semiconductor device modeling and characterization ee5342, lecture 7-spring 2002

25
L07 04Feb02 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 7-Spring 2002 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: oliver

Post on 25-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Semiconductor Device Modeling and Characterization EE5342, Lecture 7-Spring 2002. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. Ideal Junction Theory. Assumptions E x = 0 in the chg neutral reg. (CNR) MB statistics are applicable Neglect gen/rec in depl reg (DR) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 7-Spring 2002

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 2

Ideal JunctionTheory

Assumptions

• Ex = 0 in the chg neutral reg. (CNR)

• MB statistics are applicable• Neglect gen/rec in depl reg (DR)• Low level injections apply so that

np < ppo for -xpc < x < -xp, and pn

< nno for xn < x < xnc

• Steady State conditions

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 3

Ideal JunctionTheory (cont.)

Apply the Continuity Eqn in CNR

ncnn

ppcp

xxx ,Jq1

dtdn

tn

0

and

xxx- ,Jq1

dtdp

tp

0

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 4

Ideal JunctionTheory (cont.)

ppc

nn

p2p

2

ncnpp

n2n

2

ppx

nnxx

xxx- for ,0D

n

dx

nd

and ,xxx for ,0D

p

dx

pd

giving dxdp

qDJ and

dxdn

qDJ CNR, the in 0E Since

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 5

Ideal JunctionTheory (cont.)

)contacts( ,0xnxp and

,1en

xn

pxp

B.C. with

.xxx- ,DeCexn

xxx ,BeAexp

So .D L and D L Define

pcpncn

VV

po

pp

no

nn

ppcL

xL

x

p

ncnL

xL

x

n

pp2pnn

2n

ta

nn

pp

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 6

Excess minoritycarrier distr fctn

1eLWsinh

Lxxsinhnxn

,xxW ,xxx- for and

1eLWsinh

Lxxsinhpxp

,xxW ,xxx For

ta

ta

VV

np

npcpop

ppcpppc

VV

pn

pncnon

nncnncn

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 7

Forward Bias Energy Bands

xn xnc-xpc -xp 0

Ev

Ec

q(Vbi-Va)

EF

EF

EFi

qVa

x

Imref, EFn

Imref, EFp

1ennkT/EEexpnn ta VV0ppFiFniequilnon

1eppkT/EEexpnp ta VV0nnFpFiiequilnon

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 8

CarrierInjection

xn-xpc 0

ln(carrier conc)

ln Naln Nd

ln ni

ln ni2/Nd

ln ni2/Na

xnc-xp

x

~Va/Vt~Va/Vt

1enxn t

aV

V

popp

1epxp t

aV

V

nonn

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 9

Minority carriercurrents

1eLWsinh

Lxxcosh

LNDqn

xxx- for ,qDxJ

1eLWsinh

Lxxcosh

LN

Dqn

xxx for ,qDxJ

ta

p

ta

n

VV

np

npc

na

n2i

ppcdx

ndnn

VV

pn

pnc

pd

p2i

ncndxpd

pp

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 10

Evaluating thediode current

p/nn/pp/nd/a

p/n2isp/sn

spsns

VV

spnnp

LWcothLN

DqnJ

sdefinition with JJJ where

1eJxJxJJ

then DR, in gen/rec no gminAssu

ta

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 11

Special cases forthe diode current

nd

p2isp

pa

n2isn

nppn

pd

p2isp

na

n2isn

nppn

WN

DqnJ and ,

WND

qnJ

LW or ,LW :diode Short

LN

DqnJ and ,

LND

qnJ

LW or ,LW :diode Long

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 12

Ideal diodeequation• Assumptions:

– low-level injection– Maxwell Boltzman statistics– Depletion approximation– Neglect gen/rec effects in DR– Steady-state solution only

• Current dens, Jx = Js expd(Va/Vt)

– where expd(x) = [exp(x) -1]

