water reuse of wastewater from a poultry processsing plantinfohouse.p2ric.org/ref/18/17511.pdf ·...

Post on 06-Sep-2018

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

I .

WATER REUSE OF WASTEWATER FROM A POULTRY PROCESSING PLANT

J.B.Andelman* and J . D . C l i s e * *

INTRODUCTION

A wastewater t r ea tmen t and r ec l ama t ion system has been cons t ruc t ed a t t h e S t e r l i n g Processing Company i n Oakland, Maryland. processes approximately 50,000 b i r d s per day i n an e i g h t hour o p e r a t i o n , u t i l i z i n g approximately 350,000 g a l l o n s per day of t r e a t e d w e l l - w a t e r . Be- cause of t h e l a c k of a d d i t i o n a l water of accep tab le q u a l i t y , t h e wastewater r ec l ama t ion system w a s cons t ruc t ed wi th t h e i n t e n t i o n of mixing t h e renovated water on a 50/50 b a s i s w i th w e l l water , u l t i m a t e l y i n c r e a s i n g t h e q u a n t i t y of water needed f o r an i n c r e a s e i n product ion c a p a b i l i t y .

This p l a n t s l a u g h t e r s and

The o b j e c t i v e s of t h e s tudy r epor t ed h e r e are t o determine 1) t h e a b i l i t y and r e l i a b i l i t y of t h e water reclamation system t o d e l i v e r water, mixed wi th t h e w e l l water sou rce , t h a t is s a f e f o r u se i n processing p o u l t r y ; 2) i f t h e pro- cessed p o u l t r y have any c o n s t i t u e n t s harmful t o human h e a l t h as a r e s u l t of exposure t o t h i s mixture of renovated and w e l l water; and 3) t o recommend monitoring procedures and parameters needed t o i n s u r e t h e s a f e t y of t h e system and t h e p r o t e c t i o n of human h e a l t h .

This p r o j e c t i s important as a demonstrat ion of t h e t e c h n i c a l and economic f e a s i b i l i t y i n t h e food i n d u s t r y of moving towards t h e n a t i o n a l g o a l of l i m i t - ing d i scha rges i n t o nav igab le waters. Water re-use i s an important s t r a t e g y

sumption o r exposure, i t is mandatory t h a t t h e h e a l t h of t h e consumer be pro- t e c t e d . I f t h i s p r o j e c t can s u c c e s s f u l l y demonstrate t h a t t h e r enova t ion p rocess can d e l i v e r a s a f e and p o t a b l e water, and t h a t t h e p o u l t r y processed wi th t h e water s i m i l a r l y pose no t h r e a t t o human h e a l t h , t h i s w i l l c o n s t i t u t e a n important s t e p i n our o v e r a l l e f f o r t towards reducing emissions t o t h e na t - i o n ’ s waterways.

i n achieving t h i s g o a l . However, i n such re-use of water involving human con- /

APPROACH

An i n i t i a l s tudy of t h e f e a s i b i l i t y of reclaiming p o u l t r y processing wastewater f o r r e u s e a t t h e S t e r l i n g p l a n t w a s r e p o r t e d by Clise ( 1 ) . The reclamation

*Graduate School of P u b l i c Heal th , Un ive r s i ty of P i t t s b u r g h , P i t t s b u r g h , Pennsylvania

Mary land **Maryland S t a t e Department of Heal th and Mental Hygiene, Baltimore,

I

system cons i s t ed of ae ra t ed lagoons, followed by mic ros t r a in ing , f l occu la - t i o n and sed imenta t ion , and f i l t r a t i o n , w i t h two s t a g e s of c h l o r i n a t i o n . The schematic of t h e system i s shown i n F igure 1. The i n i t i a l s tudy showed t h a t t h e reclaimed water m e t U.S. P u b l i c Heal th Service 1962 Drinking Water Standards f o r chemical, mic rob io log ica l and phys ica l c o n s t i t u e n t s wi thout a c t u a l r e c y c l e through t h e p o u l t r y processing p l a n t . Never the less , t h e r e w a s concern t h a t wi th a c t u a l r e u s e t h e r e w a s t h e p o s s i b i l i t y t h a t unmeasured con- s t i t u e n t s , such as pathogenic microorganisms, heavy metals, p e s t i c i d e s and t o x i c organic chemicals, might b u i l d up i n r e c y c l e and be absorbed by t h e car- cas ses i n t h e process ing p l a n t .

An a d d i t i o n a l p r o j e c t was proposed by t h e Maryland S t a t e Department of Heal th and Mental Hygiene and funded by t h e E .P .A . , t h e purpose of which w a s t o modi- fy and opt imize t h e rec lamat ion system, t o determine t h e c a p a b i l i t y and reli- a b i l i t y of t h e system f o r d e l i v e r i n g water s a t i s f a c t o r y f o r process ing p o u l t r y , and t o evaluate t h e exposure of t h e processed ca rcas ses t o c o n s t i t u e n t s t h a t could b e harmful t o human h e a l t h . The r o l e of t h e Graduate School of Pub l i c Heal th , Univers i ty of P i t t s b u r g h , w a s t o des ign , o rgan ize , and supe rv i se t h e sampling and a n a l y t i c a l p a r t of t h e s tudy , as w e l l as eva lua te t h e r e s u l t s from t h e p o i n t s of view of both t h e q u a l i t y of t h e renovated water and t h e pro- cessed pou l t ry poss ib ly a f f e c t e d by i t . Three phases were planned i n t h i s s tudy , t h e f i r s t two of which have been completdd. Phase 1 involved t h e opera- t i o n of t h e rec lamat ion p l a n t w i t h a new sand f i l t e r , and measurement of those c h a r a c t e r i s t i c s p e r t i n e n t t o opt imiz ing t h e process . Phase 2 involved a s tudy of a wide range of phys i ca l , chemical and microbio logica l c o n s t i t u e n t s , both a t va r ious p o i n t s i n t h e reclamation system, as w e l l as i n processed ca rcas ses exposed t o renovated water, bu t wi thout a c t u a l r ecyc le through t h e p l a n t . Phase 3 w a s t o involve r e c y c l e of t h e renovated water i n t o t h e process ing p l a n t by mixing on an average 50/50 b a s i s w i th w e l l water, t h e mixture then t o undergo a d d i t i o n a l f u l l - s c a l e convent ional t rea tment . The carcasses were aga in t o b e measured, as w a s t h e renovated water, and comparisons made of t h e levels of contaminants w i t h those i n normal p l a n t ope ra t ion u t i l i z i n g w e l l water only i n Phase 2.

