semiconductor device modeling and characterization ee5342, lecture 9-spring 2003

23
L9 11Feb03 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2003 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: kyle

Post on 26-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2003. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. SPICE Diode Static Model Eqns. Id = area  (Ifwd - Irev) Ifwd = Inrm  Kinj + Irec  Kgen Inrm = IS  { exp [Vd/(N  Vt)] - 1} - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 9-Spring 2003

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 2

Id = area(Ifwd - Irev) Ifwd = InrmKinj + IrecKgen Inrm = IS{exp [Vd/(NVt)] - 1}

Kinj = high-injection factorFor IKF > 0, Kinj = IKF/[IKF+Inrm)]1/2

otherwise, Kinj = 1

Irec = ISR{exp [Vd/(NR·Vt)] - 1}Kgen = ((1 - Vd/VJ)2 + 0.005)M/2

SPICE DiodeStatic Model Eqns.

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 3

• Dinj– IS– N ~ 1– IKF, VKF, N ~ 1

• Drec– ISR– NR ~ 2

SPICE DiodeStatic Model

Vd

iD*RS

Vext = vD + iD*RS

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 4

D DiodeGeneral FormD<name> <(+) node> <(-) node> <model name> [area value]ExamplesDCLAMP 14 0 DMODD13 15 17 SWITCH 1.5Model Form.MODEL <model name> D [model parameters] .model D1N4148-X D(Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=4p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=10 0uTt=11.54n)*$

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 5

Diode Model ParametersModel Parameters (see .MODEL statement)

Description UnitDefault

IS Saturation current amp 1E-14N Emission coefficient 1ISR Recombination current parameter amp 0NR Emission coefficient for ISR 1IKF High-injection “knee” current amp infiniteBV Reverse breakdown “knee” voltage volt infiniteIBV Reverse breakdown “knee” current amp 1E-10NBV Reverse breakdown ideality factor 1RS Parasitic resistance ohm 0TT Transit time sec 0CJO Zero-bias p-n capacitance farad 0VJ p-n potential volt 1M p-n grading coefficient 0.5FC Forward-bias depletion cap. coef, 0.5EG Bandgap voltage (barrier height) eV 1.11

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 6

Diode Model ParametersModel Parameters (see .MODEL statement)

Description UnitDefault

XTI IS temperature exponent 3TIKF IKF temperature coefficient (linear) °C-1 0TBV1 BV temperature coefficient (linear) °C-1 0TBV2 BV temperature coefficient (quadratic) °C-2 0TRS1 RS temperature coefficient (linear) °C-1 0TRS2 RS temperature coefficient (quadratic) °C-2 0

T_MEASURED Measured temperature °CT_ABS Absolute temperature °CT_REL_GLOBAL Rel. to curr. Temp. °CT_REL_LOCAL Relative to AKO model temperature

°C

For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see the .MODEL statement.

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 7

The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. <(+) node> is the anode and <(-) node> is the cathode. Positive current is current flowing from the anode through the diode to the cathode. [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values.In the following equations:Vd = voltage across the intrinsic diode onlyVt = k·T/q (thermal voltage)

k = Boltzmann’s constantq = electron chargeT = analysis temperature (°K)Tnom = nom. temp. (set with TNOM option

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 8

• Dinj– N~1, rd~N*Vt/iD– rd*Cd = TT =– Cdepl given by

CJO, VJ and M

• Drec– N~2, rd~N*Vt/iD– rd*Cd = ?– Cdepl =?

SPICE DiodeModel

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 9

DC CurrentId = area(Ifwd - Irev) Ifwd = forward current = InrmKinj + IrecKgen Inrm = normal current = IS(exp ( Vd/(NVt))-1)

Kinj = high-injection factorFor: IKF > 0, Kinj = (IKF/(IKF+Inrm))1/2otherwise, Kinj = 1

Irec = rec. cur. = ISR(exp (Vd/(NR·Vt))- 1)

Kgen = generation factor = ((1-Vd/VJ)2+0.005)M/2

Irev = reverse current = Irevhigh + Irevlow

Irevhigh = IBVexp[-(Vd+BV)/(NBV·Vt)]Irevlow = IBVLexp[-(Vd+BV)/(NBVL·Vt)}

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 10

vD=Vext

ln iD

Data

ln(IKF)

ln(IS)

ln[(IS*IKF) 1/2]

Effect

of Rs

t

a

VNFV

exp~

t

a

VNRV

exp~

VKF

ln(ISR)

Effect of high level injection

low level injection

recomb. current

Vext-

Va=iD*Rs

t

a

VNV

2exp~

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 11

Interpreting a plotof log(iD) vs. VdIn the region where Irec < Inrm < IKF, and iD*RS << Vd.

