spectral density estimation via autoregressive modeling

Post on 29-Nov-2021

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Spectral Density Estimation via Autoregressive Modeling

Marie Forbelska

Masaryk University Brno, Department of Mathematics and Statistics

Podlesı, 3. 9. – 6. 9. 2013

Introduction Characteristics of Time Series

Characteristics of Time Series

Time Series (Discrete–Time Stochastic Processes)

A time series is a sequence of random variables{Yt , t = 0,±1,±2, . . .}

Beveridge Wheat Price Index, 1500-1869

n = 370

1500 1550 1600 1650 1700 1750 1800 1850

0

50

100

150

200

250

300

350

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 2 / 83

Introduction Weak Stationarity

Second Order Statistical Description

Definition

Stochastic process {Yt , t ∈ T} is said to be a second-order process ifEY 2

t <∞ for all t ∈ T .

Mean

Mean EYt = µt <∞ for all t ∈ T .

Autocovariance and Autocorelation

Autocovariance CY (t, s) of a random process {Yt , t ∈ Z} is definedas the covariance of Yt and Ys :

CY (t, s) = E (Yt − EYt)(Ys − EYs)

In particular, when t = s, we haveCY (t, t) = E (Yt − EYt)

2 = DYt

Autocorrelation coefficient is defined asRY (t, s) = CY (t,s)√

DYtDYs

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 3 / 83

Introduction Weak Stationarity

Weak Stationarity

We introduce weak stationarity which require that time series exhibitcertain time-invariant behavior.

Definition

A time series {Yt , t ∈ Z} is (weak) stationary if EYt <∞ for each t,and

(i) EYt = µ is a constant, independent of t, and(ii) CY (t, t + k) is independent of t for each k .

Notation

If {Yt , t ∈ Z} is (weak) stationary denote byγY (k) = CY (t, t + k)ρY (k) = RY (t, t + k)

for all t.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 4 / 83

Introduction Weak Stationarity

Spectral theory

Spectral density

Let {Yt , t ∈ Z} be a zero mean stationary random sequence with theautocovariance function satisfying

∞∑t=−∞

|γ(t)| <∞.

Then the spectral density function is the continuous function f (λ) givenby the uniformly convergent series

f (λ) =∞∑

t=−∞γ(t)e−iλt

(see Doob 1953, p. 476).

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 5 / 83

Introduction Weak Stationarity

White Noise

Definition

The process {εt , t ∈ T} is said to be an White Noise

if εt are uncorrelated random variables,

each with zero mean and variance σ2ε > 0

Notation: εt ∼WN(0, σ2ε).

Definition

If εt are also independent and identically distributed, then the process{εt , t ∈ T} is said to be an IID process.

Notation: εt ∼ IID(0, σ2ε).

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 6 / 83

Introduction Weak Stationarity

Gaussian White Noise

εt = ηt − µ ∼ WN(0, σ2ε)

where ηt ∼ N(µ = 1, σ2 = 1)

density: fη(x) = 1√2πσ2

exp {−12

(x−µ)2

σ2 } pro x ∈ R

mean: Eηt = µ

variance: Dηt = σ2 = σ2ε

−2 0 2 4

0.0

0.1

0.2

0.3

0.4

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−3

−2

−1

01

23

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 7 / 83

Introduction Weak Stationarity

Exponential White Noise

εt = ηt − µ ∼ WN(0, σ2ε)

where ηt ∼ Exp(µ = 1)

density: fη(x) = 1µ exp {− 1

µx} pro x ≥ 0

mean: Eηt = µ

variance: Dηt = µ2 = σ2ε

0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−1

01

23

45

6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 8 / 83

Introduction Weak Stationarity

Beta-distributed White Noise

εt = ηt − µ ∼ WN(0, σ2ε)

where ηt ∼ Beta(a = 1.25, b = 1.25)

density: fη(x) = Γ(a+b)Γ(a)Γ(b) xa−1(1− x)b−1 pro x ∈ (0, 1)

mean: Eηt = µ = aa+b

variance: Dηt = ab(a+b)2(a+b+1)

= σ2ε

−0.4 −0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−0.

4−

0.2

0.0

0.2

0.4

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 9 / 83

Introduction Weak Stationarity

ARMA Process

Definition

The process {Yt , t ∈ Z} is said to be an ARMA(p, q) process

if {Yt , t ∈ Z} is stationary and

if for every t ∈ Z,

Yt − ϕ1Yt−1 − · · · − ϕpYt−p = εt + θ1εt−1 + · · ·+ θqεt−q

where εt ∼WN(0, σ2ε).

We say that {Yt , t ∈ Z} is an ARMA(p, q) process with mean µ

if {Yt − µ, t ∈ Z} is an ARMA(p, q) process.

Special cases

If p = 0 then Yt is said to be moving average process MA(q).

If q = 0 then Yt is said to be autoregressive AR(p).

