semiconductor device modeling and characterization ee5342, lecture 9-spring 2002

Post on 05-Feb-2016

20 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Diode Switching. Consider the charging and discharging of a Pn diode (N a > N d ) W d

TRANSCRIPT

L09 12Feb02 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 9-Spring 2002

Professor Ronald L. Carterronc@uta.edu

http://www.uta.edu/ronc/

L09 12Feb02 2

Diode Switching

• Consider the charging and discharging of a Pn diode – (Na > Nd)

– Wd << Lp

– For t < 0, apply the Thevenin pair VF and RF, so that in steady state • IF = (VF - Va)/RF, VF >> Va , so current source

– For t > 0, apply VR and RR

• IR = (VR + Va)/RR, VR >> Va, so current source

L09 12Feb02 3

Diode switching(cont.)

+

+ VF

VR

DRR

RF

Sw

R: t > 0

F: t < 0

ItI s

F

FF R

VI0tI

VF,VR >>

Va

F

F

F

aFQ R

VR

VVI

0,t for

L09 12Feb02 4

Diode chargefor t < 0

xn xncx

pn

pno

Dp2W

,IWV,xqp'Q

2N

TR

TRFnFnndiff,p

D

2i

noV/V

noFn Nn

p ,epV,xp tF

dxdp

qDJ since ,qAD

Idxdp

ppp

F

L09 12Feb02 5

Diode charge fort >>> 0 (long times)

xn xncx

pn

pno

tF V/Vnon ep0t,xp

t,xp

sppp

S Jdxdp

qDJ since ,qAD

Idxdp

L09 12Feb02 6

Equationsummary

Q discharge to flows

R/VI current, a 0, but small, t For

RV

I ,qAD

Idxdp

AJI ,AqD

I

JqD1

dxdp

RRR

F

FF

p

F

0t,F

ssp

s

,ppt,R

L09 12Feb02 7

Snapshot for tbarely > 0

xn xncx

pn

pno

p

F

qADI

dxdp

p

RqAD

Idxdp

tF V/Vnon ep0t,xp

0t,xp Total charge removed, Qdis=IRt

st,xp

L09 12Feb02 8

I(t) for diodeswitching

ID

t

IF

-IR

ts ts+trr

- 0.1 IR

sRdischarge

p

Rs

tIQ

constant, a is qAD

Idxdp

,tt 0 For

pnp

p2is L/WtanhL

DqnI

L09 12Feb02 9

Band model review (approx. to scale)

qm

~ 4+V

Eo

EF

mEFp

EFn

Eo

Ec

Ev

EFi

qs,n

qs ~

4+V

Eo

Ec

Ev

EFi

qs,p

metal n-type s/c p-type s/c

qs ~

4+V

L09 12Feb02 10

Ideal metal to n-typebarrier diode (m>s,Va=0)

EFn

Eo

Ec

Ev

EFi

qs,n

qs

n-type s/c

qm

EF

m

metal

qBn

qVbi

q’n

No disc in Eo

Ex=0 in metal ==> Eoflat

Bn=m- s =

elec mtl to s/c barr

Vbi=Bn-n=

m-s elect s/c

to mtl barr Depl reg

L09 12Feb02 11

Ideal m to n s/c barr diode depletion width

xd

x

qN

d

Q’d =

qNdxd

x

Ex

-Em d

d

mx qN

xE

dxdE

xd

(Sheet of neg chg on mtl)= -Q’d

dctsmnBnbi

d

'jsemi,nma

d

abid

N/NlnVV

xC , VVV ,

qN

VV2x

L09 12Feb02 12

Real Schottkyband structure*

• Barrier transistion region,

• Interface statesabove o acc, p neutrl

below o dnr, n neutrl

Dit -> oo, qBn= Eg- o

Fermi level “pinned”

Dit -> 0, qBn= m - Goes to “ideal” case

L09 12Feb02 13

Fig 8.4* (a) Image charge and electric field lines at a metal-diel intf (b) Distortion of the potential barrier due to image forces with E=0 and (c) const E field