P r i o r t o proceeding t o Phase 3 , an eva lua t ion w a s made of t h e Phase 2 r e s u l t s by a committee c o n s i s t i n g of r e p r e s e n t a t i v e s of t h e E.P.A., t h e Maryland Heal th Department, t h e process ing p l a n t , t h e U.S. Department of Agr i cu l tu re , and t h e Graduate School of P u b l i c Heal th . The l e v e l of contaminants i n t h e t r e a t e d wastewater and processed carcasses w e r e considered as t o t h e i r poss i - b l e h e a l t h s i g n i f i c a n c e . A similar eva lua t ion w a s t o be made fo l lowing Phase 3 s o as t o determine t h e s a f e t y of proceeding t o continuous ope ra t ion wi th reclaimed wastewater. F i n a l l y , recommendations were t o be made as t o t h e need f o r continuous monitor ing of t h e system.

This paper r e p o r t s p r i m a r i l y t h e p r i n c i p a l r e s u l t s of t h e Phase 2 s tudy and some a d d i t i o n a l measurements ob ta ined subsequent ly . Phase 3 , t h e a c t u a l re- cyc le of t h e renovated water i n t o t h e process ing p l a n t f o r a t r i a l three-month per iod , has no t been i n s t i t u t e d , even though t h e above Committee, c o n s t i t u t e d f o r t h e purpose, recommended t h a t t h e r e w a s no s i g n i f i c a n t r i s k i n s o doing. Some of t h e background and reasons f o r t h i s de lay w i l l be d iscussed subsequent- 1 Y *

F I G U R E 1. WATER SAMPLING P O I N T S AND CONNECTIONS FOR PHASE 2 AND PHASE 3 STUDIES

WASTEWATER TREATMENT' AND WATER RECLAIMING FACI L IT1 ES

SAMPLE IDENTIFICATION

TO R I V E R

COLLECTION BAS I N

I CHLORINE CONTACT CHAMBER

A SCREENED RAW WASTEWATER

c SECOND LAGOON EFFLUENT

D MICROSTRAINED EFFLUENT

x SED. BASIN EFFLUENT

E RENOVATED WASTEWATER

y UNTREATED WELL WATER

TREATED WELL WATER

TREATED MIXTURE (50/50) OF =, WELL AND RENOVATED WATER * 1

J FLOCCULATION- SEDIMENTATION B A S I N

Df ]

LAGOON 1

CHLORINATOR

CONNECTED I N I N PHASE 2 ONLY . -

< WELL POULTRY NORMAL MIXING WATER TREATMENT BASIN { I PLANT I Z orZM

PROCESS1 NG

391

NATURE OF STUDY

Following t h e op t imiza t ion of t h e o p e r a t i o n of t h e water renovat ion system (Phase l), t h e two-month s tudy of Phase 2 w a s performed. This involved seven separate days of sampling, approximately once a week i n t h e Spring of 1976. Two pre l iminary sampling t r i p s were conducted t o opt imize samp- l i n g a t t h e s i t e . On each of t hese days va r ious water and wastewater sam- p l e s w e r e c o l l e c t e d . I n a d d i t i o n , twenty-five carcasses w e r e c o l l e c t e d f o r a n a l y s i s from t h e p l a n t c h i l l e r system. F i n a l l y , a s m a l l "experimental" c h i l l e r w a s s e t up t o s imula t e t h e p l a n t c h i l l e r . Twenty-five carcasses were taken from t h e p l a n t , p r i o r t o exposure t o t h e p l a n t c h i l l e r , and placed i n t h e experimental c h i l l e r i n such a way and f o r such a per iod as t o simu- l a t e t h e p l a n t c h i l l e r . However, t h e experimental c h i l l e r w a s f i l l e d wi th renovated water. The purpose w a s t o ana lyze and compare t h e p o s s i b l e bui ld- up of contaminants i n ca rcas ses exposed t o t h e p l a n t c h i l l e r us ing normal, t r e a t e d w e l l - w a t e r , ve r sus those exposed t o t h e experimental c h i l l e r us ing renovated water. I t must be emphasized t h a t a t no t i m e during Phase 2 w a s renovated water ever used i n t h e process ing p l a n t .

F igure 1 shows t h e schematic of t h e wastewater renovat ion system, t h e con- nec t ions f o r Phases 2 and 3 , and t h e p o s s i b l e sample p o i n t s t o be u t i l i z e d i n t h e s tudy . The a c t u a l Phase 2 sampling p o i n t s and t h e number of samples taken on a t y p i c a l sampling day are shown i n Table 1.

Not a l l of t h e sampling p o i n t s w e r e s u b j e c t t o a l l t h e ana lyses . The types of ana lyses t h a t w e r e t o be performed are shown i n Tables 2 and 3 . Table 2 l i s ts t h e Category I ana lyses . A s shown t h e r e , Categor ies I a , b, and c w e r e t o be performed only on water samples, whi le I d w a s t o be done on ca rcas s samples as w e l l . I n f a c t , some Ia and I b ana lyses were performed on carcas- ses,

Table 3 shows t h e Category I1 and I11 ana lyses . A s noted there, a l l of t h e s e ana lyses w e r e t o be done on both water and ca rcas s samples. A l l were per- formed, w i th t h e except ion of t h e halogenated methanes of Category 111. These w e r e done subsequent t o Phase 2 , and w i l l b e r e p o r t e d here .

Although ana lyses of v i r u s e s were no t contemplated o r i g i n a l l y i n t h i s s tudy , t h e d e c i s i o n w a s made t o a t tempt t o measure an av ian v i r u s and use i t as an i n d i c a t o r o r s e n t i n e l of t h e behavior of o the r v i r u s e s i n t h e water renova- t i o n system. S ince i t was r epor t ed t h a t t h e chicken f l o c k s were r o u t i n e l y inocu la t ed wi th a t t e n u a t e d Newcastle Disease v i r u s (NDV), i t w a s decided t o develop t h e methodology and sample t h e water and ca rcas ses f o r i t . The re- s u l t s of t h i s i n v e s t i g a t i o n w i l l be r epor t ed . I n a d d i t i o n , some l abora to ry die-off s t u d i e s w e r e performed using lagoon water spiked wi th NDV.

F i n a l l y , and subsequent t o Phase 2 , t o t a l o rgan ic carbon measurements (TOC) were performed on t h e renovated water, t h e normally t r e a t e d w e l l water, and t h a t taken a t o t h e r s e l e c t e d sampling p o i n t s . I n a d d i t i o n , a few samples of t h e t r e a t e d w e l l and renovated water were analyzed by gas-chromatography- mass spectrometry (GC-MS) f o r some s p e c i f i c o rgan ic s , o t h e r than those shown i n Table 3 .

392

I

Table 1. PHASE 2 SU?O4ARY OF TYPES OF SAMPLES TYPICALLY TAKEN FOR ANALYSIS EACH WEEK

I Water Samples

Location

A - Raw Llaste

E - Renovated Water

Z - Trea ted Well SJater

PC - P l a n t C h i l l e r

EC - Experimental Chi]-ler

Maximum Number p e r day

2

2

2

2

2

Birds (Carcass Samples)

PB - P l a n t C h i l l e r Birds 5"

EB - Exp. C h i l l e r Birds 5"

*50 c a r c a s s e s were taken f o r a n a l y s i s each sampling day, 25 PB and 25 EB.