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 13

Ideal diodeequation (cont.)• Js = Js,p + Js,n = hole curr + ele curr

Js,p = qni2Dp coth(Wn/Lp)/(NdLp) =

qni2Dp/(NdWn), Wn << Lp, “short” =

qni2Dp/(NdLp), Wn >> Lp, “long”

Js,n = qni2Dn coth(Wp/Ln)/(NaLn) =

qni2Dn/(NaWp), Wp << Ln, “short” =

qni2Dn/(NaLn), Wp >> Ln, “long”

Js,n << Js,p when Na >> Nd

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 14

Diffnt’l, one-sided diode conductance

Va

IDStatic (steady-state) diode I-V characteristic

VQ

IQ QVa

DD dV

dIg

t

asD V

VdexpII

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 15

Diffnt’l, one-sided diode cond. (cont.)

DQ

t

dQd

QDDQt

DQQd

tat

tQs

Va

DQd

tastasD

IV

g1

Vr ,resistance diode The

. VII where ,V

IVg then

, VV If . V

VVexpI

dV

dIVg

VVdexpIVVdexpAJJAI

Q

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 16

Charge distr in a (1-sided) short diode

• Assume Nd << Na

• The sinh (see L12) excess minority carrier distribution becomes linear for Wn << Lp

pn(xn)=pn0expd(Va/Vt)

• Total chg = Q’p = Q’p = qpn(xn)Wn/2

x

n

x

xnc

pn(xn

)

Wn = xnc-

xn

Q’p

pn

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 17

Charge distr in a 1-sided short diode

• Assume Quasi-static charge distributions

• Q’p = Q’p = qpn(xn)Wn/2

• dpn(xn) = (W/2)*

{pn(xn,Va+V) - pn(xn,Va)}

x

n

xxnc

pn(xn,Va)

Q’p

pn pn(xn,Va+V)

Q’p

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 18

Cap. of a (1-sided) short diode (cont.)

p

x

x p

ntransitQQ

transitt

DQ

pt

DQQ

taaa

a

Ddx

Jp

qVV

V

I

DV

IV

VVddVdV

dVA

nc

n2W

Cr So,

. 2W

C ,V V When

exp2

WqApd2

)W(xpqAd

dQC Define area. diode A ,Q'Q

2n

dd

2n

dta

nn0nnn

pdpp

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 19

General time-constant

np

a

nnnn

a

pppp

pnVa

pn

Va

DQd

CCC ecapacitanc diode total

the and ,dVdQ

Cg and ,dV

dQCg

that so time sticcharacteri a always is There

ggdV

JJdA

dVdI

Vg

econductanc the short, or long diodes, all For

QQ

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 20

General time-constant (cont.)

times.-life carr. min. respective the

, and side, diode long

the For times. transit charge physical

the ,D2

W and ,

D2W

side, diode short the For

n0np0p

n

2p

transn,np

2n

transp,p

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 21

General time-constant (cont.)

Fdd

transitminF

gC

and 111

by given average

the is time transition effective The

sided-one usually are diodes Practical

Page 22: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 22

Effect of non-zero E in the CNR• This is usually not a factor in a short

diode, but when E is finite -> resistor• In a long diode, there is an additional

ohmic resistance (usually called the parasitic diode series resistance, Rs)

• Rs = L/(nqnA) for a p+n long diode.

• L=Wn-Lp (so the current is diode-like for Lp and the resistive otherwise).

Page 23: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 23

)pn( ,ppp and ,nnn where

kTEfiE

coshn2np

npnU

dtpd

dtnd

GRU

oo

oT

i

2i

Effect of carrierrecombination in DR• The S-R-H rate (no = po = o) is

Page 24: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 24

Effect of carrierrec. in DR (cont.)• For low Va ~ 10 Vt

• In DR, n and p are still > ni

• The net recombination rate, U, is still finite so there is net carrier recomb.– reduces the carriers available for the

ideal diode current– adds an additional current component

Page 25: Semiconductor Device  Modeling and Characterization EE5342, Lecture 7-Spring 2002

L07 04Feb02 25

References

* Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997.

**Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, John Wiley, New York, 1986.

***Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.