L09 12Feb02 14

Ideal metal to n-typeSchottky (Va>0)

qVa = Efn - Efm

Barrier for electrons from sc to m reduced to q(Vbi-Va)

qBn the same

DR decr

EFn

Eo

Ec

Ev

EFi

qs,n

qs

n-type s/c

qm

EF

m

metal

qBn

q(Vbi-Va)

q’nDepl reg

L09 12Feb02 15

Ideal m to n s/c Schottky diode curr

t0B

2sT

tasmssm

tabiDsa

s,ntbiDs

mmmss,nssma

mmmss,nssm

V/expT*AJ

1V/VexpJJJJ so

,V/VVexpNn ,0V

constv ,V/VexpNn and

,qvnJqvnJ ,0V

qvnJ ,qvnJ

L09 12Feb02 16

D DiodeGeneral FormD<name> <(+) node> <(-) node> <model name> [area value]ExamplesDCLAMP 14 0 DMODD13 15 17 SWITCH 1.5Model Form.MODEL <model name> D [model parameters] .model D1N4148-X D(Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=4p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=10 0uTt=11.54n)*$

L09 12Feb02 17

Diode Model ParametersModel Parameters (see .MODEL statement)

Description UnitDefault

IS Saturation current amp 1E-14N Emission coefficient 1ISR Recombination current parameter amp 0NR Emission coefficient for ISR 1IKF High-injection “knee” current amp infiniteBV Reverse breakdown “knee” voltage volt infiniteIBV Reverse breakdown “knee” current amp 1E-10NBV Reverse breakdown ideality factor 1RS Parasitic resistance ohm 0TT Transit time sec 0CJO Zero-bias p-n capacitance farad 0VJ p-n potential volt 1M p-n grading coefficient 0.5FC Forward-bias depletion cap. coef, 0.5EG Bandgap voltage (barrier height) eV

1.11

L09 12Feb02 18

Diode Model ParametersModel Parameters (see .MODEL statement)

Description UnitDefault

XTI IS temperature exponent 3TIKF IKF temperature coefficient (linear) °C-1 0TBV1 BV temperature coefficient (linear) °C-1 0TBV2 BV temperature coefficient (quadratic) °C-2 0TRS1 RS temperature coefficient (linear) °C-1 0TRS2 RS temperature coefficient (quadratic) °C-2 0

T_MEASURED Measured temperature °CT_ABS Absolute temperature °CT_REL_GLOBAL Rel. to curr. Temp. °CT_REL_LOCAL Relative to AKO model temperature

°C

For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see the .MODEL statement.

L09 12Feb02 19

The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. <(+) node> is the anode and <(-) node> is the cathode. Positive current is current flowing from the anode through the diode to the cathode. [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values.In the following equations:Vd = voltage across the intrinsic diode onlyVt = k·T/q (thermal voltage)

k = Boltzmann’s constantq = electron chargeT = analysis temperature (°K)Tnom = nom. temp. (set with TNOM option

L09 12Feb02 20

• Dinj– N~1, rd~N*Vt/iD– rd*Cd = TT =– Cdepl given by

CJO, VJ and M

• Drec– N~2, rd~N*Vt/iD– rd*Cd = ?– Cdepl =?

SPICE DiodeModel

L09 12Feb02 21

DC CurrentId = area(Ifwd - Irev) Ifwd = forward current = InrmKinj + IrecKgen Inrm = normal current = IS(exp ( Vd/(NVt))-1)

Kinj = high-injection factorFor: IKF > 0, Kinj = (IKF/(IKF+Inrm))1/2otherwise, Kinj = 1

Irec = rec. cur. = ISR(exp (Vd/(NR·Vt))- 1)

Kgen = generation factor = ((1-Vd/VJ)2+0.005)M/2

Irev = reverse current = Irevhigh + Irevlow

Irevhigh = IBVexp[-(Vd+BV)/(NBV·Vt)]Irevlow = IBVLexp[-(Vd+BV)/(NBVL·Vt)}

L09 12Feb02 22

vD=Vext

ln iD

Data

ln(IKF)

ln(IS)

ln[(IS*IKF) 1/2]

Effect

of Rs

t

a

VNFV

exp~

t

a

VNRV

exp~

VKF

ln(ISR)

Effect of high level injection

low level injection

recomb. current

Vext-

Va=iD*Rs

t

a

VNV

2exp~

L09 12Feb02 23

References

Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993.

MicroSim OnLine Manual, MicroSim Corporation, 1996.

top related