I n each case washings from 5 c a r c a s s e s w e r e composited o r o the rwise com-

bined t o become a s i n g l e c a r c a s s sample. Hence, 25 c a r c a s s e s reduced t o

5 samples.

Note - Occasionai ly water samples were taken a t o t h e r sample p o i n t s shown

i n Figure 1 o r x i t h i n t h e lagoons.

393

Table 2 . WATER RE-USE PROJECT

I a

Types of Analyses t o be Performed

Category I Analyses

These ana lyses re la te p r i m a r i l y t o w a s t e t rea tment e f f i c i e n c y and none w i l l be performed on ca rcas ses

BOD5 Suspended s o l i d s

Grease T o t a l s o l i d s

Organic. n i t r o g e n A l k a l i n i t y

Ammonia n i t r o g e n

I b and c - These ana lyses re la te t o waste t rea tment e f f i c i e n c y and p o t a b l e water q u a l i t y ; none w i l l be performed on carcasses

I b

T u r b i d i t y

Color

- I C -

CCE (carbon chloroform e x t r a c t )

T o t a l Dissolved s o l i d s

Res idua l c h l o r i n e ( t o t a l )

Residual c h l o r i n e ( f r e e )

I d - These ana lyses re la te t o waste t rea tment e f f i c i e n c y and water q u a l i t y . They w i l l be measured f o r water and carcass samples.

T o t a l p l a t e count Feca l co l i fo rm

T o t a l co l i fo rm PH

394

Table 3 . WATER RE-USE PROJECT

Types of Analyses t o be Performed

Category I1 Analyses These ana lyses w i l l be performed on water and

carcass samples

Salmonel la (enumeration)

Drug r e s i d u a l

Category I11 Analyses

carcass samples These chemical ana lyses w i l l be performed on water and

Arsenic

Barium

Cadmium

C a1 cium

Chlor ide

Chromium

Copper

Cy a n i de

F luo r ide

Halogenated methanes

H a r dne s s

I r o n

L e ad

Magnesium

Manganese

Mercury

MBAS

Nitrate

Pot ass ium

Selenium

Si lver

Sodium

S u l f a t e

Zinc

P e s t i c i d e s

395

METHODOLOGY

Except where noted below, a l l a n a l y t i c a l methodology i s c o n s i s t e n t w i th t h a t s p e c i f i e d by the E.P.A. o r Standard Methods f o r t h e Examination of Water and Wastewater (14th E d i t i o n ) . A l l necessary p recau t ions f o r t r ans - p o r t i n g t h e samples, such as r e f r i g e r a t i o n o r t h e a d d i t i o n of chemical p r e s e r v a t i v e s , w e r e taken.

The experimental c h i l l e r using renovated (E) water was operated on a batch b a s i s . That i s , i t w a s f i l l e d wi th renovated water and plant-made i c e w a s added t o b r ing the temperature i n i t i a l l y t o about 55OF. c a s s e s w e r e t hen lowered i n t o t h e b a t h w i t h i n t h e drum and r o t a t i o n begun. Add i t iona l i c e t o ma in ta in 55’F w a s added. Approximately 15 minutes l a t e r more i c e w a s added t o reduce t h e b a t h temperature t o about 34’F, and c h i l - l i n g continued f o r another 10 minutes.

The 25 car-

The ca rcas ses w e r e removed by handl ing w i t h c l e a n p l a s t i c g loves , and both p l a n t and experimental c h i l l e r carcasses w e r e t r e a t e d i n t h e same fash ion . They w e r e p l aced , a f t e r d r a i n i n g , i n e i t h e r c l e a n o r p r e - s t e r i l i z e d (by au toc lav ing ) p l a s t i c bags and c a r r i e d t o t h e l a b o r a t o r y t ra i ler . 1500 m l of e i t h e r d i s t i l l e d o r d i s t i l l e d and s t e r i l e water w a s added t o each such bag, which w a s t hen shaken f o r one minute and t h e water con ten t s poured f o r a n a l y s i s .

Salmonellae w e r e i s o l a t e d from t h e water and p o u l t r y samples using membrane f i l t r a t i o n techniques modified from t h e r e c e n t l i t e r a t u r e . Q u a n t i t a t i o n of salmonel lae was attempted employing 15 d i l u t i o n tubes t o determine t h e most p robab le number (MPN) index of organisms. Subsequent t o t h e Phase 2 s tudy our r e sea rch on media s e l e c t i v e f o r salmonel lae developed t o t h e p o i n t of being a b l e t o q u a n t i f y by t h i s technique. I n t h e Phase 2 r e s u l t s , however, only t h e i r q u a l i t a t i v e presence o r absence are r e p o r t e d .

A d i s c a s say method modified from t h e procedure of Huber e t a l . ( 2 ) w a s em- ployed t o d e t e c t r e s i d u a l drugs i n t h e w a t e r and carcass samples. The f i r s t method used i n t h i s l a b o r a t o r y e m loyed B a c i l l u s s u b t i l i s (Difco spore suspension con ta in ing approximately 10’’ spores/ml) as t h e tes t organism and seed agar ( a n t i b i o t i c medium No. 1) as t h e test s u b s t r a t e . This proced- u r e w a s f u r t h e r modified according t o t h e method of Read e t a l . (3) i n order t o d e t e c t b a c i t r a c i n and t o enhance t h e s e n s i t i v i t y of d e t e c t i n g s u l f a drugs and a n t i b i o t i c s i n the w a t e r and carcass samples. B a c i l l u s cereus and Muel- ler-Hinton agar w e r e t hus employed as t h e test organism and t h e t es t sub- strate, r e s p e c t i v e l y .

Primary ch ick embryo c e l l c u l t u r e s were used wi th a plaque a s say t o d e t e c t t h e presence of a v i a n v i r u s e s i n t h e water and carcass samples, which were f i r s t f i l t e r e d through 0.45 micron pore-s ize membrane f i l t e r s . Following i n o c u l a t i o n of t h e c e l l monolayers w i th t h e f i l t e r e d samples and v a r i o u s in - cuba t ion procedures , plaques were counted and t h e plaque-forming u n i t s p e r m l (PFU/ml) determined. I n o rde r t o d e t e c t t h e p o s s i b l e presence of such v i r u s e s i n t h e c a r c a s s e s , t i s s u e e x t r a c t s w e r e prepared from s p l e e n s , lungs and l ivers , processed and analyzed f o r t h e presence of a v i a n v i r u s e s , such as NDV, capable of hemagglutinating chicken r e d blood c e l l s .

396

RESULTS

Most of t h e i n d i v i d u a l a n a l y t i c a l r e s u l t s w i l l n o t be p re sen ted . Rather , f o r t h e purpose of t h i s paper and wherever p o s s i b l e , r e s u l t s w i l l be sum- marized or p re sen ted i n s t a t i s t i c a l f a sh ion .

