nanoscience and nanoelectronics - ieee computer...

Post on 23-Mar-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1 µm

Philip G. Collins

Dept. of Physics and Astronomy

Nanoscience and Nanoelectronics

Outline

• why go nano?

• what is nanotechnology?

• nanoelectronics

• nanosciencefor sensors

• why go nano?

IBM Research, 1992

Building with Atoms

One Atom “Trapped” Electrons

Copper at the Nanoscale

Everything changes at the quantum scale

Mechanical strength, toughness high strength, low weightcomposites

Chemical bonding, reactivity chemical and biologicalreceptors or sensors

Thermal insulators, conductors high temperature orhigh power applications

Electrical conductivity, ductility microelectronics

Optical absorption, reflectivity high bandwidth fibersor waveguides

Physical Property Applications

Al Si P ArCl

C

He

NeN FO

Cr Fe Co Ni CuTi

Pt Au

Nb Pd Ag

H

I Xe

Pb Bi

Ge AsGa KrBr83.80

131.29

4.0026

20.18014.007

39.94835.453

18.99815.99912.01

26.982 28.086 30.974

69.723 7 2.61 74.922 79.904

126.90

207.2 208.98

58.933 58.693 63.546

1.0079

47.867 51.996 55.845

92.906 106.42 107.87

195.08 196.97

PERIOD

GROUP

1

2

3

4

5

6

2

107

1817

98

36

54

16

13 14 15

28 29 31 32 33 35

5346 47

78 79 83

1

22 24 26 27

41

HY DROGEN

NIOBIUM

TIT ANIUM CHROMIUM COBA L TIRON

HELIUM

NEO NNIT ROGEN FL UORINEOXYGENCARBON

ARGONCHLORINEALUM INIUM SILICON P HOS PHORUS

KRYP T ONNICKEL COPPER G ALLIUM GERMANIUM ARSENIC B ROMINE

XENONIODINEPALLADIUM SIL V ER

P LA TINUM GOLD LEAD BISMUTH

11

13 14 15 16 17

181

54 6 8 9 10

NanoPeriodic Table – Under construction

Jim Heath, UCLA

© Foresight Institute

tech·nol·o·gy n1. The application of science,

especially to industrial or commercial objectives

Outline

• why go nano?

• what is nanotechnology?

• nanoelectronics

• nanosciencefor sensors

• what is nanotechnology?

Nanoscience Nanofiction

© Vic Olliver

Nanorobots repairingred blood cells

Nanotechnology

© QuantumDot Corp.

Inside a fluorescentlylabeled cell

REPORTS

www.sciencemag.org SCIENCE VOL 291 16 MARCH 2001 2115

Colloidal Nanocrystal Shapeand Size Control: The Case of

CobaltVictor F. Puntes, * Kannan M. Krishnan, A. Paul Alivisatos

We show that a relatively simple approach for controlling the colloidal synthesis of anisotropic cadmium selenide semiconductor nanorods can be extended to the size-controlled preparation of magnetic cobalt nanorods as well as spher-ically shaped nanocrystals. This approach helps define a minimum feature set needed to separately control the sizes and shapes of nanocrystals. The resulting cobalt nanocrystals produce interesting two- and three-dimensional super-structures, including ribbons of nanorods.

Nanoscience

though the best

inventions begin as

fictions …

NanofictionNanotechnology

Nanoscience NanofictionNanotechnology

© Foresight Institute

Cumings, UC Berkeley

?

Outline

• why go nano?

• what is nanotechnology?

• nanoelectronics

• nanosciencefor sensors

• nanoelectronics

Shrinking Electronics to the Nanoscale

Goals:

- high speed

- low power

- high density

- ‘quantum’ devices

Candidates:

- silicon

- polymers

- dendrimers

- metallorganics

- nanowires / nanotubes

Mark Reed Yale University

McEuenCornell University

Park, McEuenHarvard University

Nanotubes & nanowires bridge the gap to the molecular world:

contactable systems with extended, low-D electronic states

1 µm100 µm

0.1 µm

Carbon Nanotube Electronic Circuits

Martel APL (1998)IBM Yorktown

Semiconducting Nanotubes

Nanotube FET Si p-MOSFET

Rc : 90 Ω µm 100 Ω µm

µ : 10,000 cm2/Vs 100 cm2/Vs

G: 1260 µS/µm 430 µS/µm

as Field-Effect Transistors

p-type SWNT

Controlled Doping of Nanotubes

n-type SWNT

intrinsic SWNT

Carbon Nanotube Logic Devices

Derycke, Nanoletters (2001)IBM Research

Nanoscience Nanotechnology

does this technology

compete with a $0.0000001 product?

