)

Bits perSample

1-5, 7 30 6,600 6000 8

6 60 3,300 3,000 8

8 15 13,200 12,000 8

Page 31: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT 7•Spatial resolution of bands

Introduction to GIS

LANDSAT-7 ETM+ BAND CHARACTERISTICS

Band Number

Nominal spectrum

Spectral Range (µ)

Ground Resolution

(m)

Data Lines Per Scan

Data Line Length (bytes)

1 Blue .450 to .515 30 16 6,600

2 green .525 to .605 30 16 6,600

3 red .630 to .690 30 16 6,600

4 Near IR .775 to .900 30 16 6,600

5 mid IR 1.550 to 1.750 30 16 6,600

6 Thermal IR 10.40 to 12.50 60 8 3,300

7 mid IR 2.090 to 2.35 30 16 6,600

8 panchromatic .520 to .900 15 32 13,200

Band wavelength spectrums are slightly different from LANDSAT 5

Page 32: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT 7•LANDSAT 7 has an excellent mission coverage archive

Introduction to GIS

Source: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter6/chapter6.html

Page 33: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT Products•All data older than 2 years return to "public domain" and are distributed by the Earth Resource Observation System (EROS) Data Center of the US Geological Servey

•Available at http://edcwww.cr.usgs.gov/products/satellite/landsat7.html

•The LANDSAT Reference system catalogues the world into 57,784 scenes, each 115 miles (183 kilometers) wide by 106 miles (170 kilometers) long.

Introduction to GIS

Page 34: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Landsat Products:USGS

•OR: no radiometric or geometric correction applied. Scan lines are reversed and nominally aligned.

•1R: includes radiometric correction, but no geometric correction. Scan lines are reversed and nominally aligned.

•1G: includes both radiometric and geometric correction. The scene will be rotated, aligned, and georeferenced to a user-defined map projection.

Introduction to GIS

Page 35: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Landsat Products•Another source is Space Imaging Inc.

•Note that they have resampled to 15 m

Introduction to GIS

Page 36: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT Imagery

Introduction to GIS

Page 37: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT Imagery

Introduction to GIS

Composite of shortwave infrared, Near-Infrared and Red. Shows manmade features as well as densely forested areas and agricultural lands

Page 38: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT Imagery

Introduction to GIS

Same bands: shows wetlands, urban, open water, forest

Page 39: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

LANDSAT Imagery

Introduction to GIS

Same bands: light yellow-green color represents northern hardwood forest. The dark green patches represent various conifer species

Page 40: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data

Introduction to GIS

•High resolution satellite developed by Space Imaging, launched 1999

•Has sun-synchronous orbit and crosses equator at 10:30 AM

•Ground track repeats every 11 days

•Highly maneuverable: can point at a new target and stabilize itself in seconds, enabling it to follow meandering features

•The entire spacecraft moves, not just the sensors

Page 41: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•Can collect data at angles of up to 45° from the along track and across track axes

•This allows for side by side and fore and aft stereoscopic imaging

•At its nadir it has 11 km swath width

•11 km by 11 km image size, but user specified strips and mosaics can be ordered

•Employs a linear array scanner

Introduction to GIS

Page 42: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•IKONOS collects panchromatic band (.45 to .90 m) at 1 m resolution

•Collects four multispectral bands at 4 m resolution

•Bands include blue (.45 to .52 m) , green (.51 to .60 m) , red (.63 to .70 m), near IR (.76 to .85 m)

•Radiometric resolution is 11 bits, or 2048 values

Introduction to GIS

Page 43: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•Here is 1m IKONOS view of suburbs, near winter Olympics

Introduction to GIS

Source: spaceimaging.com

Page 44: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•1m IKONOS view of Dubai

Introduction to GIS

Source: spaceimaging.com

Page 45: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•1m IKONOS pan image of Rome

Introduction to GIS

Source: spaceimaging.com

Page 46: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

IKONOS data•1m image of “Survivor” camp in Africa

Introduction to GIS

Source: spaceimaging.com

Page 47: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Part 2:Remote Sensing Image Processing

and Interpretation

------Using GIS--Introduction to GIS

Page 48: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Image Pre-Processing•Once an image is acquired it is generally processed to eliminate errors

•Two categories:

•Geometric correction

•Radiometric correction

Introduction to GIS

Page 49: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Geometric Correction•Sources of distortion

•variations in altitude

•variations in velocity

•earth curvature

•relief displacement

•atmospheric refraction

•Skew distortion from earth’s eastward rotation

Introduction to GIS

Page 50: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Geometric Correction•Raw digital images contain two types of geometric distortions: systematic and random

•Systematic sources are understood and can be corrected by applying formulas

•Random distortions, or ‘residual unknown systematic distortions’ are corrected using multiple regression of ground control points that are visible from the image