Mic rob io log ica l and Drug Residual

Ne i the r salmonel lae nor any o t h e r En te robac te r i aceae were ever i s o l a t e d i n t h e c h l o r i n a t e d renovated (E) o r w e l l water ( Z ) . The carcasses exposed t o and t h e water from t h e experimental c h i l l e r , us ing t h e renovated w a t e r , w e r e s i m i l a r l y n e g a t i v e i n t h i s r e s p e c t . Salmonellae w a s i s o l a t e d i n r a w waste- water (A). However, t h e a e r a t e d lagoon and r enova t ion system w a s complete- l y e f f i c i e n t i n d i s i n f e c t i n g t h i s bacterium.

A l l s amples t e s t e d f o r drug r e s i d u a l using both B a c i l l u s s u b t i l i s and B a c i l l u s ce reus w e r e nega t ive . Thus, t h i s test has no t d e t e c t e d any a n t i - b i o t i c drug i n e i t h e r t h e w a t e r o r c a r c a s s samples.

S i m i l a r l y , a v i a n v i r u s e s , i nc lud ing NDV, have n o t been d e t e c t e d e i t h e r i n t h e water o r carcass samples, nor i n t i s s u e e x t r a c t s from chickens processed a t t h e S t e r l i n g p l a n t . Only p re l imina ry r e s u l t s of t h e NDV l a b o r a t o r y die- o f f experiments using lagoon water can be r e p o r t e d a t t h i s t i m e . These sam- p l e s , spiked wi th NDV, were s t u d i e d f o r up t o seven days a t two temperatures , i n t h e l i g h t and dark. A t 25OC die- o f f w a s complete ( i n d i c a t e d by t h e absence of plaque-forming u n i t s i n t h e a s say ) a f t e r 3 days. A t 7 O C , however, t h e die-off w a s ve ry slow, less than a f a c t o r of 10 i n one week. These experiments are con t inu ing , p a r t i c u l a r l y t o e l u c i d a t e t h e p o s s i b l e r o l e of p a r t i c u l a t e matter i n t h e lagoons i n v i r u s s u r v i v a l .

There w a s no appa ren t e f f e c t of l i g h t .

The renovated water (E) w a s analyzed f o r b a c t e r i a on e i g h t days during and j u s t p r i o r t o t h e Phase 2 p e r i o d , 19 samples being taken. On s i x of t h e e i g h t days t h e t o t a l and f e c a l co l i fo rm r e s u l t s were less than 2 organisms p e r 100 m l . On A p r i l 5 and 1 2 f o u r E samples w e r e analyzed. The r epor t ed t o t a l co l i fo rm ranged from 15 t o > 240 organisms pe r 100 m l , and t h e f e c a l co l i fo rm from 9 t o > 240. However, t h e r e i s a s t r o n g l i k e l i h o o d t h a t t h e s e E sample r e s u l t s w e r e confused w i t h those of EC, t h e experimental c h i l l e r water. The r e s u l t s f o r t h e l a t t e r f o r t hose two weeks were r e p o r t - ed as n e g a t i v e f o r co l i fo rm and f e c a l co l i fo rm, a h igh ly u n l i k e l y r e s u l t compared t o a l l o t h e r EC and PC co l i fo rm a n a l y s e s , which w e r e >240.

The t o t a l b a c t e r i a l p l a t e count ana lyses on t h e samples desc r ibed above i n d i c a t e d a maximum v a l u e of 25 organisms pe r m l f o r t h e Z samples and 15 f o r E , except f o r t h e f o u r samples which are be l i eved t o be i n c o r r e c t . For t h e s e l a t te r f o u r , t h e v a l u e s ranged from 1 t o 2,000. A r easonab le maximum t o t a l p l a t e count f o r municipal w a t e r is 500 pe r m l .

I n view of t h e h igh p r o b a b i l i t y t h a t t h e inadequate b a c t e r i a l q u a l i t y of t h e fou r E samples w a s due t o sample r e p o r t i n g e r r o r , and t h a t no E samples have y i e l d e d any e n t e r i c pathogens, i t i s concluded t h a t t h e renovated water i s

397

of e x c e l l e n t b a c t e r i a l q u a l i t y . It should a l s o be noted as w e l l t h a t i n a c t u a l r e c y c l e the E water w i l l r e c e i v e a d d i t i o n a l t r ea tmen t , i nc lud ing c h l o r i n a t i o n , a f t e r being mixed 50/50 wi th t h e u n t r e a t e d w e l l w a t e r .

I no rgan ic Chemical Water Qua l i ty

A summary of t he r e s u l t s f o r s e v e r a l macro c o n s t i t u e n t s and water q u a l i t y c h a r a c t e r i s t i c s f o r Z and E i s presented i n Table 4 . Other than pH, a l k a l i - n i t y , and n i t r a t e , t h e mean concen t r a t ions of a l l t h e s e parameters were high- er i n t h e renovated water, E , t han i n t h e t r e a t e d w e l l water, Z . However, t h e s e concen t r a t ions i n E are n o t hazardous, and only one maximum v a l u e shown, 252 mg/l f o r s u l f a t e , i s a t t h e c r i t e r i o n l e v e l , which has only been a second- a r y s t anda rd . This s u l f a t e bui ldup i s n o t of concern, bu t could be reduced, s i n c e i t i s p r i m a r i l y due t o t h e alum coagulant .

I t should be noted t h a t some of t h e d i f f e r e n c e s i n t h e mean concen t r a t ions of chemicals i n Z and E are n o t s t a t i s t i c a l l y d i f f e r e n t when t h e v a r i a b i l i t y of t h e r e s u l t s are considered. Thus, co lo r cannot be considered t o be statis- t i c a l l y d i f f e r e n t i n t h e Z and E water. 5uil.d-up of d i s so lved macro c o n s t i t u e n t s i n t h e renovated w a t e r . This i s not unrupected and, a t t h e l e v e l s encountered, does n o t pose a h e a l t h hazard.

However, t h e r e is unquestionably a

A t t e n t i o n should be c a l l e d , however, t o t h e low a l k a l i n i t y i n E , and t h e low pH va lues . On some days t h e pH w a s as low as 3.3 due t o t h e l a r g e doses of c h l o r i n e . The E water w i l l be mixed w i t h u n t r e a t e d Z i n Phase 3 , which w i l l m i t i g a t e t h i s problem. However, t o avoid c o r r o s i o n i n t h e system, soda a sh o r c a u s t i c soda has been added t o raise the pH and a l k a l i n i t y when r e q u i r e d .

Table 5 p r e s e n t s a comparison f o r Z and E f o r c e r t a i n measurements r e l a t e d t o waste t r ea tmen t parameters . The t o t a l s o l i d s i n E are obviously h ighe r t han i n Z , b u t t h i s i s due t o t h e d i s so lved s o l i d s a l r eady d i scussed . The o rgan ic n i t r o g e n v a l u e s f o r E r e f l e c t i t s h ighe r o rgan ic c o n t e n t .