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 10 / 83

Introduction Weak Stationarity

Backshift Operators and Characteristic Polynomials

Backshift Operator B such that

BYt = BYt−1 and BkYt = BYt−k for all k ∈ Z

ARMA notation using backshift operators

Yt ∼ ARMA(p, q) : Φ(B)Yt = Θ(B)εt

Characteristic polynomials

AR part Φ(z) = 1− ϕ1z − · · · − ϕpzp

MA part Θ(z) = 1 + θ1z + · · ·+ θqzp

defined on |z | < 1.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 11 / 83

AR(2) : Yt = 0.5Yt−1 + 0.2Yt−2 + εt , εt ∼ N(0, 1)

0 50 100 150 200 250 300−4

−2

0

2

4

MA(2) : Yt = εt − 0.5εt−1 − 0.2εt−1, εt ∼ N(0, 1)

0 50 100 150 200 250 300−4

−2

0

2

4

ARMA(2, 2) : Yt = 0.5Yt−1 + 0.2Yt−2 + εt − 0.4εt−1 + 0.3εt−1, εt ∼ N(0, 1)

0 50 100 150 200 250 300−4

−2

0

2

4

6

Introduction Weak Stationarity

Causality and Invertibility of ARMA Processes

Definition

An ARMA(p, q) process is said to be causal (relative to {εt}) if there

exists a sequence of constants {ψi} such that∞∑i=0

|ψi | <∞ and

Yt =∞∑i=0

ψiεt−i , t ∈ Z

Which is equivalent to the condition

Φ(z) = 1− ϕ1z − . . .− ϕpzp 6= 0, ∀ |z | < 1

A similar definition for the invertibility of an ARMA(p, q) process relativeto εt can be presented if we interchange the role of {Yt} with {εt}. Thenthe invertibility is equivalent to the condition

Θ(z) = 1 + θ1z + . . .+ θpzq 6= 0, ∀ |z | < 1

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 13 / 83

Introduction Weak Stationarity

Spectral density of ARMA process

Spectral density of a MA(q) process

fY (ω) = σ2ε

∣∣Θ (e−iω)∣∣2 for ω ∈ 〈−π, π〉

Spectral density of a AR(p) process

fY (ω) = σ2ε

2π1

|Φ(e−iω)|2for ω ∈ 〈−π, π〉

Spectral density of a ARMA(p, q) process

fY (ω) = σ2ε

2π|Θ(e−iω)|2|Φ(e−iω)|2

for ω ∈ 〈−π, π〉

where

Θ(z) = 1 + θ1z + . . .+ θqzq and Φ(z) = 1− ϕ1z − . . .− ϕpzp.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 14 / 83

Introduction Weak Stationarity

Moments of the AR(p) process

To calculate the mean we need causal AR(p) process:

EYt = E∑∞

j=0 ψjεt−j =∑∞

j=0 ψjEεt−j = 0.

Calculation of the autocovariance function is complicated:first equation Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + εtmultiplied by a term Yt−k and calculate the mean values of both sides, i.e.

EYtYt−k︸ ︷︷ ︸=γ(k)

= ϕ1 EYt−1Yt−k︸ ︷︷ ︸=γ(k−1)

+ · · ·+ ϕp EYt−pYt−k︸ ︷︷ ︸=γ(k−p)

+EεtYt−k .

then we compute

EYt−kεt = E (∞∑j=0

ψjεt−j−k)εt =∞∑j=0

ψjEεt−j−kεt =∞∑j=0

ψjσ2εδj+k

=

{σ2ε k = 0,

0 otherwise

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 15 / 83

Introduction Weak Stationarity

Yule–Walker equations

By simple modifications of the previous equations we get Yule–Walkerequations

for the autocovariance function

for k = 0: γ(0) − ϕ1γ(1) − · · ·− ϕpγ(p) = σ2ε

for k 6= 0: γ(k) − ϕ1γ(k−1) − · · ·− ϕpγ(k−p) = 0

for the autocorrelation function

for k = 0: ρ(0)︸︷︷︸=1

− ϕ1ρ(1) − · · ·− ϕpρ(p) = σ2ε

γ(0)

for k 6= 0: ρ(k) − ϕ1ρ(k−1) − · · ·− ϕpρ(k−p) = 0 (YW∗)

Yule–Walker equation is a widely used method to estimate the coefficientsof the AR(p) models.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 16 / 83

Introduction Weak Stationarity

Limit properties of the ρ(k) of the AR(p) process

Solution of the homogeneous differential equation, which we marked witha (YW∗), we get in addition to recurrent relationship too explicit form ofthe autocorrelation function

ρAR(p)(k) =m∑j=1

(pj−1∑s=0

cjsks

)λkj =

m∑j=1

(pj−1∑s=0

cjsks

)rkj e ikθj ,

where cjs are constants determined by the initial conditions and λj = rjeiθj

are the inverse of the roots of the Φ(z) = 1− ϕ1z − . . .− ϕpzp withmultiplicities pj . Because holds

|λj | = rj < 1, kde Φ(z0j) = 0 pro z0j = 1λj,

we get here, that ρ(k) decreases for k →∞ exponentially to zero, i.e.