Introduction to GIS

Page 51: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Radiometric Correction•Radiance measured at a given point is influenced by:

•Changes in illumination

•Atmospheric conditions (haze, clouds)

•Angle of view

•Instrument response characteristics

•elevation of the sun (seasonal change in sun angle)

•Earth-sun distance variation

Introduction to GIS

Page 52: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Image enhancement•For improving image quality, particularly contrast

•Includes a number of methods used for enhancing subtle radiometric differences so that the eye can easily perceive them

•Two types: point and local operations

•Point: modify brightness value of a given pixel independently

•Local: modify pixel brightness based on neighborhood brightness values

Introduction to GIS

Page 53: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Image enhancement•Three types of manipulation are:

•Contrast enhancement:methods include gray level thresholding, level slicing and contrast stretching

•Spatial feature manipulation: methods include spatial filtering, edge enhancement and Fourrier analysis

•Multi-image manipulation: methods include multispectral band ratioing and differencing, principal components, canonical components, vegetative components, decorrelation stretching, others

Introduction to GIS

Page 54: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Contrast enhancement(point operation)

•Most images start with low contrast; these improve it

•Level slicing reclasses DNs into fewer classes, so differences can be more easily seen; colors or grayscale values can be assigned. Like resampling down radiometric resolution. Often used where histogram shows bimodal distribution of reflectance values

•Contrast Streching is the opposite, where a smaller number of values are stretched out over full DN range

Introduction to GIS

Page 55: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Contrast enhancement•Here is what spectral histograms look like

Introduction to GIS

Note that DN is not zero for any of them

Source: http://www.sci-ctr.edu.sg/ssc/publication/remotesense/process.htm

Page 56: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Contrast enhancement

Introduction to GIS

Source: http://www.sci-ctr.edu.sg/ssc/publication/remotesense/process.htm

•The image on the left is hazy because of atmospheric scattering; the image is improved (right) through the use of Gray level thresholding. Note that there is more contrast and features can be better discerned

Page 57: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spatial Feature Enhancement(local operation)

•Spatial filtering/ Convolution: neighborhood operations (like we reviewed for raster analysis), that calculate a new value for the center pixel based on the values of its neighbors within a window (see “More Raster Analysis” lecture for more); includes low-pass (emphasizes regional spatial trends, demphasizes local variability ) and high-pass (emphasizes local spatial variability) filters

Introduction to GIS

Page 58: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spatial Feature Enhancement•Edge Enhancement: This is a convolution method that combines elements of both low and high-pass filtering in a way that accentuates linear and local contrast features without losing the regional patterns

•First, a high-pass image is made with local detail

•Next, all or some of the gray level of the original scene is added back

•Finally, the composite image is contrast stretched

Introduction to GIS

Page 59: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Image classification•This is the science of turning RS data into meaningful categories representing surface conditions or classes

•Spectral pattern recognition procedures classifies a pixel based on its pattern of radiance measurements in each band: more common and easy to use

•Spatial pattern recognition classifies a pixel based on its relationship to surrounding pixels: more complex and difficult to implement

•Temporal pattern recognition: looks at changes in pixels over time to assist in feature recognition

Introduction to GIS

Page 60: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Two types of classification:

•Supervised: the analyst designates on-screen “training areas” known land cover type from which an interpretation key is created, describing the spectral attributes of each cover class . Statistical techniques are then used to assign pixel data to a cover class, based on what class its spectral pattern resembles.

•Unsupervised:automated algorithms produce spectral classes based on natural groupings of multi-band reflectance values (rather than through designation of training areas), and the analyst uses references data, such as field measurements, DOQs or GIS data layers to assign areas to the given classes

Introduction to GIS

Page 61: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Unsupervised:

•Computer groups all pixels according to their spectral relationships and looks for natural spectral groupings of pixels, called spectral classes

•Assumes that data in different cover class will not belong to same grouping

•Once created, the analyst assesses their utility

Introduction to GIS

Source: F.F. Sabins, Jr., 1987, Remote Sensing: Principles and Interpretation.

Spectral class 1

Spectral class 2

Page 62: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Unsupervised:

•After comparing the reclassified image (based on spectral classes) to ground reference data, the analyst can determine which land cover type the spectral class corresponds to

•Has advantage over supervised classification: the “classifier” identifies the distinct spectral classes, many of which would not have been apparent in supervised classification and, if there were many classes, would have been difficult to train all of them. Not required to make assumptions of what all the cover classes are before classification.

