isolde nuclear reaction and nuclear structure course 22-25 april 2014

Post on 22-Feb-2016

33 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

ISOLDE Nuclear Reaction and Nuclear Structure Course 22-25 April 2014. Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I). - PowerPoint PPT Presentation

TRANSCRIPT

ISOLDE Nuclear Reaction and

Nuclear Structure Course22-25 April 2014

Nuclear Reaction at Intermediate to Relativistic Energies: what data tell us (I)

Jeg kender ikke meget til meget;det jeg kender til er i forvejen meget udbredt.Tœnk at vide bare een bestemt ting,for eksempel forholdet mellem mariehønens pletter.

Benny Andersen,Viden1965

I do not know much about anything;what I know is already commonplace.Wouldn’t it be nice to know just one fact,for example the proportions of the spots of the ladybird.

Nobel Symposium NS 152

Phys. Scr. T 152(2013)

GSI

ISOLDE

GANILGANIL/SPIRAL

THEORY

2H1H 5Hunbound

7H7Hunbound

3He 4He 5Heunbound

6He808 ms

7Heunbound

8He119 ms

9Heunbound

10Heunbound

6Li 7Li 8Li840 ms

9Li179 ms

10Liunbound

11Li8.5 ms

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

9Bunbound

10B 11B 12B20.20 ms

13B17.33 ms

14B13.8 ms

15B10.4 ms

8B770 ms

16Bunbound

17B5.1 ms

n10.25 m

3H12.323 y

12Liunbound

13Liunbound

9C125 ms

10C19.3 s

11C20.4 m

12C 13C 14C5730 y

15C2.45 s

16C0.747 s

17C193 ms

18C92 ms

12N20.4 m

13N20.4 m

14N 15N

16O 17O 18O

19F

11Nunbound

13O8.58 ms

14O70.6 s

15O2.03 m

17F64.8 s

18F109.7 m

16N7.13 s

17N4.17 s

18N0.63 s

19N329 ms

19O27.1 s

20F11 s

20O13.5 s

21F4.16 s

12Ounbound

15Funbound

16Funbound

Light Nuclei in NatureProton RichNeutron RichResonances

N

Z

16Beunbound

15Beunbound

SpinsMoments

MomentumDistributions

ReactionCross Sections

BetaDecay

UnboundNuclei

Experimental Studies of Dripline Nuclei

MassesMatter Radii

CorrelationsMomentum

Profile Function

ChargeRadii

Elastic Scattering

2H1H 5Hunbound

7H7Hunbound

3He 4He 5Heunbound

7Heunbound

8He119 ms

9Heunbound

10Heunbound

6Li 7Li 8Li840 ms

9Li179 ms

10Liunbound

11Li8.5 ms

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

9Bunbound

10B 11B 12B20.20 ms

13B17.33 ms

14B13.8 ms

15B10.4 ms

8B770 ms

16Bunbound

17B5.1 ms

n10.25 m

3H12.323 y

12Liunbound

13Liunbound

9C125 ms

10C19.3 s

11C20.4 m

12C 13C 14C5730 y

15C2.45 s

16C0.747 s

17C193 ms

18C92 ms

12N20.4 m

13N20.4 m

14N 15N

16O 17O 18O

19F

11Nunbound

13O8.58 ms

14O70.6 s

15O2.03 m

17F64.8 s

18F109.7 m

16N7.13 s

17N4.17 s

18N0.63 s

19N329 ms

19O27.1 s

20F11 s

20O13.5 s

21F4.16 s

12Ounbound

15Funbound

16Funbound

N

Z

16Beunbound

15Beunbound

6He808 ms

6He

3He 4He 5Heunbound

6He808 ms

7Heunbound

8He119 ms

9Heunbound

10Heunbound

W(qan) = 1 + 1.5(3)cos2(qan)

L.V. Chulkov et al., PRL 79 (1997) 201

W(qan) = 1 + 3cos2(qan)

L.V. Chulkov, G. Schrieder, Z. Phys A359 (97) 231

(p1/2)2 ~ 7 %

W(qan) = 1 + 1.5(3)cos2(qan)

