validation of a multiphase turbulence m u … · formulate from first-principles a macroscopic...

Post on 03-May-2018

218 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

NETL 2013 Workshop on Multiphase Flow Science

VALIDATION OF A MULTIPHASE TURBULENCE MODEL USING MESOSCALE DNS OF GRAVITY-DRIVEN GAS-PARTICLE FLOW NETL 2013 MULTIPHASE FLOW WORKSHOP AUGUST 6, 2013

RODNEY O. FOX1,2, JESSE CAPECELATRO3, OLIVIER DESJARDINS3 1DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING, IOWA STATE UNIVERSITY 2LABORATOIRE EM2C-UPR, ECOLE CENTRALE PARIS

3SIBLEY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING, CORNELL UNIVERSITY

NETL 2013 Workshop on Multiphase Flow Science

Moderately-dilute fluid-particle flows

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Preferential concentration of cloud droplets by turbulence

Shaw et al. (1998)

Spray flames

Gasification of coal and biomass

C.T. Bowman, Stanford

Atmospheric dispersion

2

NETL 2013 Workshop on Multiphase Flow Science

Burlington, Vermont Xu & Zhu, 2011

Mesoscale • Clustering • Bubbling • Particle size segregation • Turbulence modulation

Microscale • Wakes • Particle collisions • Phase change

Macroscale • Large number of

particles • Length scales: m NASA

The multi-scale issue

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

3

NETL 2013 Workshop on Multiphase Flow Science

Microscale • Wakes • Particle collisions • Phase change

Burlington, Vermont Xu & Zhu, 2011

Mesoscale • Clustering • Bubbling • Particle size segregation • Turbulence modulation

Macroscale • Large number of

particles • Length scales: m NASA

The multi-scale issue

Objectives: 1. Formulate from first-principles a macroscopic

turbulence model

2. Investigate the unclosed terms using mesoscale DNS

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

4

NETL 2013 Workshop on Multiphase Flow Science

• Arriving at a macroscopic description of fluid-particle flows

– Mesoscale description

– Reynolds-averaged equations

– Closure models

• Evaluating the unclosed terms using mesoscale DNS

– Simulation configuration

– Extracting the statistics

– Preliminary results

• Conclusions

Outline

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

5

NETL 2013 Workshop on Multiphase Flow Science

Multiscale turbulence modeling approach1

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

6 1. Fox, R.O., On multiphase turbulence models for collisional fluid-particle flows, In preparation for JFM, 2013

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Starting from a mesoscale description Kinetic theory model for monodisperse granular flow in the presence of a fluid

7

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Starting from a mesoscale description Fluid-phase transport equations

8

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Towards a macroscopic model • Reynolds-averaged definitions

• Phase-averaged definitions

• Solve for:

– Particle-phase:

– Fluid-phase:

9

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Reynolds-average equations Particle-phase equations

10

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Reynolds-average equations Fluid-phase equations

11

NETL 2013 Workshop on Multiphase Flow Science

Particle-phase equations

Fluid-phase equations

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Application to homogeneous gravity-driven flow

12

• Single-phase unclosed terms (models exist in literature) • Interphase coupling unclosed terms (new closures needed)

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

• Most important term – accounts for flow agitation due to clustering

• Modeling constant can be determined using mesoscale DNS

• In statistically homogeneous flow, this model increases terminal velocity:

A proposed model for drift velocity

13

NETL 2013 Workshop on Multiphase Flow Science

Mesoscale DNS framework

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

14

2. Desjardins et al., High order conservative finite difference scheme for variable density low Mach turbulent flow, JCP, 2008. 3. Capecelatro, J., Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, JCP, 2012.

• NGA2 – Arbitrarily high-order DNS/LES code – Massively parallel – Conservation of mass, momentum, and kinetic energy – Effective viscosity of Gibilaro et al. (2007):

• Lagrangian particle tracking3

– 2nd-order Runge-Kutta for particle ODEs – Soft-sphere collision model – Linear drag:

• Interphase exchange3

– Filter based on the convolution of mollification and diffusion 1. Mollification: transfer particle data to neighboring cells 2. Diffusion: smooth data with specified width

– Fully conservative, implicit treatment – Transferred data converges under mesh refinement!

NETL 2013 Workshop on Multiphase Flow Science

Simulation configuration

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

15

• 3D triply-periodic domain • Mass flow rate forced • Domain: • Mesh: • Case parameters

NETL 2013 Workshop on Multiphase Flow Science

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

Base case simulation

16

Degree of segregation

Contribution of the effective viscosity

Iso-surfaces of

Poisson distribution

Simulation

NETL 2013 Workshop on Multiphase Flow Science

Extracting multiphase statistics

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

17

• Separation of length scales much be established • Any Lagrangian property is filtered to the mesh by: • Use 2-step filter with characteristic size

• Total fluctuating energy:

• If :

• If :

Particle velocity vectors

NETL 2013 Workshop on Multiphase Flow Science

Choosing the correct filter size

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

18

• Use particle field from base case • Assign each particle a random Gaussian velocity with

– Mean set to local filtered velocity – Variance set to a prescribed granular temperature

• Use filter size

NETL 2013 Workshop on Multiphase Flow Science

Instantaneous results (base case)

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

19

NETL 2013 Workshop on Multiphase Flow Science

Reynolds number effect

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

20

Re=10 Re=20 Re=40

Poisson distribution

Collision frequency Granular temperature

Degree of segregation

NETL 2013 Workshop on Multiphase Flow Science

Conclusions

21

In summary

• The exact Reynolds-averaged equations for fluid-particle flows have been derived

• Must distinguish between particle-phase TKE and granular temperature

• 2-step filter can be used to extract meaningful statistics

Looking forward

• Effect of mass loading and concentration on turbulence statistics

• Study wall-bounded risers

• Use RANS ideas in LES framework

Context & Challenges Macroscopic Description Mesoscale DNS Summary & Conclusions

top related