boolean algebra and logic gates - basavaraj talawar · outline boolean algebra basic theorems,...

Post on 25-Jul-2020

18 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Boolean Algebra and Logic Gates

Chapter 2 ndash Boolean Algebra amp Logic GatesMano amp Ciletti 6ed

OutlineBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

OutlineBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

George Boole

(1815 ndash 1864)

An Investigation of the Laws of Thought (1854)

Boolean Algebrandash Operations conjunction

( ) disjunction ( ) and) disjunction (or) or) negation (not)

ndash Fundamental in digital electronics

ndash Provided in all modern programming languages

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Algebra Switching Algebra

ndash Shannon 1938 a two-valued Boolean algebra

ndash Represents properties of bistable electrical switching circuits

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Algebra Algebraic structure

ndash Set of elements B

ndash Two binary operators + and ndash Huntington postulates are satisfied

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates Closure

ndash

Identity Elements (0 for + 1 for )

ndash

ndash

Commutative

ndash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash

ndash

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates Closure

ndash The structure is closed wrt the operator + The structure is closed wrt the operator

Identity Elements (0 for + 1 for )ndash x + 0 = 0 + x = x

ndash x 1 = 1 x = x

Commutativendash x + y = y + x

ndash x y = y x

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates Distributive

ndash is distributive over +

ndash x (y + z) = (x y) + (x z)

ndash + is distributive over ndash x + (y z) = (x + y) (x + z)

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates there exists an element

(complement of x) such thatndash x + xrsquo = 1 and x xrsquo = 0

forall xisinB x isinB

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Huntington Postulates There exist at least two elements

such thatx yisinB xne y

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean AlgebraB=01

Binary operators + and

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

AND () OR (+) and NOT operations

B=01 Verify Closure Commutative

properties on B

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributivexsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Two Valued Boolean Algebra

B=01 Distributive xsdot( y+z )=(xsdoty)+(xsdotz )xsdot( y+z )=(xsdoty)+(xsdotz )

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Basic Theorems amp Postulates

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Basic Theorems amp Postulates

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Basic Theorems amp PostulatesEach pair is a Dual Interchange OR and AND

change 0 to 1 1 to 0 to obtain the other

Each pair is a Dual Interchange OR and AND change 0 to 1 1 to 0 to obtain the other

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

x + xrsquo = 1x + xrsquo = 1 x middot xrsquo = 0x middot xrsquo = 0bull Postulate 5

bull Complement of xrsquo = x

bull Complement of xrsquo = (xrsquo)rsquo

bull Complement is unique

bull (xrsquo)rsquo = x(xrsquo)rsquo = x

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Theorems

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

DeMorganrsquos Law

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

DeMorganrsquos Law

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

DeMorganrsquos Law

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Operator Precedence

1parentheses

2NOT

3AND

4OR

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function to Gate Implementation

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Function

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Function

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Gate Implementation

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Gate Implementation

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Gate Implementation

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Optimized Gate Implementation

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Optimized Gate Implementation

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Optimized Gate Implementation

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Simplification

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Find Complements

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Find Complements

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Minterms Consider 2 variables x amp y Minterms

ndash All combinations of variablesndash Operation AND

x y x y xy xy

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Maxterms Consider 2 variables x amp y Maxterms

ndash All combinations of variablesndash Operation OR

Complements of corresponding minterms

x+ y x+ y x + y x + y

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Minterms amp Maxterms

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Minterms amp Maxterms

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Minterms amp Maxterms

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function fromMinterms

Given a truth table form minterm for combinations that produce a 1 take the OR of these terms

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz f 2=x yz+xy z+xyz +xyzf 2=x yz+xy z+xyz +xyz

f 1=m1+m 4+m7f 1=m1+m 4+m7 f 2=m3+m5+m6+m7

f 2=m3+m5+m6+m7

f 1(x y z )=sum (147)f 1(x y z )=sum (147) f 2(x y z )=sum (3567)f 2(x y z )=sum (3567)

Canonical Form of a Boolean FunctionCanonical Form of a Boolean Function

Boolean Function fromMinterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

Boolean Function fromMinterms Maxterms

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function fromMinterms Maxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1=(x y z + x yz + x yz+xy z+xyz ) f 1=(x y z + x yz + x yz+xy z+xyz )

f 1 =x y z +x yz +x yz+xy z+xyz f 1 =x y z +x yz +x yz+xy z+xyz

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function fromMaxterms

f 1=x y z+xy z +xyzf 1=x y z+xy z +xyz

f 1 =x y z +x yz +x yz+xy z+x y zf 1 =x y z +x yz +x yz+xy z+x y z

f 1=(x y z + x yz + x yz+xy z+x y z )f 1=(x y z + x yz + x yz+xy z+x y z )

f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )f 1=(x+ y+z )sdot(x+ y +z )sdot(x+ y + z )sdot(x + y+z )sdot( x + y +z )

f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6f 1=M 0sdotM 2sdotM 3sdotM5sdotM 6

f 1=prod (02 3 5 6)f 1=prod (02 3 5 6)

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function in Mintems

Express as Minterms

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Function in Mintems

Express as Minterms

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Express as Maxterms

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Express as Maxterms

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Express as Maxterms

F=prod (0245)F=prod (0245)

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Convert between Canonical Forms

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Interchanging Canonical Forms

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Standard Form

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

All Logic Operations

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

All Logic Operations

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

All Logic Operations

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

All Logic Operations

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Boolean Functions

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Digital Logic Gates

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Digital Logic Gates

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Digital Logic Gates

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

NAND NOR

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

NAND NOR

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

XOR XNOR

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

SummaryBoolean AlgebraBasic Theorems Huntington PostulatesDeMorganrsquos LawBoolean Functions ImplementationComplements DualsCanonical Forms Standard formsDigital Logic Gates

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

Complement through Duals

Arrive at the complement byndash Derive the dual complement each

literal

top related