ρ(k) −−−→k→∞

0,

which is a very important property identification autoregressive AR(p)processes.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 17 / 83

Introduction Weak Stationarity

AR(1) : Yt = 0.5Yt−1 + εt , εt ∼ N(0, 1)

0 50 100 150 200 250 300

−4

−3

−2

−1

0

1

2

3

4

ACF

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1fAR(ω) = σ2

ε2π

1|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 18 / 83

Introduction Weak Stationarity

AR(1) : Yt = −0.5Yt−1 + εt , εt ∼ N(0, 1)

0 50 100 150 200 250 300

−4

−3

−2

−1

0

1

2

3

4

ACF

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fAR(ω) = σ2ε

2π1

|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 19 / 83

Introduction Weak Stationarity

AR(1) : Yt = 0.95Yt−1 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

4

6

8

ACF

−30 −20 −10 0 10 20 30

0.2

0.4

0.6

0.8

1.0

fAR(ω) = σ2ε

2π1

|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0

10

20

30

40

50

60

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 20 / 83

Introduction Weak Stationarity

AR(1) : Yt = −0.95Yt−1 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●●

●●

●●

0 50 100 150 200 250 300

−6

−4

−2

0

2

4

6

ACF

−30 −20 −10 0 10 20 30

−1.0

−0.5

0.0

0.5

1.0

fAR(ω) = σ2ε

2π1

|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0

10

20

30

40

50

60

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 21 / 83

Introduction Weak Stationarity

AR(2) : Yt = −0.75Yt−1 − 0.75Yt−2 + εt , εt ∼ N(0, 1)

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

4

ACF

−10 −5 0 5 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

fAR(ω) = σ2ε

2π1

|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 22 / 83

Introduction Weak Stationarity

MA(2) : Yt = εt − 0.2279εt−1 + 0.2488εt−2, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300−3

−2

−1

0

1

2

3

ACF

−30 −20 −10 0 10 20 30

−0.2

0.0

0.2

0.4

0.6

0.8

1.0fMA(ω) = σ2

ε2π

∣∣Θ (e−iω)∣∣2

−3 −2 −1 0 1 2 3

0.10

0.15

0.20

0.25

0.30

0.35

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 23 / 83

Introduction Weak Stationarity

MA(4) : Yt = εt + 0.8εt−1 + 0.2εt−4, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

0 50 100 150 200 250 300

−2

0

2

4

ACF

−30 −20 −10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0fMA(ω) = σ2

ε2π

∣∣Θ (e−iω)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 24 / 83

Introduction Weak Stationarity

MA(12) : Yt = εt + 0.8εt−1 + 0.2εt−12, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

4

ACF

−30 −20 −10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0fMA(ω) = σ2

ε2π

∣∣Θ (e−iω)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 25 / 83

Introduction Weak Stationarity

ARMA(1, 1) : Yt = 0.5Yt−1 + εt + 0.5εt−1, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−2

0

2

4

ACF

−30 −20 −10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0fARMA(ω) = σ2

ε2π|Θ(e−iω)|2|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 26 / 83

Introduction Weak Stationarity

ARMA(2, 1) : Yt = 0.2Yt−1 + 0.7Yt−1 + εt + 0.5εt−1, εt ∼ N(0, 1)

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

ACF

−30 −20 −10 0 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0fARMA(ω) = σ2

ε2π|Θ(e−iω)|2|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0

1

2

3

4

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 27 / 83

Introduction Weak Stationarity

ARMA(1, 2) : Yt = −0.75Yt−1 + εt − εt−1 + 0.25εt−2, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

0 50 100 150 200 250 300

−5

0

5

ACF

−30 −20 −10 0 10 20 30

−0.5

0.0

0.5

1.0fARMA(ω) = σ2

ε2π|Θ(e−iω)|2|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0

2

4

6

8

10

12

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 28 / 83

Introduction Weak Stationarity

ARMA(1, 3) : Yt = −0.6Yt−1 + εt − 0.7εt−1 + 0.4εt−2 + 0.4εt−3, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−6

−4

−2

0

2

4

ACF

−30 −20 −10 0 10 20 30

−0.5

0.0

0.5

1.0fARMA(ω) = σ2

ε2π|Θ(e−iω)|2|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 29 / 83

Introduction Weak Stationarity

ARMA(2, 2) : Yt = 0.8897Yt−1 − 0, 4858Yt−2 + εt − 0.2279εt−1 + 0.2488εt−2, εt ∼ N(0, 1)

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

4

ACF

−30 −20 −10 0 10 20 30

−0.2

0.0

0.2

0.4

0.6

0.8

1.0fARMA(ω) = σ2

ε2π|Θ(e−iω)|2|Φ(e−iω)|2

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 30 / 83

Introduction Stationary seasonal linear models

Seasonal linear models

So far we have discussed the links between neighboring random variables

. . . ,Yt ,Yt+1,Yt+2, . . . .

If a random process also includes seasonal fluctuations, it is necessary tonotice the dependencies between random variables, which divides seasonlength L.

. . . ,Yt ,Yt+L,Yt+2L, . . . .

First, we introduce seasonal differential operator of length L > 0:∆LYt =Yt − Yt−L = (1− BL)Yt

∆2LYt =∆L(∆LYt) = ∆L(Yt−Yt−L)

=(Yt−Yt−L)−(Yt−L−Yt−2L)=Yt−2Yt−L+Yt−2L = (1−BL)2Yt

...∆D

L Yt =(1− BL)DYt

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 31 / 83

Introduction Stationary seasonal linear models

Construction seasonal models

To better understand the structure of seasonal patterns in the B–Jmethodology, divide, for example, monthly data (L = 12) for r yearsin the following table.

Year January February · · · December

1 Y1 Y2 · · · Y12

2 Y13 Y14 · · · Y24...

......