•Clustering algorithms include: K-means, texture analysis

Introduction to GIS

Page 63: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Unsupervised:

•Here’s an example

Introduction to GIS

Source: http://elwood.la.asu.edu/grsl/lter/fig5.html

Page 64: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Unsupervised:Another example

Introduction to GIS

Source: http://mercator.upc.es/nicktutorial/Sect1/nicktutor_1-14.html

Page 65: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Supervised:

•Better for cases where validity of classification depends on a priori knowledge of the technician

•Conventional cover classes are recognized in the scene from prior knowledge or other GIS/ imagery layers

•Therefore selection of classes is pre-determined and supervised

•Training sites are chosen for each of those classes

•Each training site “class” results in a cloud of points in n dimensional “measurement space,” representing variability of different pixels spectral signatures in that class

Introduction to GIS

Page 66: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Supervised: Here are a bunch of pre-chosen training sites of known cover type

Introduction to GIS

Source: http://mercator.upc.es/nicktutorial/Sect1/nicktutor_1-15.html

Page 67: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Supervised:

•The next step is for the computer to assign each pixel to the spectral class is appears to belong to, based on the DN’s of its constituent bands

• There are numerous algorithms the computer uses, including:

•Minimum distance to means classification (Chain Method)

•Gaussian Maximum likelihood classification

•Parallelpiped classification

Introduction to GIS

Page 68: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Supervised:

•These algorithms look at “clouds” of pixels in spectral “measurement space” from training areas, and try to determine which “cloud” a given non-training pixel falls in.

•The simplest method is “minimum distance” in which a theoretical center point of point cloud is plotted, based on mean values, and an unknown point is assigned to the nearest of these. That point is then assigned that cover class.

•They get much more complex from there.

Introduction to GIS

Page 69: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Spectral Classification•Supervised:

•Examples of two classifiers

Introduction to GIS

Source: http://mercator.upc.es/nicktutorial/Sect1/nicktutor_1-16.html

Page 70: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Classifying Imagery•Spectral classification can be used for numerous purposes, like classifying geology, water temperature, soil moisture, other soil characteristics, water sediment load, water pollution levels, lake eutrophication, flood damage estimation, groundwater location, vegetative water stress, vegetative diseases and stresses, crop yields and health, biomass quantity, net primary productivity, forest vegetation species composition, forest fragmentation, forest age (in some cases), rangeland quality and type, urban mapping and vectorization of manmade structures

•One of the most common applications of classification is land cover and land use mapping

Introduction to GIS

Page 71: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Land cover refers to the feature present and land use refers to the human activity associated with a plot of land

•The LU/LC classes to be derived will depend on the system being used. One of the most common is the USGS Anderson Classification System (Anderson et al. 1976). This classification scheme is hierarchical, with nine very general categories at Level I, and an increasing number of classes and detail and level increases. Paper available online at http://landcover.usgs.gov/pdf/anderson.pdf

•Anderson system intermixes land use and land cover metrics, by inferring land use from land cover. Unfortunately, land cover can only tell us a limited amount about land use—think of outdoor recreation as a land use. Need additional data for these classes.

Introduction to GIS

Page 72: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Land use and land cover classification system for use with remote sensor data (Anderson et al. 1976)

•Level I Level II

•1 Urban or Built-up Land 11 Residential

12 Commercial and Services

13 Industrial

14 Transportation, Communications, and Utilities

15 Industrial and Commercial Complexes

16 Mixed Urban or Built-up Land

17 Other Urban or Built-up Land

Introduction to GIS

Page 73: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Level I Level II

•2 Agricultural Land 21 Cropland and Pasture

22 Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultural Areas 23 Confined Feeding Operations

24 Other Agricultural Land

•3 Rangeland 31 Herbaceous Rangeland

32 Shrub and Brush Rangeland

33 Mixed Rangeland

•4 Forest Land 41 Deciduous Forest Land

42 Evergreen Forest Land

43 Mixed Forest Land

•5 Water 51 Streams and Canals

52 Lakes

53 Reservoirs

54 Bays and Estuaries

•6 Wetland 61 Forested Wetland

62 Nonforested Wetland

Introduction to GIS

Page 74: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Level I Level II

•7 Barren Land 71 Dry Salt Flats.

72 Beaches

73 Sandy Areas other than Beaches

74 Bare Exposed Rock

75 Strip Mines Quarries, and Gravel Pits

76 Transitional Areas

77 Mixed Barren Land

•8 Tundra 81 Shrub and Brush Tundra

82 Herbaceous Tundra

83 Bare Ground Tundra

84 Wet Tundra

85 Mixed Tundra

•9 Perennial Snow or Ice 91 Perennial Snowfields

92 Glaciers

Introduction to GIS

Page 75: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Level 3 and 4 categories deliver even more detail.

•USGS only specifies classifications for 1 and 2. They suggest that higher level classification be designed by local planners who know the land uses, because of the narrowness of the categories

• As an example for level 3, with “urban” (level 1) “residential” (level 2) category, includes single family home (111), multifamily home (112), group quarters (113), mobile home parks (115), etc.

