semiconductor device modeling and characterization – ee5342 lecture 28 – spring 2011

40
Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: brant

Post on 12-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. Ideal 2-terminal MOS capacitor/diode. conducting gate, area = LW. V gate. -x ox. SiO 2. 0. y. 0. L. silicon substrate. t sub. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

Semiconductor Device Modeling and

Characterization – EE5342 Lecture 28 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

2

Ideal 2-terminalMOS capacitor/diode

x

-xox

0SiO2

silicon substrate

Vgate

Vsub

conducting gate,area = LW

tsub

0y

L

Page 3: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

3

Band models (approx. scale)

Eo

Ec

Ev

qox ~ 0.95 eV

metal silicon dioxide p-type s/c

qm= 4.1 eV for Al

Eo

EFm EFp

Eo

EcEvEFi

qs,p

qSi= 4.05eV

Eg,ox~ 8 eV

Page 4: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

4

Flat band condition (approx. scale)

Ec,Ox

Ev

AlSiO2

p-Si

q(m-ox)= 3.15 eV

EFm

EFp

Ec

Ev

EFi

q(ox-Si)=3.1eV

Eg,ox~8eV

cond band-flat forVVV8.0

V

eV8.0EEThen

eV85.0EEIf

sgMS

fpfmFB

fpfm

fpc

qfp= 3.95e

V

Page 5: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

5

Equivalent circuitfor Flat-Band• Surface effect analogous to the

extr Debye length = LD,extr = [Vt/(qNa)]1/2

• Debye cap, C’D,extr = Si/LD,extr

• Oxide cap, C’Ox = Ox/xOx

• Net C is the series combOxextr,Dtot 'C1

'C1

'C1

C’Ox

C’D,extr

Page 6: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

6

Accumulation for Vgate< VFB

SiO2

p-type Si

Vgate< VFB

Vsub = 0

EOx,x<0

x

-xox0

tsubx,OxSi

OxSi

SiSix,OxOxOxOx

x,Ox

E31E

39.37.11

EE

0xVE

holes

Page 7: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

7

Accumulationp-Si, Vgs < VFBFig 10.4a*

Page 8: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

8

Equivalent circuitfor accumulation• Accum depth analogous to the

accum Debye length = LD,acc = [Vt/(qps)]1/2

• Accum cap, C’acc = Si/LD,acc

• Oxide cap, C’Ox = Ox/xOx

• Net C is the series combOxacctot 'C1

'C1

'C1

C’Ox

C’acc

Page 9: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

9

Depletion for p-Si, Vgate> VFB

SiO2

p-type Si

Vgate> VFB

Vsub = 0

EOx,x> 0

x

-xox0

tsubx,OxSi

OxSi

SiSix,OxOxOxOx

x,Ox

E31E

39.37.11

EE

0xVE

AcceptorsDepl Reg

Page 10: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

10

Depletion forp-Si, Vgate> VFBFig 10.4b*

Page 11: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

11

Equivalent circuitfor depletion• Depl depth given by the usual

formula = xdepl = [2Si(Vbb)/(qNa)]1/2

• Depl cap, C’depl = Si/xdepl

• Oxide cap, C’Ox = Ox/xOx

• Net C is the series comb

Oxdepltot 'C1

'C1

'C1

C’Ox

C’depl

Page 12: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

12

Inversion for p-SiVgate>VTh>VFB

Vgate> VFB

Vsub = 0

EOx,x> 0

inversion for threshold above

E Induced depletes 0

E Induced

0xVE

Si

SiOxOx

x,Ox

Acceptors

Depl Reg

e- e- e- e- e-

Page 13: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

13

Inversion for p-SiVgate>VTh>VFBFig 10.5*

Page 14: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

14

Approximation concept“Onset of Strong Inv”• OSI = Onset of Strong Inversion occurs