)(EΓEEE)(EΓ

dEdσfnlfnfnlr

fnlfn 2

412])([

/

)(211)cot(

)sin()cos(1

420

22

22

fnfnfn

fnfnfn

fn

pOpra

p

pk

pkp

dEd

fm)(.aMeV)(.ε

μεk

3837323940

2

)(EΓEEE)(EΓ

dEdσfnlfnfnlr

fnlfn 2

412])([

/

Yu. Aksyutina et al., PLB 679 (2009) 191

s-wave: Effective-range approximation

Bertch et al., PRC 57 (1998) 1366

~ 9 %

B.V. Danilin et al., NPA 632 (98) 383

(p3/2)2 ~ 86 %(p1/2)2 ~ 5 %(s1/2)2 ~ 7 %

e≈ S2n

Yu. Aksyutina et al., PLB 679 (2009) 191

K. Markenroth et al., NP A679 (2001) 462

440 keV

Yu. Aksyutina et al., PLB 679 (2009) 191

:

Momentum Profile Function

Transverse Momentum Distribution

P.G. Hansen, PRL 77 (1996) 1016D. Basin et al., Phys. Rev. C 57 (1998) 2156

Yu. Aksyutina et al., PLB 718 (2013) 1309

6He806 ms

8He119 ms

7He806 ms

9He806 ms

9Li179 ms

10Li806 ms

11Li8.5 ms

11Be13.8 s

12Be23.6 ms

14Be4.35 ms

13Be806 ms

Vnn

VCnVCn

Unbound

Bound

N=8

11LiSn=369 keV

M.V. Zhukov et al. Phys. Rep. 231 (1993) 151

BORROMEAN

Isola Bella, Lago Maggiore

P.G. Hansen et al.

Ann.Rev.Nucl.Part. Sci. 45 (1995) 591 S.E. Pollack et al. Science 326 (2009) 1683

W(qnf) = 1-1.03cos (qnf) + 1.41cos2(qnf)

GSI, 287 MeV/u 11Li

pn1=-(pn2+p9Li)

s p

d

Simon, et al., Nucl. Phys. A791 (2007) 267.

Momentum Profile Function

(0d5/2)2

11(2) %

Aksyutina et al. PLB 718 (2013) 1309

m(11Li) = 3.6712(3) mNSi [LiF]

6Li 7Li 8Li840 ms

9Li179 ms

10Liunbound

11Li8.5 ms

12Liunbound

13Liunbound

|Q(11Li)| = 33.3(5) mbZn [LiNbO3]

|Q(11Li)/Q(9Li)| = 1.088(15)

R. Neugart et al., PRL 101(2008) 132502

D. Borremans et al., PRC 72 (2005) 044309

Ip=3/2- Ip=3/2-

GANIL41 MeV/u 14B, C target

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

16Beunbound

J.L. Lecouey, Few Body Systems 34 (2004)21G. Randisi, Thesis Uni. Caen (2011)

15Beunbound

Spyrou et al.,, PRL 108(2012) 102501

Snyder et al.,, PRC 88(2013) 031303

15Be

16Be

14Be4.35 ms

16Beunbound

15Beunbound

17B5.1 ms

Y. Kondo et al., PLB 690 (2010) 245

RIKEN69 MeV/u 14Be, Lq H target

GSI304 MeV/u 14Be, Lq H target

Yu. Aksyutina et al., Phys. Rev. C 87 (2013) 064316

RIKEN 69 MeV/u

GSI 304 MeV/u

INTERFERENCE ?

Yu. Aksyutina et al., Phys. Rev. C 87 (2013) 064316

2H1H 5Hunbound

7H7Hunbound

3He 4He 5Heunbound

6He808 ms

7Heunbound

8He119 ms

9Heunbound

10Heunbound

6Li 7Li 8Li840 ms

9Li179 ms

10Liunbound

11Li8.5 ms

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

9Bunbound

10B 11B 12B20.20 ms

13B17.33 ms

14B13.8 ms

15B10.4 ms

8B770 ms

16Bunbound

17B5.1 ms

n10.25 m

3H12.323 y

12Liunbound

13Liunbound

9C125 ms

10C19.3 s

11C20.4 m

12C 13C 14C5730 y

15C2.45 s

16C0.747 s

17C193 ms

18C92 ms

12N20.4 m

13N20.4 m

14N 15N

16O 17O 18O

19F

11Nunbound

13O8.58 ms

14O70.6 s

15O2.03 m

17F64.8 s

18F109.7 m

16N7.13 s

17N4.17 s

18N0.63 s

19N329 ms

19O27.1 s

20F11 s

20O13.5 s

21F4.16 s

12Ounbound

15Funbound

16Funbound

N

Z

16Beunbound

15Beunbound

5Heunbound

10Liunbound

7Hunbound

4He 6He808 ms

7Heunbound

8He119 ms

9Heunbound

10Heunbound

6Li 7Li 8Li840 ms

9Li179 ms

11Li8.5 ms

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

12Liunbound

13Liunbound

11Li: Neutron knock-out reaction -> 10LiProton knock-out reactions ->

9,10He14Be: Neutron knock-out reaction -> 13BeProton knock-out reactions ->

12,13Li 8He: Neutron knock-out reaction -> 7He

Proton knock-out reaction -> (7H)