iD ~ Inrm = IS(exp (Vd/(NVt)) - 1)

For N = 1 and Vt = 25.852 mV, the slope of the plot of log(iD) vs. Vd is evaluated as

{dlog(iD)/dVd} = log (e)/(NVt) = 16.799 decades/V = 1decade/59.526mV

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 12

Static Model Eqns.Parameter ExtractionIn the region where Irec < Inrm < IKF, and iD*RS << Vd.

iD ~ Inrm = IS(exp (Vd/(NVt)) - 1)

{diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NVt)

so N ~ {dVd/d[ln(iD)]}/Vt = Neff,

and ln(IS) ~ ln(iD) - Vd/(NVt) = ln(ISeff).

Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 13

Static Model Eqns.Parameter ExtractionIn the region where Irec > Inrm, and iD*RS << Vd.

iD ~ Irec = ISR(exp (Vd/(NRVt)) - 1)

{diD/dVd}/iD = d[ln(iD)]/dVd ~ 1/(NRVt)

so NR ~ {dVd/d[ln(iD)]}/Vt = Neff,

& ln(ISR) ~ln(iD) -Vd/(NRVt)= ln(ISReff).

Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 14

Static Model Eqns.Parameter ExtractionIn the region where IKF > Inrm, and iD*RS << Vd.

iD ~ [ISIKF]1/2(exp (Vd/(2NVt)) - 1)

{diD/dVd}/iD = d[ln(iD)]/dVd ~ (2NVt)-1

so 2N ~ {dVd/d[ln(iD)]}/Vt = 2Neff,

and ln(iD) -Vd/(NRVt)= ln(ISIKFeff).

Note: iD, Vt, etc., are normalized to 1A, 1V, resp.

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 15

Static Model Eqns.Parameter Extraction

In the region where iD*RS >> Vd.

diD/Vd ~ 1/RSeff

dVd/diD = RSeff

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 16

Getting Diode Data forParameter Extraction• The model

used .model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

• Analysis has V1 swept, and IPRINT has V1 swept

• iD, Vd data in Output

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 17

diD/dVd - Numerical Differentiation

Vd iD diD/ dVd(central diff erence)

Vd(n-1) iD(n-1) … etc. …

Vd(n) iD(n) (iD(n+1) - iD(n-1))/ (Vd(n+1) - Vd(n-1))

Vd(n+1) iD(n+1) (iD(n+2) - iD(n))/ (Vd(n+2) - Vd(n))

Vd(n+2) iD(n+2) … etc. …

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 18

dln(iD)/dVd - Numerical Differentiation

Vd iD dln (iD)/ dVd (central diff erence)

Vd(n-1) iD(n-1) … etc. …

Vd(n) iD(n) ln (iD(n+1)/ iD(n-1))/ (Vd(n+1)-Vd(n-1))

Vd(n+1) iD(n+1) ln (iD(n+2)/ iD(n))/ (Vd(n+2) - Vd(n))

Vd(n+2) iD(n+2) … etc. …

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 19

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

iD(A), Iseff(A), and 1/Reff(mho) vs. Vext(V)

Diode Par.Extraction 1

2345

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Neff vs. Vext

1/Reff

iD

ISeff

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 20

Results ofParameter Extraction• At Vd = 0.2 V, NReff = 1.97,

ISReff = 8.99E-11 A.• At Vd = 0.515 V, Neff = 1.01,

ISeff = 1.35 E-13 A.• At Vd = 0.9 V, RSeff = 0.725 Ohm• Compare to

.model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 21

Hints for RS and NFparameter extractionIn the region where vD > VKF. Defining

vD = vDext - iD*RS and IHLI = [ISIKF]1/2.

iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt)

diD/diD = 1 (iD/2NVt)(dvDext/diD - RS) + …

Thus, for vD > VKF (highest voltages only)

plot iD-1 vs. (dvDext/diD) to get a line with

slope = (2NVt)-1, intercept = - RS/(2NVt)

Page 22: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 22

Application of RS tolower current dataIn the region where vD < VKF. We still have

vD = vDext - iD*RS and since.

iD = ISexp (vD/NVt) + ISRexp (vD/NRVt) Try applying the derivatives for methods

described to the variables iD and vD (using RS and vDext).

You also might try comparing t0he N value from the regular N extraction procedure to the value from the previous slide.

Page 23: Semiconductor Device  Modeling and Characterization EE5342, Lecture 9-Spring 2003

L9 11Feb03 23

References

Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993.

MicroSim OnLine Manual, MicroSim Corporation, 1996.