Nanofiction

Outline

• why go nano?

• what is nanotechnology?

• nanoelectronics

• nanosciencefor sensors

• nanosciencefor sensors

20% O2T = 290K

Collins et al, Science (2000)

t (min)

275

250

2250 100 200 300 400 500

R (k

ohm

)pure N2

Nanocircuits for Chem/Bio Sensors

Sensor Markets•Industrial process gases•Medicines, anesthetics•Emissions, pollutants•Explosives, illicit drugs•Chemical warfare•Biothreat agents

1 nm

10 nm

100 nm

1 µ

DNAVirus

Bacteria Proteins Atoms & Molecules

Conventional Sensor Technologies

Electrochemical

Optical– Gas Chromatography– Mass Spectrometry– Infrared– Surface Plasmon / Raman

Mechanical– Surface Acoustic Wave– Bulk Acoustic Wave

Electronic– Metal Oxide Semiconductors– FETs– Conducting Polymers

Perf

orm

ance

Complexity / Cost

Metal Oxide Semiconductor

GC

Electrochemical

Mass Spec

SAW

Infrared

Conducting Polymers

Sensor Performance

OptimalProduct

Design Criteria for an “ideal sensor”

• High sensitivity• High selectivity

• Miniature• Ultra Low Power

Optical

• Simple, robust design/mechanism

V

Electronic

Molecular and Chemical Circuits

V

Direct electrical readout

of molecular interactions

V

Selective Chemical Sensing - NH3 Sensor Prototype

Surface-Sensitizedtoward amine groups

0 1 2 3 4 5

0.01

0.10

1.00

G/G

o

t (min)0.001

AirNH3 NH3 NH3 NH3

change in transistor conductance at fixed gate

Collins, Nanomix Research

Selective Chemical Sensing - NH3 Sensor Prototype

S D

S D

S D

0100200300400500600

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

time, min

I (nA

)

0

100

200

300

400

0.0 0.6 1.2 1.8 2.3 2.9 3.5 4.1

time (min)

I (nA

)

0

50

100

150

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

time (min)I (

nA)

Bare Device

Passivated Device

OptimumArchitecture

Nanoelectronic Sensors - H2 and Hydrocarbon Sensing

Pd-SensitizedCircuit

Simple Nanotube Circuit

0.010 0.5 1.0 1.5 2.0

0.10

1.00

G/G

o

t (min)

Air H2 H2 H2 H2

Collins, Nanomix Research

Array of four devices two of which are sensitized

1.00

0.10

0.01Con

duct

ance

Selective Chemical Sensing - H2 Sensor Prototype

Sensitivity

20

100R

elat

ive

Con

duct

ance

, %

t (min)

Selectivity

G/G

o

Manufacturable Sensor Architecture

Biofunctional Sensors

Antibody to Molecular Wire

Protein to Molecular Wire

Protein-coated nanotube

Selective Biological Sensing

A. Star Nanoletters (2003)Nanomix Research

Sour

ce-D

rain

Cur

rent

(µA

)

Biotin-labelledNanotube transistor

0.0

0.4

0.8

1.2

-10 0 10

Gate Voltage (V)

After Streptavidinbinding

V

Biotin

Streptavidin

CNT Circuit

Selectivity through Materials

Molecular Wires for Molecular Sensing

Summary Acknowledgements

Philip Collins UCI Dept. of Physics and AstronomyCOLLINSP@UCI.EDU

• why go nano?

• what is nanotechnology?

• nanoelectronics

• nanosciencefor sensors

Engineering the Microworld at The University of California, IrvineUCI Integrated Nanosystems Research Facility

top related