......

r Y1+12(r−1) Y2+12(r−1) · · · Y12+12(r−1)

For each column j ∈ {1, . . . , 12} separately consider a ARMA(P,Q)model of the same type:

Yj+12t = π1Yj+12(t−1) + · · ·+ πPYj+12(t−1)+

ηj+12t + ψ1ηj+12(t−1) + · · ·+ ψQηj+12(t−1)

Because all 12 random processes is of the same type, we can writeπ(B12)Yt = Ψ(B12)ηt .

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 32 / 83

Introduction Stationary seasonal linear models

Remap white noise to the new process

When 12 white noise of the same type {η1+12t} ∼ WN(0, σ2η)

{η2+12t} ∼ WN(0, σ2η)

......

...{η12+12t} ∼ WN(0, σ2

η)

sequentially assemble in time and create a single random process

{η∗t , t = 0,±1,±2, . . .},

we do not get white noise, it is recalled that:

Eη∗t η∗t+h = 0 only where h that are multiples of 12

Eη∗t ηt+h 6= 0 may occur for any other h,

therefore model the process ηt as a general ARMA(pq) process

Φ(B)η∗t = Θ(B)εt , εt ∼WN(0, σ2ε).

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 33 / 83

Introduction Stationary seasonal linear models

Stationary SARMA models

General stationary seasonal mixed SARMA model:

Φ(B)π(BL)Yt = Θ(B)Ψ(BL)εt ∼ SARMA(p, q)× (P,Q)L

kde

Φ(B) = 1− ϕ1B − · · · − ϕpBp

π(BL) = 1− π1BL − · · · − πPBPL

Θ(B) = 1 + θ1B + · · ·+ θqBp

Ψ(BL) = 1 + ψ1BL + · · ·+ ψQBQL

MA homogeneous seasonal models

Yt = Θ(B)Ψ(BL)εt ∼ SARMA(0, q)× (0,Q)L.

AR homogeneous seasonal models

Φ(B)π(BL)Yt = εt ∼ SARMA(p, 0)× (P, 0)L

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 34 / 83

Introduction Stationary seasonal linear models

SARMA model as a special type of ARMA model

Consider a simple example SARMA(1, 0)× (1, 0)12 model:

Φ(B)π(B12)Yt = εt

(1− ϕ1B)(1− π1B12)Yt = εt

(1− ϕ1B − π1B12 + ϕ1π1B13)Yt = εt

Yt − ϕ1Yt−1 − π1Yt−12 + ϕ1π1Yt−13 = εt

We see that it is a special case of AR(13) model in which:

10 coefficients are zero,three remaining non-zero coefficients were created on two parameters:.

Relationship between SARMA and ARMA models

Model SARMA(p, q)× (P,Q)L is actually ARMA(p + PL,QL + q) modelwith additional conditions on AR and MA coefficients.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 35 / 83

Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with MA parts: Yt = Ψ(B12)εt

SARMA(0, 0)(0, 1)12 : Yt = (1− 0.95B12)εt : Yt = εt − 0.95εt−12, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

ACF

−60 −40 −20 0 20 40 60

−0.5

0.0

0.5

1.0

fSMA(ω) = σ2ε

∣∣Ψ (e−i12ω)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 36 / 83

Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with AR parts: π(B12)Yt = εt

SARMA(0, 0)(0, 1)12 : (1− 0.95B12)Yt = εt : Yt = 0.95Yt−12 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−5

0

5

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSAR(ω) = σ2ε

2π1

|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

10

20

30

40

50

60

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 37 / 83

Introduction Stationary seasonal linear models

Pure seasonal homogeneous model with AR parts: π(B12)Yt = εt

SARMA(0, 0)(2, 0)12 : (1− 0.3B12 + 0.1B24)Yt = εt : Yt = 0.3Yt−12 − 0.1Yt−24 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSAR(ω) = σ2ε

2π1

|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0.10

0.15

0.20

0.25

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 38 / 83

Introduction Stationary seasonal linear models

Seasonal homogeneous model with MA parts: Yt = Θ(B)Ψ(B12)εt

SARMA(0, 1)(0, 1)12 : Yt = (1 + 0.9B)(1− 0.4B12)εt : Yt = εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300−4

−2

0

2

4

ACF

−60 −40 −20 0 20 40 60

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

fSMA(ω) = σ2ε

∣∣Θ (e−iω)∣∣2∣∣Ψ (e−i12ω)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 39 / 83

Introduction Stationary seasonal linear models

Seasonal homogeneous model with MA parts: Yt = Θ(B)Ψ(B12)εt

SARMA(0, 1)(0, 1)12 : Yt = (1 + 0.9B)(1 + 0.4B12)εt : Yt = εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

4

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSMA(ω) = σ2ε

∣∣Θ (e−iω)∣∣2∣∣Ψ (e−i12ω)∣∣2

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 40 / 83

Introduction Stationary seasonal linear models

Seasonal homogeneous model with AR parts: Φ(B)π(B12)Yt = εt

SARMA(1, 0)(1, 0)12 : (1− 0.5B)(1− 0.7B12)Yt = εt : Yt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250 300

−2

0

2

4

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSAR(ω) = σ2ε

2π1

|Φ(e−iω)|21

|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 41 / 83

Introduction Stationary seasonal linear models

Seasonal homogeneous model with AR parts: Φ(B)π(B12)Yt = εt

SARMA(1, 0)(1, 0)12 : (1− 0.9B)(1− 0.7B12)Yt = εt : Yt = 0.9Yt−1 + 0.7Yt−12 − 0.63Yt−13 + εt , εt ∼ N(0, 1)

