semiconductor device modeling and characterization – ee5342 lecture 10– spring 2011

30
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: autumn-jackson

Post on 01-Jan-2016

39 views

Category:

Documents


4 download

DESCRIPTION

Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. First Assignment. e-mail to [email protected] In the body of the message include subscribe EE5342 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

Semiconductor Device Modeling and

Characterization – EE5342 Lecture 10– Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

2

First Assignment

• e-mail to [email protected]– In the body of the message include

subscribe EE5342

• This will subscribe you to the EE5342 list. Will receive all EE5342 messages

• If you have any questions, send to [email protected], with EE5342 in subject line.

Page 3: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

3

Second Assignment

• Submit a signed copy of the document that is posted at

www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

Page 4: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

4

Additional University Closure Means More Schedule

Changes• Plan to meet until noon some days in the next few weeks. This way we will make up for the lost time. The first extended class will be Monday, 2/14.

• The MT changed to Friday 2/18• The P1 test changed to Friday 3/11.• The P2 test is still Wednesday 4/13• The Final is still Wednesday 5/11.

Page 5: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

MT and P1 Assignment on Friday, 2/18/11

• Quizzes and tests are open book – must have a legally obtained copy-no

Xerox copies.– OR one handwritten page of notes.– Calculator allowed.

• A cover sheet will be published by Wednesday, 2/16/11.

©rlc L10-16Feb2011

5

Page 6: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

6

Ideal JunctionTheory

Assumptions

• Ex = 0 in the chg neutral reg. (CNR)

• MB statistics are applicable• Neglect gen/rec in depl reg (DR)• Low level injections apply so that

np < ppo for -xpc < x < -xp, and pn < nno for xn < x < xnc

• Steady State conditions

Page 7: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

7

Forward Bias Energy Bands

1eppkT/EEexpnp ta VV0nnFpFiiequilnon

1/exp 0 ta VV

ppFiFniequilnon ennkTEEnn

Ev

Ec

EFi

xn xnc-xpc -xp 0

q(Vbi-Va)

EFPEFNqVa

x

Imref, EFn

Imref, EFp

Page 8: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

8

Law of the junction(follow the min. carr.)

t

bia

n

p

p

na

t

bi

no

po

po

no

po

not

no

pot2

i

datbi

V

V-Vexp

n

n

pp

,0V when and

,V

V-exp

n

n

pp

get to Invert

.nn

lnVp

plnV

n

NNlnVV

Page 9: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

9

Law of the junction (cont.)

t

a

pt

a

n

t

a

t

a

t

bi

t

bia

VV

2ixpp

VV

2ixnn

VV

no

2iV

V

pono

pon

VV

nopoVV-V

pn

ennp also ,ennp

Junction the of Law the

enn

epn

np have We

enn nda epp for So

Page 10: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

10

Law of the junction (cont.)

dnonapop

ppnn

ppopppop

nnonnnon

a

Nnn and Npp

injection level- low Assume

.pn and pn Assume

.ppp ,nnn and

,nnn ,ppp So

. 0V for nnot' eq.-non to Switched

Page 11: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

11

pt

apop

nt

anon

V

V-

pononoV

V-V

pon

t

biaponno

xx at ,1VV

expnn sim.

xx at ,1VV

exppp so

,epp ,pepp

giving V

V-Vexpppp

t

bi

t

bia

InjectionConditions

Page 12: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

12

Ideal JunctionTheory (cont.)

Apply the Continuity Eqn in CNR

ncnn

ppcp

xxx ,Jq1

dtdn

tn

0

and

xxx- ,Jq1

dtdp

tp

0

Page 13: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

13

Ideal JunctionTheory (cont.)

ppc

nn

p2p

2

ncnpp

n2n

2

ppx

nnxx

xxx- for ,0D

n

dx

nd

and ,xxx for ,0D

p

dx

pd

giving dxdp

qDJ and

dxdn

qDJ CNR, the in 0E Since

Page 14: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

14

Ideal JunctionTheory (cont.)