Dripline nuclei as stepping stones towards the unbound

10Liunbound

6Li 7Li 8Li840 ms

9Li179 ms

11Li8.5 ms

12Liunbound

13Liunbound

Forssén et al. Nucl. Phys. A 673(2000) 143

Yu. Aksyutina et al., Phys. Lett. B 666 (2008) 430

Al Kalanee et al., PRC 88 (2013) 034301

3He 4He 5Heunbound

6He808 ms

7Heunbound

8He119 ms

9Heunbound

10Heunbound

Johansson et al., Nucl. Phys. A842 (2010) 15

8He+n

Neyman-Pearson test

3He 4He 5Heunbound

6He808 ms

7Heunbound

8He119 ms

10Heunbound

9Heunbound

8He+n+n

Johansson et al., Nucl. Phys. A842 (2010) 15

8He+n+n

efn= Efn/E enn= Enn/E

(s1/2)2 ~ 37 %(p1/2)2 ~ 47 %(p3/2)2 ~ 9 %

N.B. Shulgina et al., Nucl. Phys. A825 (2009) 175

9Heunbound

10Heunbound

11Li8.5 ms

T

Y

0 – 3 MeV

Restricted series of hyperspherical harmonics assuming

Ip = 0+ and K ≤ 2

Energy and angular correlations

3 – 7 MeV

T

Y

Restricted series of hyperspherical harmonics assuming

Ip = 2+ and K ≤ 4

Energy and angular correlations

Johansson et al., Nucl. Phys. A847 (2010) 66

7Be 8Beunbound

9Be 10Be1.6 106 y

11Be13.8 s

12Be23.6 ms

13Beunbound

14Be4.35 ms

16Beunbound

Ip=2+

15Beunbound

RIKEN68 MeV/u 14Be,

12C target

Sugimoto et al., Phys. Lett. B654 (2007) 160

Yu. Aksyutina et al., PRL 111, 242501 (2013)

efn= Efn/E

[2,0] [0,2]

[2,2]

2 MeV < Efnn < 3 MeV

E* = 3.54(16) MeV, G = 1.5 MeVIp = 2+ (1s1/2,0d5/2) ≈ 90 %

L.M. Delves, Nucl. Phys. 20 (1960) 275

0.5 MeV < Efnn < 1.0 MeV

Sequential Decay

C.R. Hoffman et al., PLB 672 (2009) 17

R. Kanungo et al., PRL 102 (2009) 152501

GSI

MSU

S=1.74(19) 2+: 4.7 MeV

T. Otsuka et al., PRL 105 (2010) 032501

N.A. Smirnova et al., PLB 686 (2010) 109

T. Otsuka et al., PRL 104 (2010) 032501

23O82 ms

24O61 ms

25Ounbound

24F0.34 s

25F50 ms

26F10.2 ms

27F4.9 ms

28Funbound

29F2.6 ms

C.R. Hoffman et al. PRL 100 (2008) 152502

26Ounbound

30Funbound

31F>260 ns

28Ounbound

GSI : Data September 2010

Shell gap n1s1/2 – n0d3/2

4.86(13) MeV

Edecay=770 keV, G= 172 keV, l=2

MoNA

B. Juradoet al. PLB 649 (2007) 43

23O82 ms

24O61 ms

25Ounbound

24F0.34 s

25F50 ms

26F10.2 ms

27F4.9 ms

28Funbound

29F2.6 ms

26Ounbound

30Funbound

31F>260 ns

28Ounbound

GSI : Data September 2010

C. Caesar et al. PRC 88 (2013) 034313

E. Lunderberg et al. PRL 108 (2012) 142503

Two-neutron radioactivity ?L.V. Grigorenko et al. PRL 111 (2013) 042501

Z. Kohley et al. PRL 110 (2013) 152501

Z. Kohley et al. PRL 110 (2013) 152501Negative log-likelihood

(-ln[L])

To view the world in this wayIs to see it with the eyes of a gambler.Our best choice is to cast the die again and again.To let it keep rolling in the hopeThat it will give returns high enoughto inspire new expectations.

Att betrakta världen så är att se på den med tärningsögon.Vårt bästa val är att kasta tärningen ofta, ofta.Att ständigt låta den rulla, att den må falla utmed en kvot stor nogför en ny förväntan att andas. Harry Martinson

Tärningspelet, 1971

top related