Of some i n t e r e s t and p o s s i b l e concern among t h e c o n s t i t u e n t s r e p o r t e d i n Table 5 i s t h e r e l a t i v e l y high average concen t r a t ion of ammonia n i t r o g e n i n t h e renovated water. It probably r e s u l t s from b i o l o g i c a l d e n i t r i f i c a t i o n re- a c t i o n s i n t h e lagoons, a l though some concen t r a t ions measured i n t h e r a w waste are comparably high. The p r i n c i p a l concern i s t h a t t h e ammonia reacts wi th t h e c h l o r i n e d i s i n f e c t a n t t o form chloramines, which are less e f f e c t i v e d i s - i n f e c t i n g agen t s . However, because of t h i s ve ry r e a c t i o n , u n l e s s t h e samples are analyzed immediately, i t i s u n l i k e l y t h a t w i th t h e p r a c t i c e of breakpoint c h l o r i n a t i o n t h e ammonia should have been d e t e c t e d . t h e ammonia concen t r a t ions i n E decreased cons ide rab ly . It should be empha- s i z e d t h a t t h e e x c e l l e n t b a c t e r i a l q u a l i t y of E water i n d i c a t e s t h a t d i s i n - f e c t i o n has n o t been a f f e c t e d . Also t h e presence of t h e s e concen t r a t ions of ammonia i s n o t known t o be a h e a l t h hazard. F i n a l l y , i t i s noteworthy t h a t ammonia i s sometimes added i n municipal water t r ea tmen t p l a n t s i n o rde r t o react wi th c h l o r i n e and form longer- l ived chloramines.

Subsequent t o Phase 2

A summary of t h e r e s u l t s f o r t h e trace c o n s t i t u e n t s i n Z and E waters i s shown i n Table 6. It should be emphasized t h a t t h e concen t r a t ion u n i t s h e r e are micrograms p e r l i t e r . A l l of t h e maximum concen t r a t ions were w e l l below

398

T a b l e 4 . PHASE 2 - WATER QUALITY CHARACTERISTICS AND MACRO CONSTITUENT CONCENTRATIONS*

Turb id i ty (JTU)

Color ( u n i t s )

PH e

A l k a l i n i t y

Chlorine Res .

Surf actants (MBAS)

Na'

K+ ce Ca

c1-

NO; --

s04

HCO;(est)

Ion To ta l

Dissolved So l ids

(in mg/l , except where noted)

1962 PHS Treated Well Water ( Z ) C r i t e r i o n Renovated Water (E)

- - Value Max

6 0.9 0.5 1.7 5 35 1.6 1.7 2.7

- U - X - N N - X - a - Max - -

6 3.0 1.6 5 15 36 3.7 3.3 1 0

12 7.0 0.2 7.2 - 30 5.8 1.4 6.9

12 107 1 5 130 15 35.3 37 140

- 6.0 52 1.7 1.3 - - - -

14 <0.01 - - 0.5 1 3 Q. 04 0.02 0.08

14 7.4 3.4 12.5 - 14 30.2 12.5 47.7

16 2.9 3.6 8.7 - 15 14.7 2.3 17.4

16 53.7 5.8 64.9 16 40.1 4.8 49.4 -

16 2.4 0.3 2.9 15 2.95 0.3 3.4 -

12 11.6 1.0 13.4 250 12 88.5 16.8 121

8 4.0 0.6 4.9 45 8 3.5 1.5 6.2

8 9.6 3.6 13.5 250 8 150 85.6 252

12 143 33.8 194 500 16 389 66 492

*Occasionally extreme values (beyond 2a) discarded

Table 5

PHASE 2 - CERTAIfl IJATEK CHARACTERISTICS RELATED PRIX.ARILY TO WASTE TREATMENT EFFICIENCY ( i n mg/l)

Trea ted Yell Water (2) -I_-__--- -

Max - 0 - x - N -

T o - c a l s o l i d s 12 165 33 234

Suspended s o l i d s 12 10.4 8.1 26

BOD 12 5.3 4.3 18

Grease 12 5.2 6.1 23

O r g a n i c 4

Ammonia-N

8 0,013 0.008 0.030

8 0.017 0.013 0.040

Dlssolvcd Oxygen 12 8.1 0.6 9.4

Renovated Water (E) -

Max -- U - - N - X

13 418 72 501

14 16.8 19.7 70

14 3.4 2.2 7.0

13 5.1 4.8 18.2

10 1.7 1.5 5.0

10 19.0 4.4 23.0

14 9.3 1.4 11.7

Table 6. PIUSZ 2 - TRACE CHEMICAL CONCENTRATIONS* (ug / l )

PHS 1962 Treat:ed Well Water (Z) - C r i t e r i o n Renovated Water (E)

Value - X U -." N -

c u 16 41.4 11.2

F 14 58 33

Fe 16 19.2 7. a

Mn 16 1.8 1.0

Pb 16 2 1 . 2 16.7

Zn 12 25.2 3.8

- Max

57 1000 14 38.8 12.9 56

13 1000 14 151 54 2 30

31 300 14 57.1 24.3 98

3 50 1s 2.6 1.0 4

50 50 15 23.8 13.9 50

33 5000 12 27.2 6.9 38

I_

0 - X - N - Max.

*Occasionally extreme values (beyond 2a) w e r e d i scarded

400

I

t h e PHS c r i t e r i o n v a l u e s , except f o r l ead i n both E and Z samples. These were not s i g n i f i c a n t l y d i f f e r e n t f o r t h e two waters, and t h e high concen- t r a t i o n s i n each case were j u s t about: a t t h e c r i t e r i o n va lue . Only i n t h e case of i r o n and f l u o r i d e were t h e concen t r a t ions s i g n i f i c a n t l y h ighe r f o r E compared t o Z . However, i t is judged t h a t f o r none of t h e s e s i x trace elements were t h e r e any hazards i n t h e renovated w a t e r .

Although not shown i n Table 6 , a l l t h e measurements f o r s i l v e r , a r s e n i c , cadmium, chromium, and selenium were nega t ive (below t h e s e n s i t i v i t y l e v e l s ) . Abvut ha l f of t h e E samples w e r e p o s i t i v e f o r cyanide a t concen t r a t ions up t o 1 2 Qg/l , bu t w e l l below t h e h e a l t h c r i t e r i o n v a l u e of 200 p g / l . I t i s d i f i i c u l t : t o imagine any o x i d i z a b l e cyanide being p r e s e n t i n E because of t h e l a r g e q u a n t i t i e s of added c h l o r i n e . However, t h e a n a l y s i s w a s f o r t o t a l cyanide, s o t h a t t h e measurement may have d e t e c t e d such harmless combined complexes as those involving i r o n , o f t e n used as an ant i -caking agen t , such as i n road sal t . Seve ra l water samples were p o s i t i v e f o r mercury. These occurred i n t h r e e of t h e e i g h t weeks, two of which w e r e analyzed on t h e same day. It: is l i k e l y t h a t i n t h e l a t t e r cases t h e r e w a s contamination o r analy- tical e r r o r , perhaps as a r e s u l t of t h e mercury p r e s e r v a t i v e added t o t h e n i - t r a t e sampling b o t t l e . On two subsequent weeks when t h i s p o s s i b i l i t y w a s re- moved, only one o u t of s i x E samples were p o s i t i v e (0.6 u g / l ) , and no Z sam- p l e s . I n c o n t r a s t , dur ing t h e previous two weeks E , Z and a l l o t h e r samples were p o s i t i v e and much h ighe r . For t h e samples of t h e f i r s t fou r weeks none of t h e E o r Z samples w e r e a t concen t r a t ions higher t han 0 .2 p g / l , t h e l e v e l of s e n s i t i v i t y of t h e method. I n view of t h e f a c t t h a t t h e h i g h e s t E sample w a s 1 . 7 p g / l , even though i t w a s probably an erroneous reading due t o con- taminat ion, and t h e f a c t t h a t t h e c r i t e r i o n v a l u e i s 2 p g / l , i t may be con- cluded t h a t t h e r e is no observed h e a l t h hazard from mercury i n t h e renovated water.