•LANDSAT data can be used to generate level 1 easily, level 2 with some finesse (15 to 20 m resolution recommended)

•Levels 3 and 4, IKONOS data or aerial photographs are needed. Level 4 requires much supplemental information

Introduction to GIS

Page 76: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Land Cover/ Land Use Mapping•Here is an example of LANDSAT data classified using the Anderson System

Introduction to GIS

Page 77: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Accuracy Assessment•This is one of the most important parts of image classification.

•Error rates can be very high in classification accuracies, especially with lower resolution data, and where pixels are mixed

•This is often the most time consuming part of image classification

•NLCD effort undertook effort to classify errors in each type of land cover, broken down by region of the US

•User’s accuracy for type X: Percent of pixels classified as X that really are X. Producer’s accuracy: percent of pixels that were classified as other than X but really are X.

Introduction to GIS

Page 78: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-Oriented Classification

Introduction to GIS

Traditional classifiers don’t work as well for new generation of high resolution data, like this 2 foot Emerge Color infrared airphoto. Why? Meaningless to classify each pixel

Page 79: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-Oriented Classification •This is one of the newer methods of image classification, designed for high-res data. Looks at the spatial grouping of pixels with similar reflectance characteristics and can create polygon objects representing homogeneous areas.

• Allows for complex automated classification rules to be set based on both the spectral and spatial properties of the data

•Using this information, objects can be classified based on tone, texture, shape and context

•Allows for nested hierarchical classifications, from general to highly specific.

Introduction to GIS

Page 80: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps:

•Segmentation of rasters into polygon objects

•Objects are defined such that they minimize within-unit heterogeneity and maximize between unit heterogeneity, subject to some user defined parameters.

•The user can control the scale parameter for acceptable level of heterogeneity. They can also control the degree to which segmentation is based on spectral or spatial characteristics, since heterogeneity is defined in terms of both. By repeating the segmentation with different scale parameters, the user can create a nested hierarchy of objects>>big objects containing smaller objects, containing smaller objects

Introduction to GIS

Page 81: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification

Introduction to GIS

Page 82: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification

Introduction to GIS

Page 83: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps:

•Two levels of segmentation

Introduction to GIS

Source/More info: see Ecognition website: http://www.definiens-imaging.com/index.htm

Page 84: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps:

•Following segmentation, each object is encoded with information about its tone, shape, area, context, neighborhors and spectral characteristics (e.g. mean, standard deviation, max, min or each band’s spectral reflectance)

•This information can be used for feature extraction in which objects’ properties are analyzed to look for characteristics that help to discriminate one object type from another. That is, what object information helps discriminate one from another?

Introduction to GIS

Page 85: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification

Introduction to GIS

Page 86: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps:

•Then objects are classified by either defining training areas of known cover type (known as supervised fuzzy classification) or creating class descriptions organized through inheritance-based rules into a knowledge base (known as fuzzy knowledge base classification).

Introduction to GIS

Page 87: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps:

•In the knowledge base approach, complex membership functions can be derived that describe characteristics that are typical or atypical for a certain class. The more a given object displays the characteristics, the more likely it is to be classified into the class to which those characteristics pertain. Characteristics can be based on spectral response summary statistics, shape characteristics, adjacency, connectivity, and overlay with certain thematic features.

Introduction to GIS

Page 88: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification

Introduction to GIS

Page 89: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps

Introduction to GIS

• The classification can be hierarchical and nested, with finer classifications within coarser ones

• Small classified objects can be aggregated up to large object classes and large objects can be split into smaller ones. Can then assign different segmentations to different class hierarchy level

• Allows for high precision classifications within coarser, general classifications

Page 90: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps

Introduction to GIS

• The classification can be hierarchical and nested, with

Page 91: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps

Introduction to GIS

• Can use additional thematic layers to populate the knowledge base and create rules about what a certain class can be on top of, next to, or near. This can increase the accuracy of classifications, especially as you increase categorical precision and start getting into classifiying land uses in addition to land cover

• Hence, when you do training areas, you not only get average spectral responses and shape metrics for a class, but also can get average values from underlying layers to help increase classification accuracy

• Examples: farm fields as fn of slope, soils, etc; different suburban development types as function of distance to urban centers, income, crime, etc.

Page 92: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Steps

Introduction to GIS

• Error evaluation: Can then assess the strength of each classification to see how well objects fall into them

• However, if a pixel had a high fit score for two categories, it is “unstable.” Here are the mean stability scores

• Stability does down as number of categories goes up

• This does not tell you classification, accuracy, which requires ground truth data

Page 93: All materials by Austin Troy © 2003 Lecture 12: More Remote Sensing 1.Major Types of Satellite Imagery 2.Remote Sensing Image Interpretation and Classification

All materials by Austin Troy © 2003

Object-oriented classification Software

Introduction to GIS

•eCognition: one of the top Object oriented classification software packages

More info: see Ecognition website: http://www.definiens-imaging.com/index.htm