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

0 50 100 150 200 250 300

−5

0

5

ACF

−60 −40 −20 0 20 40 60

0.2

0.4

0.6

0.8

1.0

fSAR(ω) = σ2ε

2π1

|Φ(e−iω)|21

|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

50

100

150

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 42 / 83

Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.5B)(1− 0.7B12)Yt = (1 + 0.9B)(1− 0.4B12)εtYt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

0 50 100 150 200 250 300

−4

−2

0

2

4

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSARMA(ω) = σ2ε

2π|Θ(e−iω)|2|Φ(e−iω)|2

|Ψ(e−i12ω)|2|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

2

4

6

8

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 43 / 83

Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.5B)(1− 0.7B12)Yt = (1 + 0.9B)(1 + 0.4B12)εtYt = 0.5Yt−1 + 0.7Yt−12 − 0.35Yt−13 + εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

0 50 100 150 200 250 300

−5

0

5

ACF

−60 −40 −20 0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

fSARMA(ω) = σ2ε

2π|Θ(e−iω)|2|Φ(e−iω)|2

|Ψ(e−i12ω)|2|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

10

20

30

40

50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 44 / 83

Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.9B)(1− 0.7B12)Yt = (1 + 0.9B)(1− 0.4B12)εtYt = 0.9Yt−1 + 0.7Yt−12 − 0.63Yt−13 + εt + 0.9εt−1 − 0.4εt−12 − 0.36εt−13, εt ∼ N(0, 1)

●●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

0 50 100 150 200 250 300

−10

−5

0

5

10

ACF

−60 −40 −20 0 20 40 60

0.2

0.4

0.6

0.8

1.0

fSARMA(ω) = σ2ε

2π|Θ(e−iω)|2|Φ(e−iω)|2

|Ψ(e−i12ω)|2|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

50

100

150

200

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 45 / 83

Introduction Stationary seasonal linear models

Seasonal mixed model: Φ(B)π(B12)Yt = Θ(B)Ψ(B12)εt

SARMA(1, 1)(1, 1)12 : (1− 0.9B)(1− 0.7B12)Yt = (1 + 0.9B)(1 + 0.4B12)εtYt = 0.9Yt−1 + 0.7Yt−12 − 0.635Yt−13 + εt + 0.9εt−1 + 0.4εt−12 + 0.36εt−13, εt ∼ N(0, 1)

●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

0 50 100 150 200 250 300

−20

−10

0

10

20

ACF

−60 −40 −20 0 20 40 60

0.4

0.6

0.8

1.0

fSARMA(ω) = σ2ε

2π|Θ(e−iω)|2|Φ(e−iω)|2

|Ψ(e−i12ω)|2|π(e−i12ω)|2

−3 −2 −1 0 1 2 3

0

200

400

600

800

1000

1200

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 46 / 83

Estimation of moments

Estimation of moments

Let Y = (Y1, . . . ,Yn)T be a time series observed at equally-spaced timepoints t1, . . . , tn. We consider the problem of using these data to forecastYn+1 at time tn+1.

-�∆

t1 t2 · · ·

-�∆

ti ti+1 · · ·

-�∆

tn−1 tn

Denote by ∆ = ti+1 − ti . Thenti = t1 + (i − 1)∆ for i = 2, . . . , ni = ti−t1

∆ + 1

Without loss of generality, we can therefore assume that ti = i .

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 47 / 83

Estimation of moments

Estimation of the second order moments

Suppose we have data Y1, . . . ,Yn from a stationary time series. We canestimate

Empirical Mean Estimator

Y = 1n

n∑t=1

Yt

Empirical Autocovariance Function Estimator

Ck = γ(k) = 1n−k

n−k∑t=1

(Yt − Y )(Yt+k − Y ) for k = 0, 1, . . . , n − 1

Empirical Autocorrelation Function Estimator

ρ(k) = γ(k)γ(0)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 48 / 83

Estimation of moments

Example with ACF estimates for AR(2)

AR(2) : (1− 1.5B + 0.75B2)Yt = εt : Yt = 1.5Yt−1 − 0.75Yt−2 + εt , εt ∼ N(0, 1)

0 100 200 300 400 500

−5

05

10

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●

●●

●●

●●●●●

●●●

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 49 / 83

Estimation of moments

Example with ACF estimates for AR(2)

Empirical estimate for ACFn = 100

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

Empirical estimate for ACFn = 200

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 50 / 83

Estimation of moments

Example with ACF estimates for AR(2) (cont.)

Empirical estimate for ACFn = 300

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

Empirical estimate for ACFn = 500

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 51 / 83

Estimation of moments

Example with ACF estimates for AR(2) (cont.)