when ns = Na = ppo and VG = VTh

• Assume ns = 0 for VG < VTh

• Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh

• Cd,min = Si/xd,max for VG > VTh • Assume ns > 0 for VG > VTh

Page 15: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

15

MOS Bands at OSIp-substr = n-channelFig 10.9*

Page 16: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

16

Equivalent circuitabove OSI• Depl depth given by the maximum

depl = xd,max = [2Si|2p|/(qNa)]1/2

• Depl cap, C’d,min = Si/xd,max

• Oxide cap, C’Ox = Ox/xOx

• Net C is the series comb

Ox,mindtot 'C1

'C1

'C1

C’Ox

C’d,min

Page 17: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

17

MOS surface states**p- substr = n-channel

VGS s Surf chg Carr DenVGS < VFB < 0 s < 0 Accum. ps > Na

VGS = VFB < 0 s = Neutral ps = Na

VFB < VGS s > 0 Depletion ps < Na

VFB < VGS < VTh s = |p| I ntrinsic ns = ps = ni

VGS < VTh s > |p| Weak inv ni< ns < Na

VGS = VTh s = 2|p| O.S.I . ns = Na

Page 18: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

18

n-substr accumulation (p-channel)Fig 10.7a*

Page 19: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

19

n-substrate depletion(p-channel)Fig 10.7b*

Page 20: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

20

n-substrate inversion(p-channel)Fig 10.7*

Page 21: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

21

Values for gate workfunction, m

V 17.5q/E :Si-poly pV 05.4 :Si-poly n

V 55.4 :W ,TungstenV 65.5 :Pt ,Platinum

V 6.4 :Mo ,MolybdenumV 1.5 :Au ,Gold

V 28.4 :Al ,umminAlu

gSim

Sim

mm

m

m

m

Page 22: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

22

Values for ms

with metal gate

02586.0V ,12.1E ,19E8.2N10E45.1n ,05.4 ,28.4

NNlnV :Si-n to Al

nNlnVq2

EnNNlnV :Note

nNNlnV :Si-p to Al

tgC

iSiAlm,

dCtSiAlm,ms

iat

g2i

aCt

2i

aCtSiAlm,ms

Page 23: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

23

Values for ms

with silicon gate

idt

g

dCt

dCtSi

gSims

iat

g2i

aCt

2i

aCtSiSims

nNlnVq2

ENNlnV :Note

NNlnVq

E :Si-n to poly p

nNlnVq2

EnNNlnV :Note

nNNlnV :Si-p to poly n

Page 24: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

24Fig 10.15*

ms(V)

NB (cm-3)

Typical ms values

Page 25: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

25

Flat band with oxidecharge (approx. scale)

Ev

AlSiO2

p-Si

EFm

Ec,Ox

Eg,ox~8eV EFp

Ec

Ev

EFi

'Ox

'ss

msOxmsFB

Ox

Oxc

Ox

'ss

x

ssm

ss

CQVV

xV

dxdE

q1QE

surface gate the onis Q'Q' charge

a cond FB at thenbound, Ox/Si the at

is Q' charge a If

q(fp-ox)q(Vox)

q(m-ox)

q(VFB) VFB= VG-VB, when Si bands

are flat

Ex

+<--Vox-->-

Page 26: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

26

Flat-band parametersfor n-channel (p-subst)

0nNlnVq2

EnNNlnV

gate, Si-poly n a For

den chg Ox/Si the is 'Q ,x'C

'C'QV :substratep

iat

g2i

actms

sms

ssOxOx

Ox

OxssmsFB

Page 27: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

27

Flat-band parametersfor p-channel (n-subst)

0nNlnVq2

EnNNlnV

qE gate, Si-poly p a For

den chg Ox/Si the is 'Q ,x'C

change) (no 'C'QV :substraten

idt

g2i

dvtms

gsms

ssOxOx

Ox

OxssmsFB

Page 28: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

28

Inversion for p-SiVgate>VTh>VFB

Vgate> VFB

Vsub = 0

EOx,x> 0

inversion for threshold above

E Induced depletes 0

E Induced

0xVE

Si

SiOxOx

x,Ox

Acceptors

Depl Reg

e- e- e- e- e-

Page 29: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

29

Approximation concept“Onset of Strong Inv”• OSI = Onset of Strong Inversion occurs

when ns = Na = ppo and VG = VTh

• Assume ns = 0 for VG < VTh

• Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh

• Cd,min = Si/xd,max for VG > VTh • Assume ns > 0 for VG > VTh

Page 30: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

30

MOS Bands at OSIp-substr = n-channel

Fig 10.9*

2q|p|

qp

xd,max

Page 31: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

31

Computing the D.R. W and Q at O.S.I.

Ex

Emax

x

aSi

x NqdxdE

a

pSid qN

x

22

,max

parea 2

,max,max' dad xqNQ

Page 32: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

32

Calculation of thethreshold cond, VT

Ox the across Q' induce to addedvoltage the isV where V,VVsub)-p sub,-(n xNqQ' is

charge extra the and x of value the reached has region depletion

The inverted. is surface the whenreached is condition threshold The

d,max

FBT

d,maxBd,max

d,max

Page 33: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

33

Equations forVT calculation

substr-n for 0 substr,- p for 0VqN22x ,xNqQ'

0nNV 0N

nV

CQ2VV substrnp

da

npd,maxd,maxa,dd,max

id

tnai

tp

Ox

dnpFBT

,

,

',max

,

,ln,ln

':,

Page 34: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

34

Fully biased n-MOScapacitor

0y

L

VG

Vsub=VB

EOx,x> 0

Acceptors

Depl Reg

e- e- e- e- e- e- n+ n+

VS VD

p-substrate

Channel if VG > VT

Page 35: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

35

MOS energy bands atSi surface for n-channel

Fig 8.10**

Page 36: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

36

Computing the D.R. W and Q at O.S.I.

Ex

Emax

x

aSi

x NqdxdE

a

SBpSid qN

VVx

)(22,max

)(2 SBp VVarea

,maxda,maxd xqNQ

Page 37: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

37

Q’d,max and xd,max forbiased MOS capacitor

Fig 8.11**

xd,max

(m) )2-

d,max

(cmq

Q'

Page 38: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

38

Fully biased n-channel VT calc

0V ,qN

VV22x

,xNqQ' ,0NnlnV

VV'C'Q2VVV

VV :substratep

aCBp

d,max

d,maxad,maxaitp

FBOx,maxd

pFBCT

Tthreshold at ,G

Page 39: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

39

n-channel VT forVC = VB = 0

Fig 10.20*

Page 40: Semiconductor Device Modeling and Characterization – EE5342 Lecture 28 – Spring 2011

©rlc L28-13Apr2011

40

References* Semiconductor Physics & Devices,

by Donald A. Neamen, Irwin, Chicago, 1997.

**Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986