imaging of radiation dose using cherenkov...

Post on 30-Jun-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Imaging of Radiation Dose Using Cherenkov Light

Eric Brost1, Yoichi Watanabe1, Fadil Santosa2, Adam Green31Department of Radiation Oncology, University of Minnesota 2Institute for Mathematics and it’s Applications, University of Minnesota3Department of Physics, University of St. Thomas

[2]

Imaging of Cherenkov light during radiation therapy

• Quality assurance• Surface dosimetry• Molecular imaging

Thesis project goals

1. Determination of optical correction factors necessary to perform Cherenkov dosimetry

2. Examine feasibility of Cherenkov imaging on C‐RAD Catalyst system

Outline• Background• Related Research• Cherenkov Imaging Dosimetry

Incident radiation(gamma or electron)

Secondary electron, 

c/n

β

βConical emission angle: Ratio of velocity to speed of light:

Cherenkov emission

Cherenkov Radiation Production

Tissue or other medium

Index of refraction: 

Particle velocity: 

= 43o (2 MV beam in water)

Cherenkov Light Characteristics• The number of photons, N, emitted per unit path due to the Cherenkov effect:

∝ 11 1

• For a 6 MeV electron beam delivering 100 cGy to water at a rate of 600 MU/min: • 600 photons/electron• 6‐10 photons/electron from surface• 3 x 1011 detectable photons• 8 x 10‐10 Watts

1

Wavelength ( ) 

Lower limit of Cherenkov emission

[3]

Cherenkov Light ‐ Relationship to Dose

Incident radiation(gamma or electron)

Water or tissue

z (mm)

• Mono‐energetic pencil beams, relationship is 1:1 between light emission and dose (<1%)• Poly‐energetic finite beam sizes, error is between 0‐5%

Glaser, et al. Phys Med Biol. 2014

Dose: Number of photons: Correlation ratio: C

Set‐up of Cherenkov Detection• Camera CMOS, CCD not as viable Triggered to linac output

• Target material Water tank or phantom Patient

• Computer Timing, camera, software

• Radiation source Linear accelerator Radiopharmaceutical

Glaser, et. al. Optics Letters. 2013

3D reconstruction using tomography

30 min scan time

1 mm resolutionGlaser, et al. Optics Letters. 2013

2D projection of a C‐treatment planGlaser, et al. Med. Phys. 2014

10x10 cm, 6 MV beam in a quinine sulfate solution30 sec exposure

Imaging of Radiation Beams in Water

• Cherenkov light can be related to dose through light intensity  Dose is deposited locally by charged particles Cherenkov photons are generated and scattered via Mie and Rayleigh scattering

• 5% error associated with variations in beam size, angle of incidence, and energy

• 40% error associated with variations in surface geometry, composition, and tissue pigment

Superficial Dosimetry during Radiation Therapy

To computer

Linac

CMOSBeamangle

Radiation Field size

Cherenkovimage

Zhang, et. al. Phys. Med. Bio. 2014

• Dosimetry is not possible with the current state of Cherenkov detection Skin reaction detection MLC motion tracking @ 2.5 fps

• Factors that are needed for absolute dosimetry:• Luminosity correction• Angular scattering correction• Absorption correction

• Correlation ratio

Jarvis, et. al. Int. Jour. Of Rad. Onc. 2014Optical factors = 40% error

Beam factors = 5% error

Superficial Dosimetry during Radiation Therapy

Cherenkov Dosimetry Correction Factors

Dose [Gy] is the dose received at the mean depth  Intensity [W] is the number of Cherenkov photons imaged on a pixel C = Correlation ratio [Gy/Cher. photon] for a given beam size, particle, and energy Image luminosity correction  Angular scattering correction  Absorption correction

e‐ e‐

Optical factorsBeam factor

Monte Carlo Simulations of Cherenkov Generation Gamos was used to determine Ks :

Beam size dependence (pencil ‐ 20x20 cm2) Beam angle (0‐75o) Beam energy and particle type (6‐20 MeV) Mono and poly‐energetic beams Tissue and optical phantom materials

Linac simulations were compared with experiment

Linac

Beamangle

Fieldsize

Primary particlesOpticalphantom

Skin phantom (sublayers)

Epidermis (2)

Subcutan. (2)

Dermis (3)

Output scoring filters

Text-basedinterface for

Geant4 + optical

transport

Monte Carlo engine Geant4

GAMOS

Cherenkovlight scoring

Dosimetry scoring

• Physics model• Particle source• Geometry• Radiological properties• Optical properties• Scoring filters

High-energy photon transport

Charged particle generation +

transport

Optical photon generation +

transport

Optical Phantom Scattering Correction, Ks

1

Stratified Skin Scattering Correction, Ks

1

Summary• Cherenkov light can be related to dose deposition – current measurements have high uncertainty

• Monte Carlo simulations were used to find scattering correction factor 

Next Steps:

• Solving for  and 

• Apply formula for skin dosimetry

Acknowledgments

Dr. Yoichi Watanabe

for acting as my advisor in this research

Dr. Adam Green

for his continued guidance and advise throughout the development of this research

References1. Glaser, A. K., Zhang, R., Gladstone, D. J., & Pogue, B. W. (2014). Optical dosimetry of radiotherapy 

beams using Cherenkov radiation: The relationship between light emission and dose. Physics in Medicine and Biology Phys. Med. Biol., 59(14), 3789‐3811. doi:10.1088/0031‐9155/59/14/3789

2. Goulet, M., Rilling, M., Gingras, L., Beddar, S., Beaulieu, L., & Archambault, L. (2014). Novel, full 3D scintillation dosimetry using a static plenoptic camera. Med. Phys. Medical Physics, 41(8), 082101. doi:10.1118/1.4884036

3. Glaser, A. K., Voigt, W. H., Davis, S. C., Zhang, R., Gladstone, D. J., & Pogue, B. W. (2013). Three‐dimensional Čerenkov tomography of energy deposition from ionizing radiation beams. Optics Letters Opt. Lett., 38(5), 634. doi:10.1364/ol.38.000634

4. Glaser, A. K., Davis, S. C., Mcclatchy, D. M., Zhang, R., Pogue, B. W., & Gladstone, D. J. (2013). Projection imaging of photon beams by the Čerenkov effect. Med. Phys. Medical Physics, 40(1), 012101. doi:10.1118/1.4770286

5. Zhang, R., Glaser, A. K., Gladstone, D. J., Fox, C. J., & Pogue, B. W. (2013). Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x‐ray beam.Med. Phys. Medical Physics, 40(10), 101914. doi:10.1118/1.4821543

6. Jarvis, L. A., Zhang, R., Gladstone, D. J., Jiang, S., Hitchcock, W., Friedman, O. D., . . . Pogue, B. W. (2014). Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time.International Journal of Radiation Oncology*Biology*Physics, 89(3), 615‐622. doi:10.1016/j.ijrobp.2014.01.046

Image References1. http://www.vmoc.com/wp‐content/uploads/2013/04/IMRT‐Machine.jpg2. https://www.youtube.com/watch?v=X0LXJRyzovU, used with the permission of 

Jacqueline Andreozzi3. http://www.scint‐x.com/media/1748/scint_x_technology1.jpg4. http://www.aepint.nl/wp‐content/uploads/2016/01/Catalyst‐HD‐1‐260x220.jpg

C‐RAD Catalyst System

• Optically‐based patient positioning system

• Uses optical triangulation to obtain 3D coordinates of detected surface

• Automatic patient positioning

• Respiratory gating

• Cherenkov detection?

• Luminosity correction? [4]

top related