Empirical estimate for ACFn = 1000

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

Empirical estimate for ACFn = 5000

0 5 10 15 20 25 30

−0.5

0.0

0.5

1.0

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 52 / 83

Estimation of moments

Monte Carlo study for the 1000 replication

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●

●●●

●●●

●●●

●●●

● ●●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●● ●

● ●●●●●

●●

●●

●●●

●●

●●

● ●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 100●

●●

● ● ●●

●●

● ● ● ●● ● ● ●

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●

● ●

●●

●●

●●●

●●

●●●

●●

●●●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●●

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●

●●●●

●●●●●●

●●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●●

●●

●●●

●●●●●

●● ●●

●●

●●

●●●●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 200●

●●

● ● ●●

●●

● ● ● ●● ● ● ●

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 53 / 83

Estimation of moments

Monte Carlo study for the 1000 replication (cont. 1)

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●

●●

●●

●●●●

●●●●●●●●

●●●

● ●

●●

●●●

●●

●●●●

●●●

●●●

●●●●

●●●●

●●

●●●●

●● ●

●●●●

●●●

●●

●●●

●● ●

●●

●●

●●

●●●●

●●●

●●

●●●

●●●●

●●● ●●●

● ●

●●

●●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 300●

●●

●●

●●

●●

● ● ● ●● ● ● ●

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●

●●●

●●

●●●●●

●●

●●●●●

●●●●●

●●●●●●●

●●●

●●●●

●●

●●●●

●●

●●

●●●●

●●

●●●

●●

●●●

●●

●●●

●●●●

●●

●●●

●●●

● ●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●●●●●●

●●●●●●●●●

●●●

●●

●● ●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 500●

●●

●●

●●

●●

● ● ● ●● ● ● ●

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 54 / 83

Estimation of moments

Monte Carlo study for the 1000 replication (cont. 2)

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●●

● ●

●●

●●●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●●● ●

●●●

●●

●●

● ●

●●●●

●●●●

●●

●●●

●●

●●

●●●●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 1000●

●●

●●

●●

●●

● ● ● ●● ● ● ●

Empirical estimate for ACF●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●●

●●●●

●●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●●●

● ●

●●●●

●●●

● ●●●●●

●●

●●●

●●●

●●●

● ●

●●

●●

●● ●●

●●

● ●

●●

●●

●●

●●●●

●●●●

●●

●●●

●●●

●●●

●●● ●●●●●●●●●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.

50.

00.

51.

0 n = 5000●

●●

●●

●●

● ● ●●

●● ● ●

red . . . theoretical values

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 55 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality (weeklydata)

n = 508

1970 1972 1974 1976 1978 1980

140

160

180

200

220

x

Den

sity

HistogramKernel Density EstimateNormal Density

140 160 180 200 220

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

140

160

180

200

220

140

160

180

200

220

● ●

●●

●●

●●

●●

● ●

● ●

● ●

● ●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

●●

● ●

●●

● ●

●●

● ●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ● ●

● ●●

●●

●●

●●

●●

● ●

●●

● ●●

● ● ●

● ●●

● ●

●●

●●

●●

●●

●●

●●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 56 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

510

2050

100

200

Angular Frequency

Spe

ctra

l Den

sity

Inf

Parametric AR(2) estimateParametric ARMA(2,0) estimateParametric SARMA(3,0)(2,2)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 57 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Total Mortality●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Empirical ACFTheoretical ACF for AR(2)Theoretical ACF for ARMA(2,0)Theoretical ACF for SARMA(3,0)(2,2)[52]

0 20 40 60 80 100 120

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

●●

●● ●

●● ●

●● ● ● ●

●●

● ●●

●● ●

● ●●

●● ●

● ●●

●●

● ●●

●● ●

0 10 20 30 40

4.35

4.40

4.45

4.50

AIC criterion for choice of AR order

2

Optimal order of AR = 2

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 58 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular Mortalityn = 508

1970 1972 1974 1976 1978 1980

70

80

90

100

110

120

130

x

Den

sity

HistogramKernel Density EstimateNormal Density

70 80 90 100 110 120 130

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

7080

9010

011

012

013

0

7080

9010

011

012

013

0

● ●

●●

● ●

● ●

● ●

● ●

●●

●●

●● ●

● ● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

● ●

● ●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

● ●

●●

●●

●●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 59 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular MortalitySpectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

25

1020

5010

020

050

010

0020

00

Angular Frequency

Spe

ctra

l Den

sity

52.5

Parametric AR(28) estimateParametric ARMA(2,0) estimateParametric SARMA(2,2)(2,2)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 60 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Cardiovascular Mortality

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●

●●

●●

●●

●●

●●

Empirical ACFTheoretical ACF for AR(28)Theoretical ACF for ARMA(2,0)Theoretical ACF for SARMA(2,2)(2,2)[52]

0 20 40 60 80 100 120

−0.5

0.0

0.5

1.0

●●

●● ●

● ●●

● ●●

●●

● ● ● ●●

● ●●

● ●●

●● ●

●●

● ●●

●●

●●

0 10 20 30 40

3.50

3.55

3.60

3.65

AIC criterion for choice of AR order

28

Optimal order of AR = 28

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 61 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature (weekly data)n = 508

1970 1972 1974 1976 1978 1980

50

60

70

80

90

100

x

Den

sity

HistogramKernel Density EstimateNormal Density

50 60 70 80 90 100

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

5060

7080

9010

0

5060

7080

9010

0

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

● ●

●●

● ● ●

● ●

● ●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

● ●

●● ●

● ●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 62 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

510

2050

100

200

500

1000

Angular Frequency

Spe

ctra

l Den

sity

49.9

Parametric AR(22) estimateParametric ARMA(1,2) estimateParametric SARMA(1,1)(2,0)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 63 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Temperature●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●