)contacts( ,0xnxp and

,1en

xn

pxp

B.C. with

.xxx- ,DeCexn

xxx ,BeAexp

So .D L and D L Define

pcpncn

VV

po

pp

no

nn

ppcL

xL

x

p

ncnL

xL

x

n

pp2pnn

2n

ta

nn

pp

Page 15: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

15

Excess minoritycarrier distr fctn

1eLWsinh

Lxxsinhnxn

,xxW ,xxx- for and

1eLWsinh

Lxxsinhpxp

,xxW ,xxx For

ta

ta

VV

np

npcpop

ppcpppc

VV

pn

pncnon

nncnncn

Page 16: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

16

Carrier Injection

-xp

xn-xpc 0

ln(carrier conc)ln Naln Nd

ln ni

ln ni2/Nd

ln ni2/Na

xnc

x

~Va/Vt~Va/Vt

1enxn t

aV

V

popp

1epxp t

aV

V

nonn

Page 17: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

17

Minority carriercurrents

1eLWsinh

Lxxcosh

LNDqn

xxx- for ,qDxJ

1eLWsinh

Lxxcosh

LN

Dqn

xxx for ,qDxJ

ta

p

ta

n

VV

np

npc

na

n2i

ppcdx

ndnn

VV

pn

pnc

pd

p2i

ncndxpd

pp

Page 18: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

18

Evaluating thediode current

p/nn/pp/nd/a

p/n2isp/sn

spsns

VV

spnnp

LWcothLN

DqnJ

sdefinition with JJJ where

1eJxJxJJ

then DR, in gen/rec no gminAssu

ta

Page 19: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

19

Special cases forthe diode current

nd

p2isp

pa

n2isn

nppn

pd

p2isp

na

n2isn

nppn

WN

DqnJ and ,

WND

qnJ

LW or ,LW :diode Short

LN

DqnJ and ,

LND

qnJ

LW or ,LW :diode Long

Page 20: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

20

Ideal diodeequation• Assumptions:

– low-level injection– Maxwell Boltzman statistics– Depletion approximation– Neglect gen/rec effects in DR– Steady-state solution only

• Current dens, Jx = Js expd(Va/Vt)

– where expd(x) = [exp(x) -1]

Page 21: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

21

Ideal diodeequation (cont.)• Js = Js,p + Js,n = hole curr + ele curr

Js,p = qni2Dp coth(Wn/Lp)/(NdLp) =

qni2Dp/(NdWn), Wn << Lp, “short” =

qni2Dp/(NdLp), Wn >> Lp, “long”

Js,n = qni2Dn coth(Wp/Ln)/(NaLn) =

qni2Dn/(NaWp), Wp << Ln, “short” =

qni2Dn/(NaLn), Wp >> Ln, “long”

Js,n << Js,p when Na >> Nd

Page 22: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

22

Diffnt’l, one-sided diode conductance

Va

IDStatic (steady-state) diode I-V characteristic

VQ

IQ QVa

DD dV

dIg

t

asD V

VdexpII

Page 23: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

23

Diffnt’l, one-sided diode cond. (cont.)

DQ

t

dQd

QDDQt

DQQd

tat

tQs

Va

DQd

tastasD

IV

g1

Vr ,resistance diode The

. VII where ,V

IVg then

, VV If . V

VVexpI

dV

dIVg

VVdexpIVVdexpAJJAI

Q

Page 24: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

24

Charge distr in a (1-sided) short diode

• Assume Nd << Na

• The sinh (see L12) excess minority carrier distribution becomes linear for Wn << Lp

pn(xn)=pn0expd(Va/Vt)

• Total chg = Q’p = Q’p = qpn(xn)Wn/2x

n

x

xnc

pn(xn

)

Wn = xnc-

xn

Q’p

pn

Page 25: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

25

Charge distr in a 1-sided short diode

• Assume Quasi-static charge distributions

• Q’p = Q’p =

qpn(xn)Wn/2

• dpn(xn) = (W/2)*

{pn(xn,Va+V) -

pn(xn,Va)}x

n

xxnc

pn(xn,Va)

Q’p

pn pn(xn,Va+V)

Q’p

Page 26: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

26

Cap. of a (1-sided) short diode (cont.)

p

x

x p

ntransitQQ

transitt

DQ

pt

DQQ

taaa

a

Ddx

Jp

qVV

V

I

DV

IV

VVddVdV

dVA

nc

n2W

Cr So,

. 2W

C ,V V When

exp2

WqApd2

)W(xpqAd

dQC Define area. diode A ,Q'Q

2n

dd

2n

dta

nn0nnn

pdpp

Page 27: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

27

General time-constant

np

a

nnnn

a

pppp

pnVa

pn

Va

DQd

CCC ecapacitanc diode total

the and ,dVdQ

Cg and ,dV

dQCg

that so time sticcharacteri a always is There

ggdV

JJdA

dVdI

Vg

econductanc the short, or long diodes, all For

QQ

Page 28: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

28

General time-constant (cont.)

times.-life carr. min. respective the

, and side, diode long

the For times. transit charge physical

the ,D2

W and ,

D2W

side, diode short the For

n0np0p

n

2p

transn,np

2n

transp,p

Page 29: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

29

General time-constant (cont.)

Fdd

transitminF

gC

and 111

by given average

the is time transition effective The

sided-one usually are diodes Practical

Page 30: Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011

©rlc L10-16Feb2011

30

References *Fundamentals of Semiconductor Theory and Device

Physics, by Shyh Wang, Prentice Hall, 1989. **Semiconductor Physics & Devices, by Donald A.

Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd

ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.

• 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986.

• 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

• 3 Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.