Carcass Chemical Analyses

The r e s u l t s of t h e chemical ana lyses of t h e washings from t h e carcass samples PB, from t h e p l a n t c h i l l e r , and EB, from t h e experimental ch i l le r , w i l l be summarized h e r e , b u t n o t t a b u l a t e d . Most of t h e chemical s p e c i e s analyzed i n w a t e r , as shown i n Tables 4 , 5, and 6 , w e r e a l s o analyzed i n t h e carcass wash- i n g s . Among t h e macro c o n s t i t u e n t s only t h e mean n i t r a t e concen t r a t ions were s t a t i s t i c a l l y s i g n i f i c a n t l y higher a t 0.38 mg/l i n t h e EB samples compared t o 0.06 i n PB. The r eason f o r t h i s d i f f e r e n c e i s no t known, s i n c e t h e Z and E waters are no t s i g n i f i c a n t l y d i f f e r e n t i n n i t r a t e c o n c e n t r a t i o n s , as shown i n Table 4 . It i s very u n l i k e l y t h a t t h i s poses any kind of a h e a l t h hazard. Taking t h e mean v a l u e of 0.38 mg/l of n i t r a t e i n t h e EB samples , and assuming t h a t t h i s a l l came from t h e carcasses, s i n c e 1 . 5 l i ters of d i s t i l l e d water w a s used t o e l u t e t h e c a r c a s s e s , t h i s would be equa l t o 1.5x0.38, o r 0.57 mg n i t r a t e p e r c a r c a s s . This is n o t a q u a n t i t y of concern i n t h e p e r s p e c t i v e , f o r example, of t he c u r r e n t primary d r ink ing w a t e r r e g u l a t i o n , which permits an average d a i l y a d u l t i n g e s t i o n of about 90 mg n i t r a t e .

The mean v a l u e s of a l l t h e waste c h a r a c t e r i s t i c and trace element measurements were t h e same, w i t h i n s t a t i s t i ca l confidence, f o r t h e PB and EB samples i n Phase 2 , w i th t h e except ion of m o i i i a n i t rogen . mg/l, wh i l e t h a t of PB WES 0.09.

The mean EB v a l u e w a s 1.1 This r e s u l t is most probably a t t r i b u t e d t o

401

t h e high ammonia con ten t of t h e renovated water, bu t cannot be considered t o be a h e a l t h hazard.

Organic Water Qua l i ty

A v a r i e t y of measurements of g ross o rgan ic parameters and s p e c i f i c organic chemicals have been performed during and subsequent t o Phase 2 . These in - c lude BOD5, o rgan ic n i t r o g e n , and CCE (carbon chloroform e x t r a c t ) , as Cate- gory I ana lyses , shown i n Table 2 ; halogenated methanes, MBAS ( s u r f a c t a n t s ) , and p e s t i c i d e s , as Category I11 a n a l y s e s , Table 3 ; t o t a l o rgan ic carbon (TOC); and s p e c i f i c o rgan ic s e x t r a c t e d w i t h methylene c h l o r i d e and i d e n t i f i e d by gas chromatography-mass spectrometry (GC-MS) . A comparison of t h e mean r e s u l t s f o r t h e s u r f a c t a n t s , shown i n Table 4 , i n - d i c a t e s s i g n i f i c a n t l y higher concen t r a t ions i n t h e renovated water, E , com- pared t o t h e t r e a t e d w e l l water, Z . However, both t h e mean concen t r a t ion of 0.04 mg/l and t h e maximum of 0.08 are w e l l below t h e 0.5 mg/l 1962 PHS c r i t e r i o n va lue .

The BOD5 summary v a l u e s are shown i n Table 5, i n d i c a t i n g a somewhat lower mean v a l u e f o r t h e E compared w i t h t h e Z water, a l though t h e d i f f e r e n c e i s no t s t a t i s t i c a l l y s i g n i f i c a n t . I n c o n t r a s t , t h e average f o r t h e o rgan ic n i t r o - gen, de f ined as t h e o r g a n i c a l l y bound n i t r o g e n i n t h e nega t ive - th ree oxida- t i o n s t a t e , is higher i n t h e E water a t 1 . 7 mg/l than t h a t of Z , 0.013. It also-shows cons ide rab le v a r i a t i o n . It most probably c o n s i s t s of p r o t e i n mat- e r ia l and i t s breakdown p roduc t s , such as amino a c i d s , from t h e chickens.

Analyses w e r e performed f o r n i n e p e s t i c i d e s , samples being c o l l e c t e d on t h r e e separate days i n a three-week pe r iod . These ana lyses were d i scon t inued when a l l samples from t h e second and t h i r d days were nega t ive . The r e s u l t s are summarized i n Table 7 . No p o s i t i v e v a l u e s w e r e ob ta ined f o r t h e E o r Z sari-

p l e s , only f o r A , t h e r a w waste, and PB and PC, t h e c a r c a s s e s and c h i l l e r water i n t h e p l a n t . The t o t a l number of E samples analyzed w a s n i n e .

A summary of t h e t o t a l o rgan ic carbon (TOC) ana lyses of s a m p l e s taken on f i v e success ive weeks i n November and December, 1976 is shown i n Table 8. Each in - d i v i d u a l TOC v a l u e i s a r e s u l t of a t least two measurements on t h e same sample, t h e TOC being t h e d i f f e r e n c e between t h e t o t a l carbon and t h e i n o r g a n i c carbon ana lyses . were 10 , 8, 6 and 4 , r e s p e c t i v e l y . Two samples each w e r e measured a t each of t h e o t h e r sampling p o i n t s . These r e s u l t s show t h a t t h e r e w a s a cons ide rab le r e d u c t i o n i n TOC through t h e lagoon and then t h e r enova t ion system. Although t h e mean v a l u e f o r t h e renovated water, E , w a s about 5 mg/l h ighe r t han t h a t f o r Z , t h e t r e a t e d w e l l water, they each showed cons ide rab le v a r i a b i l i t y , as i n d i c a t e d by t h e i r r e s p e c t i v e ranges and s t anda rd d e v i a t i o n s .

