estimating uncertainty in ecosystem budgets ruth yanai, suny-esf, syracuse ed rastetter, ecosystems...

Post on 31-Mar-2015

221 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Estimating Uncertainty

in Ecosystem Budgets

Ruth Yanai, SUNY-ESF, SyracuseEd Rastetter, Ecosystems Center, MBL

Dusty Wood, SUNY-ESF, Syracuse

Ecosystem Budgets have No Error

Hubbard Brook P Budget

Yanai (1992) Biogeochemistry

Replicate Measurements

Disparate measurements, all with errors?

How can we estimate the uncertainty in ecosystem budget calculations from the uncertainty in the component measurements?

Try it with biomass N in Hubbard Brook Watershed 6.

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

For independent errors. If they’re correlated, use the sum of covariances.

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

Biomass N content = wood N content+ bark N content+ branch N content+ foliar N content+ twig N content+ root N content

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

Biomass N content = wood mass · wood N concentration+ bark mass · bark N concentration+ branch mass · branch N concentration+ foliar mass · foliar N concentration+ twig mass · twig N concentration+ root mass · root N concentration

Mathematical Error Propagation

When multiplying, variance of theproduct is the product of the means times the sum of

the variance of the factors:

Mathematical Error Propagation

When multiplying, variance of theproduct is the product of the means times the sum of

the variance of the factors:

wood mass · wood N concentration

But

log (Mass) = a + b*log(PV) + error

AndPV = 1/2 r2 * Height

log(Height) = a + b*log(Diameter) + error

Mathematical Error Propagation

“The problem of confidence limits for treatment of forest samples by logarithmic regression is unsolved.” --Whittaker et al. (1974)

Monte Carlo Simulation

Monte Carlo SimulationTree Height

log (Height) = a + b*log(Diameter) + error

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

Monte Carlo SimulationTissue Mass

log (Mass) = a + b*log(PV) + errorPV = 1/2 r2 * Height

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Monte Carlo SimulationTissue Concentration

N concentration = constant + error

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

Monte Carlo Simulation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Monte Carlo Simulation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Calculate the nutrient contents of wood, branches, twigs, leaves and roots, using species- and element-specific parameters, sampling these parameters with known error.After many iterations, analyze the variance of the results.

A Monte-Carlo approach could be implemented using specialized software or almost any programming language.

This illustration uses a spreadsheet model.

Height Parameters

Height = 10^(a + b*log(Diameter) + log(E))

LookupLookup

Lookup

***IMPORTANT***Random selection of parameters values happens HERE, not separately for each tree

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

LookupLookup

Lookup

PV = 1/2 r2 * Height

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

Lookup

Lookup Lookup

PV = 1/2 r2 * Height

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

Lookup

Lookup Lookup

PV = 1/2 r2 * Height

Concentration Parameters

Concentration = constant + error

LookupLookup

COPY THIS ROW-->

After enough interations, analyze

your results

Paste Values button

total N, kg/ha

0

200

400

600

800

1000

1200

0 50 100 150 200

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6

How many iterations is enough?

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6

Two different sets of 250 iterations:Mean settles down over many iterations

Mean estimate of Biomass of N

500

520

540

560

580

600

620

640

660

680

700

0 50 100 150 200 250

Number of Iterations

kg

N/h

a

Uncertainty in Biomass N: 110 kg/haCoefficient of Variation: 18%

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6 Standard Deviation of Biomass of N

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250

Number of Iterations

kg

N/h

a

Hubbard Brook W6 is surveyed in 208 25m x 25m plots.

How much variation is there from one part of this watershed to another?

This is a more common way to represent uncertainty in budgets.

Approaches to Estimating Uncertainty:

Replicate Measurements

Replicate Samples

Variation across plots: 16 Mg/ha, or 5%

Biomass for 50 m x 50 m Plots

0

50

100

150

200

250

300

350

Plot Cluster1

Plot Cluster2

Plot Cluster3

Plot Cluster4

Plot Cluster5

Bio

mass (

Mg

/ha)

RS

WA

STM

YB

BE

SM

Replicate Samples

Biomass for 25 m x 25 m Plots

0

50

100

150

200

250

300

350

75 108 142 181 204

Plot

Bio

mass (

Mg

/ha)

RS

STM

YB

BE

SM

Variance across plots: 30 Mg/ha, or 10%with smaller plots

Which is More Uncertain?

Total biomass

CV

Nitrogen content

CV

Multiple Plots 5%, 10% 6%, 10%

Uncertainty in Calculations

18% 18%

Parameter uncertainty doesn’t affect comparisons across space. But it matters when you take your number and go.

The Value of Ecosystem Error

Quantify uncertainty in our results

Borrmann et al. (1977) Science

The N budget for Hubbard Brook published in 1977 was “missing” 14.2 kg/ha/yr

Net N fixation (14.2 kg/ha/yr) = hydrologic export+ N accretion in the forest floor + N accretion in mineral soil + N accretion in living biomass- precipitation N input- weathering N input- change in soil N stores

We can’t detect a difference of 1000 kg N/ha in the mineral soil…

The Value of Ecosystem Error

Quantify uncertainty in our results

Identify ways to reduce uncertainty

“What is the greatest source of uncertainty in my answer?”

Better than the sensitivity estimates that vary everything by the same amount--they don’t all vary by the same amount!

Better than the uncertainty in the parameter estimates--we can tolerate a large uncertainty in an unimportant parameter.

“What is the greatest source of uncertainty to my answer?”

0

20

40

60

80

100

120

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

Bio

ma

ss

(M

g/h

a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

CV

of

Bio

ma

ss

0

5

10

15

20

25

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

Bio

ma

ss

Sta

nd

ard

De

via

tio

n

(Mg

/ha

)

0

50

100

150

200

250

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

N c

on

ten

t (k

g/h

a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

CV

of

N C

on

ten

t

0

10

20

30

40

50

60

70

80

90

100

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

N C

on

ten

t S

tan

da

rd D

ev

iati

on

(k

g/h

a)

Other Considerations

Independence of error (covariance)

Distribution of errors (normal or not)

Additional Sources of Error

Bias in measurements

Errors of omission

Conceptual errors

Measurement errors

Spatial and temporal variation

The Value of Ecosystem Error

Quantify uncertainty in our results

Identify ways to reduce uncertainty

Advice

One way or another, find a way to calculate ecosystem errors, and report them.

This is not possible unless researchers also report error with parameters.

top related