●●●●●

●●

●●

●●●●●●

●●

●●

●●

Empirical ACFTheoretical ACF for AR(22)Theoretical ACF for ARMA(1,2)Theoretical ACF for SARMA(1,1)(2,0)[52]

0 20 40 60 80 100 120

−0.5

0.0

0.5

1.0

●●

● ● ● ●

● ●● ● ● ● ● ● ● ●

●●

● ● ● ●● ●

● ● ●● ●

● ● ● ● ●●

0 10 20 30 40

3.65

3.70

3.75

3.80

3.85

3.90

3.95

AIC criterion for choice of AR order

22

Optimal order of AR = 22

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 64 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidityn = 508

1970 1972 1974 1976 1978 1980

20

40

60

80

x

Den

sity

HistogramKernel Density EstimateNormal Density

20 40 60 80

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

2040

6080

2040

6080

●●

● ●

●●

● ●

● ●

●●

● ●

●●

● ●

●●

● ●

●●

● ●

● ●

● ●

● ● ●

●●

● ●

● ●

● ●

●● ●

● ●

●●

●●

●●

●●

●● ●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 65 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidity

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1020

3040

Angular Frequency

Spe

ctra

l Den

sity

Inf

Parametric AR(4) estimateParametric ARMA(4,3) estimateParametric SARMA(2,5)(1,1)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 66 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Relative Humidity (weeklydata)

●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Empirical ACFTheoretical ACF for AR(4)Theoretical ACF for ARMA(4,3)Theoretical ACF for SARMA(2,5)(1,1)[52]

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●

●●

●●

● ●●

●●

0 10 20 30 40

4.93

4.94

4.95

4.96

4.97

4.98

4.99

AIC criterion for choice of AR order

4

Optimal order of AR = 4

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 67 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weeklydata)

n = 508

1970 1972 1974 1976 1978 1980

5

10

15

20

x

Den

sity

HistogramKernel Density EstimateNormal Density

5 10 15 20

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

510

1520

510

1520

●●

●●

●●

●● ●

● ● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

● ●

●●

●●

●●

● ●

●●

● ●

●●

● ●

● ●

● ● ●●

● ●

●● ●

●●

● ●

●●

● ●

●●

● ●

●●

●● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

● ●

●●

●●

●●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 68 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weekly data)

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.

020

0.0

Angular Frequency

Spe

ctra

l Den

sity

49.9

Parametric AR(16) estimateParametric ARMA(1,2) estimateParametric SARMA(2,3)(2,0)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 69 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Carbon Monoxide (weeklydata)

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

Empirical ACFTheoretical ACF for AR(16)Theoretical ACF for ARMA(1,2)Theoretical ACF for SARMA(2,3)(2,0)[52]

0 20 40 60 80 100 120

−0.5

0.0

0.5

1.0

● ● ● ● ●●

● ●

● ●● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 401.

71.

81.

92.

02.

1

AIC criterion for choice of AR order

16

Optimal order of AR = 16

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 70 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Hydrocarbonsn = 508

1970 1972 1974 1976 1978 1980

20

40

60

80

100

x

Den

sity

HistogramKernel Density EstimateNormal Density

20 40 60 80 100

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

2040

6080

100

2040

6080

100

● ●

● ●

● ●

● ●

●●

● ●

●●

● ●

● ●

●●

● ●

● ●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

● ● ●

●●

●●

●●

●●

● ●

● ●

● ●

● ●

● ●●

● ●

● ●

● ●

● ●●

● ●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 71 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: HydrocarbonsSpectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

510

2050

100

200

500

1000

2000

Angular Frequency

Spe

ctra

l Den

sity

56.8

Parametric AR(22) estimateParametric ARMA(1,2) estimateParametric SARMA(2,2)(2,2)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 72 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Hydrocarbons●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●

Empirical ACFTheoretical ACF for AR(22)Theoretical ACF for ARMA(1,2)Theoretical ACF for SARMA(2,2)(2,2)[52]

0 20 40 60 80 100 120

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ●●

● ●

●● ●

● ●

●●

● ● ●●

●●

●●

●● ●

●● ● ● ● ●

●●

● ● ●●

0 10 20 30 40

4.80

4.85

4.90

4.95

5.00

5.05

AIC criterion for choice of AR order

22

Optimal order of AR = 22

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 73 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxiden = 508

1970 1972 1974 1976 1978 1980

5

10

15

20

25

x

Den

sity

HistogramKernel Density EstimateNormal Density

5 10 15 20 25

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

510

1520

25

510

1520

25

● ●

● ●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●● ●

●● ●

●●

● ●

● ●

● ●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

● ●

●●

●●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 74 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxide

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

25

1020

50

Angular Frequency

Spe

ctra

l Den

sity

Inf

Parametric AR(6) estimateParametric ARMA(2,2) estimateParametric SARMA(3,3)(2,0)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 75 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxide)●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Empirical ACFTheoretical ACF for AR(6)Theoretical ACF for ARMA(2,2)Theoretical ACF for SARMA(3,3)(2,0)[52]

0 20 40 60 80 100 120

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●

● ●●

0 10 20 30 40

2.75

2.76

2.77

2.78

2.79

AIC criterion for choice of AR order

6

Optimal order of AR = 6

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 76 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxiden = 508