The t o t a l number of samples f o r Z , E , X , and C shown i n Table 8

Several carbon chloroform e x t r a c t (CCE) measurements were made, bo th during Phase 2 and a t o t h e r t i m e s , t h e r e s u l t s being shown i n Table 9. These measure- ments were done by t h e newer m i n i a t u r i z e d two-day sampling technique ( 4 ) , f o r which a s t anda rd had been proposed of 0.7 mg/l compared t o t h e 0.2 v a l u e f o r t h e o l d e r technique i n t h e 1962 PHS s t anda rds . I n f a c t , i t w a s shown i n a com- p a r i s o n of t h e two techniques t h a t t h e newer method measures about 6.7 t i m e s

402

Table 7. P e s t i c i d e s hqalyzed and Found (ug / l )

S e n s i t i v i t y C r i t e r i o n * P o s i t i v e P e s t i c i d 2 L i m i t Value Values

Chlordane 0.2-1 3** - Endrin 0.1 0.2 0.1 (A. PB)

Heptachlor 0.06 0.1** 0.09-0.4 (A, PB, PC)

Hep t. Epoxide 0.1-0.2 0.1** - Lindane 0.06 4 0.04-0.14 (A, PR, PC)

Methoxychlor 0.5-1 100 - Toxaphene 3-6 5 - 2,4-D 0.05-1 100 - 2,4,5-T 0.5-1 10 -

*E.P.A. Na t iona l In t e r im Primary Drinking Water Regs., except Cor:

**Proposed as above, but not adopted

Table 8. T o t a l Organic Carbon (TOC) Analyses of a Few

Samples i n F a l l 1976 a t t h e S t e r l i n g P l a n t

Sample Point

Z - t r e a t e d w e l l water

E f f l u e n t s from:

L1 - lagoon 1

C' - lagoon 2

C - lagoon 2 ( ch lo r ina t ed )

D - m i c r o s t r a i n e r

X - sedimentat ion bas in

E - renovated water

Concentrat ions - m g / l Mean Stand. Dev. Ranpe

14.5 7 .O 6 - 26

50.5 2.2 49 - 52

35.0 1.0 34 - 36

38.8 4.9 35 - 45

39.8 7.4 35 - 4 5

22.4 3.2 19 - 29

20.0 5 . 1 15 - 31

403

Table 9. Carbon Chloroform Extract Concentrations (CCE)

at the Sterling Renovation System

1976 Week Sampled CCE - mp/l

Untreated Well

31 8 0.58

Renovated Water

3/15a 0.96

3/29

4/19

1.2

1.5

5/17 0.18

61 14 0.36

71 12 0.22

712 6 0.58 0.61

111 15 0.52

Renovated Water - Mean 0.68

Standard Dev. 0.45

a - stored water

404

as much CCE as t h e o l d e r one ( 4 ) . The r e s u l t s i n Table 9 i n d i c a t e consid- e r a b l e v a r i a b i l i t y i n t h e CCE va lues i n the renovated water, E , bu t t h e s e va lues ove r l ap wi th and on t h e average are no t very d i f f e r e n t from t h e s i n g l e measurement of t h e un t r ea t ed w e l l water.

On f o u r success ive weeks i n November and December, 1976 v o l a t i l e halogenated methanes w e r e measured, e s s e n t i a l l y using t h e technique of Bellar and Lichtenberg ( 5 ) . The only o rgan ic found by t h i s technique i n t h e renovated water, E , w a s chloroform, t h e maximum concen t r a t ion being 3 micrograms per l i t e r . I n some of t h e t r e a t e d w e l l w a t e r s amples , Z , chloroform w a s measured a t concen t r a t ions of less than one microgram p e r l i t e r , and one showed traces of carbon t e t r a c h l o r i d e and dibromochloromethane. For r e f e r e n c e , t h e mean chloroform concen t r a t ion i n f i n i s h e d U.S. p u b l i c water s u p p l i e s w a s r epor t ed t o be 2 1 micrograms pe r l i t e r i n t h e Na t iona l Organics Reconnaissance Sur- vey ( 6 ) .

F i n a l l y , samples of E and Z water c o l l e c t e d on two s e p a r a t e days subsequent t o Phase 2 were e x t r a c t e d by methylene c h l o r i d e , concent ra ted by evapora t ion and analyzed by GC-MS f o r s p e c i f i c organics . Three g e n e r a l types of compounds were i d e n t i f i e d by t h i s technique. A t t h e moment, t h e ana lyses have no t y e t been confirmed wi th s tandards . I n t h e renovated water, E , t h e fol lowing nor- m a l f a t t y a c i d s were i d e n t i f i e d : C-10, -11, -12, -14, -15, -16, and -18; i n t h e t r e a t e d w e l l water, C-12 , -14, -16, and -18. None of t hese con ta in chlor- i n e atoms. f i e d , bu t only t h e former i n t h e t r e a t e d w e l l water. Both of t h e s e compounds are used as p l a s t i c i z e r s and have been widely found i n a v a r i e t y inc luding po tab le munic ipa l s u p p l i e s ( 7 ) .

I n t h e renovated w a t e r d i o c t y l and d i b u t y l p h t a l a t e were i d e n t i -

of waters,

The most unusual s e t of compounds t h a t w a s found i n a l l of t h e E and Z sam- p l e s , analyzed by GC-MS, c o n s i s t s of f i v e o rgan ic s t h a t appear t o be halo- genated o r hydrohalogenated d e r i v a t i v e s of cyclohexene. They are: 3-chloro- cyclohexene, 2-chlorocyclohexanol, 1,2-dichlorocyclohexane, l-bromo-2-chloro- cyclohexane, and 2-bromocyclohexanol. Only one U.S. company manufactures cyclohexene, t h e presumptive pa ren t compound, i n any s i g n i f i c a n t q u a n t i t y , and i t has very s p e c i a l i z e d uses . I n view of t h i s and t h e f a c t t h a t such uses are u n l i k e l y i n t h e v i c i n i t y of t h e S t e r l i n g p l a n t , i t is a l s o h ighly u n l i k e l y t h a t i t is a contaminant e i t h e r of t h e ground water source o r from t h e pou l t ry p l a n t ope ra t ion . Recent evidence developed elsewhere seems t o i n d i c a t e t h a t i t , o r t h e halogenated d e r i v a t i v e s , are probably contaminants of t h e c h l o r i n e used f o r d i s i n f e c t i o n . Some of t h e s e compounds have r e c e n t l y been found i n two municipal water s u p p l i e s , probably from t h e c h l o r i n e used i n t h e treat- m e n t p rocess ( This s i t u a t i o n i s being i n v e s t i g a t e d .