1970 1972 1974 1976 1978 1980

5

10

15

20

25

x

Den

sity

HistogramKernel Density EstimateNormal Density

5 10 15 20 25

Assessment of seasonality

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

510

1520

25

510

1520

25

● ●

● ●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●● ●

●● ●

●●

● ●

● ●

● ●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

● ●

●●

●●

1970

1971

1972

1973

1974

1975

1976

1977

1978

0 10 20 30 40 50

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 77 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxide

Spectral Density

0.0 0.5 1.0 1.5 2.0 2.5 3.0

25

1020

50

Angular Frequency

Spe

ctra

l Den

sity

Inf

Parametric AR(6) estimateParametric ARMA(2,2) estimateParametric SARMA(3,3)(2,0)[52] estimate

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 78 / 83

LA Pollution-Mortality Study: Spectral Density

LA Pollution-Mortality Study: Nitrogen Dioxide●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Empirical ACFTheoretical ACF for AR(6)Theoretical ACF for ARMA(2,2)Theoretical ACF for SARMA(3,3)(2,0)[52]

0 20 40 60 80 100 120

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

● ●

● ●

● ●●

0 10 20 30 40

2.75

2.76

2.77

2.78

2.79

AIC criterion for choice of AR order

6

Optimal order of AR = 6

AIC = n(log σ2ε + 1) + 2(p + 1)

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 79 / 83

LA Pollution-Mortality Study: Spectral Density

Literatura

Andel, J. Statisticka analyza casovych rad . Praha. SNTL 1976.

Altman, N. S. (1990): Kernel Smoothing of Data With CorrelatedErrors. Journal of the American Statistical Association. Vol. 85, No.411, pp. 749–759.

Anderson, T.W. The Statistical Analysis of Time Series. John Wiley& Sons Inc. 1971.

Box, G., Jenkins, G. Time series analysis - forecasting and control .Holden-Day 1976.

Brabanter, K., Brabanter, J., Suykens, J. A. K. (2011): KernelRegression in the Presence of Correlated Errors. Journal of MachineLearning Research 12, pp. 1955–1976.

Brillinger, D. R. (1975): Time Series. Data Analysis and Theory. SanFrancisco: Holden–Day.

Brockwell, P.J., Davis, R.A. Time Series: Theory and Methods.Springer–Verlag, New York, 1991.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 80 / 83

LA Pollution-Mortality Study: Spectral Density

Literatura (pokracovanı)

Brockwell, P.J., Davis, R.A. Introduction to time series andforecasting . Springer-Verlag, New York, 2002.

Cipra, T. Analyza casovych rad s aplikacemi v ekonomii . SNTL,Praha, 1986.

Doob, J.L. Stochastic processes. New York, Wiley 1953.

Damsleth, E., Spjøtvoll, E. Estimation of Trigonometric Componentsin Time Series, J. Amer. Statistics, Assoc. 77. 1982, pp. 382–387.

Daniels, H.E. Rank correlation and population models. Journals ofthe Royal Statistical Society, B, 12 1950. 171–181.

Doob, J.L. Stochastic processes. New York, Wiley 1953.

Fisher, R.A. Tests of significance in harmonic analysis. Proc. RoyalSoc. A 125, 1929, 54–59.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 81 / 83

LA Pollution-Mortality Study: Spectral Density

Literatura (pokracovanı)

Forbelska, M. Detekce periodicity v hydrologickych datech. In XIII.letnı skola bometriky, Biometricke metody a modely v soucasne vedea vyzkumu. 1. vyd. Brno: UKZUZ Brno, 1998. s. 173–178.

Forbelska, M. Stochasticke modelovanı jednorozmernych casovychrad. Munipress, 2009.

Geweke, J.F., Meese, R. Estimating Regression Models of Finite butUnknown Order. International Economic Review, 22, 1981. 55–70.

Gichman, I.I., Skorochod, A.V. Teorija slucajnych processov . Moskva.Nauka 1971.

Hamilton, J.D. Time Series Analysis. Princeton University Press.1994.

Hannan, E.J., Quinn, B. G. The Determination of the Order of anAutoregression, Journal of the Royal Statistical Society, Series B, 41,No.2, 1979, 190–195.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 82 / 83

LA Pollution-Mortality Study: Spectral Density

Literatura (pokracovanı)

Michalek, J., Budıkova, M., Brazdil, R. Metody odhadu trendu casoverady na prıkladu stredoevropskych teplotnıch rad. 1. vyd. Praha :Cesky hydrometeorologicky ustav, 1993, 53 s.

Priestley, M. Spectral analysis and time series. Academic Press 1989.

Stulajter, F. Odhady v nahodnych procesoch. Alfa. Bratislava. 1989.

Vesely, V. Knihovna programu TSA-M pro analyzu casovych rad. Ed.P.Flak. In XIV. letna skola biometriky, Biometricke metody a modelyv podohospodarskej vede, vyskume a vyuke. Nitra: AgenturaSlovenskej akademie podohospodarskych vied, 2000. s. 239–248.

Vesely, V. Uvod do casovych rad. In Proceedings ANALYZADAT’2003/II. Pardubice (Czech Rep.): Trilobyte, Ltd., 2004. od s.7–31.

Zvara, K. Regresnı analyza Praha. Academia. 1989.

Marie Forbelska (MU – UMS) Spectral Density Estimation via AR Modeling Podlesı, 3. 9. – 6. 9. 2013 83 / 83

top related