DISCUSSION

The focus of t h i s d i scuss ion w i l l be whether t h e q u a l i t y of t h e renovated water, E , i s s u f f i c i e n t t o j u s t i f y i t s r e u s e i n process ing p o u l t r y a t t h e S te r - l i n g p l a n t , wi thout r i s k i n g t h e h e a l t h of t h e consumers. It should be empha- s i z e d i n t h i s d i scuss ion t h a t , p r i o r t o a c t u a l u se i n t h e p l a n t , t h e reno- va ted water w i l l be mixed 50/50 w i t h t h e un t r ea t ed w e l l water, then r e c e i v e t h e normal water t rea tment t h a t is c u r r e n t l y u t i l i z e d f o r i t . This c o n s i s t s

405

of p r e c h l o r i n a t i o n i n t h e mixing b a s i n , a l u m - l i m e f l o c c u l a t i o n , w i th f i n a l pH adjustment t o p r e c i p i t a t e i r o n , s e t t l i n g , and f i l t r a t i o n through two sand f i l t e r s . Add i t iona l c h l o r i n e i s introduced i n t o t h e main s e r v i c e l i n e leading t o t h e processing p l a n t f o r r e s i d u a l c o n t r o l .

The p r i n c i p a l o p e r a t i o n i n t h e processing p l a n t t h a t exposes t h e carcas- ses t o water i s t h e c h i l l e r , which precedes t h e i c i n g and packaging of t h e processed m e a t . Each carcass can t a k e up as much as 10 pe r cen t of i t s weight i n water i n t h i s o p e r a t i o n . The c h i l l e r i s a cont inuous, counter- c u r r e n t system which i t s e l f r a p i d l y accumulates contaminants i n t h e course of a day ' s o p e r a t i o n (8) . The e v a l u a t i o n of t h e renovated water, E , s t u d i e d i n Phase 2 , should be done i n t h e p e r s p e c t i v e of t h e f u r t h e r t reatment i t w i l l r e c e i v e i n a c t u a l r e u s e , as w e l l as t h e intended u s e of t h a t water. I n t h a t u se t h e most important water exposure of t h e p o u l t r y being processed i n t h e c h i l l e r ope ra t ion .

The mic rob io log ica l q u a l i t y of t h e renovated water, E , s t u d i e d i n Phase 2 i s e x c e l l e n t . No pathogenic b a c t e r i a were de tec t ed i n t h a t water. Aside from some confusion, probably from mis l abe l ing of s a m p l e s , a l l t h e col i form and f e c a l col i form concen t r a t ions were below the l e v e l of d e t e c t i o n . The t o t a l p l a t e counts w e r e a l s o low. Avian v i r u s e s w e r e a l s o no t d e t e c t e d i n t h e renovated water. i n t h e a e r a t e d lagoons and t h e n a t u r e of t h e d i s i n f e c t i o n processes subsequent t o them, which invo lve two s t a g e s of c h l o r i n a t i o n , t h i s e x c e l l e n t microbiolo- g i c a l - q u a l i t y i s t o be expected. With a c t u a l r e c y c l e i n t o t h e p l a n t , t h i s h igh q u a l i t y and t h e a d d i t i o n a l t r ea tmen t , i nc lud ing d i s i n f e c t i o n , would in - s u r e , w i th a high degree of c e r t a i n t y , t h a t t h e r e would be no danger from pathogenic organisms i n t h e r e u s e of t h i s renovated water.

I n view of t h e approximately two-week's d e t e n t i o n t i m e

The ino rgan ic water q u a l i t y of t h e renovated water s t u d i e d i n Phase 2 i s a l s o q u i t e good. A s would be expected, s e v e r a l of t h e major c a t i o n s and anions are s i g n i f i c a n t l y higher i n t h e renovated water than t h e normally t r e a t e d w e l l water. Such build-ups are common, s i n c e t y p i c a l waste and water t reat- ment processes are no t designed f o r , nor capable of removing s i g n i f i c a n t q u a n t i t i e s of t h e s e materials. The concen t r a t ions of t h e s e c o n s t i t u e n t s i n t h e renovated water, shown i n Table 4 , do no t c o n s t i t u t e a h e a l t h hazard i n water r euse .

The trace elements and waste parameters shown i n Tables 5 and 6 are a l s o no t a t l e v e l s t h a t are of concern, were t h e renovated water a c t u a l l y reused as contemplated. The trace elements are no t s i g n i f i c a n t l y d i f f e r e n t f o r t h e renovated and normally t r e a t e d w e l l water, w i th t h e excep t ion of cyanide, f l u o r i d e , and i r o n . A l l of t h e s e are, n e v e r t h e l e s s w e l l below c r i t e r i o n lev- els i n t h e renovated water. One can j u s t i f i a b l y conclude, t h e r e f o r e , t h a t , as wi th t h e microorganisms, t h e ino rgan ic c o n s t i t u e n t s of t h e renovated water do not pose a r i s k t o human h e a l t h i n t h e a c t u a l planned r e c y c l e system. conclusion i s r e i n f o r c e d by t h e comparison of t h e ana lyses of t h e carcasses processed normally i n t h e p l a n t c h i l l e r and those exposed t o renovated water i n t h e "experimental ' ' c h i l l e r . Among a l l t h e macro and trace ino rgan ic con- s t i t u e n t s , only ammonia and n i t r a t e were higher i n t h e c a r c a s s e s processed wi th renovated water, bu t n o t a t concen t r a t ions t h a t would c o n s t i t u t e a h e a l t h hazard.

This

406

The o rgan ic chemical q u a l i t y of t h e renovated water a t t h e S t e r l i n g p l a n t remains perhaps t h e g r e a t e s t area of p o s s i b l e concern, as i t does f o r t h e municipal water supply systems of t h e U.S . , p r i n c i p a l l y because of t h e re- cen t advances i n our a b i l i t y t o i d e n t i f y and q u a n t i f y t r a c e o rgan ic chemi- cals a t ve ry low concen t r a t ions . been i d e n t i f i e d and some q u a n t i f i e d i n t h i s s tudy. A s noted p rev ious ly , p e s t i c i d e s w e r e n o t found i n e i t h e r t h e renovated or t r e a t e d w e l l w a t e r . S u r f a c t a n t s i n t h e former w e r e w e l l below c r i t e r i o n l e v e l s . Seve ra l f a t t y a c i d s were found i n t h e renovated water, b u t a l s o i n t h e t r e a t e d w e l l water. I n any event , t h e s e c o n s t i t u t e no human hazard. The maximum c o n c e n t r a t i o n of t h e only halogenated methane found i n t h e renovated water, chloroform, w a s t h r e e micrograms pe r l i t e r , w e l l below t h e approximate median v a l u e of 20 found i n t h e E . P . A . Nat iona l Organic Reconnaissance Survey of U.S. pub- l i c water s u p p l i e s ( 6 ) . Two p h t h a l a t e s were found i n t h e renovated water, and one of t h e s e i n t h e t r e a t e d w e l l water. A s noted pe rv ious ly , both of t h e s e , widely used as p l a s t i c i z e r s , have been found i n p o t a b l e U.S. munici- p a l water s u p p l i e s , as w e l l as many n a t u r a l waters.

S e v e r a l s p e c i f i c o rgan ic chemicals have

The unusual halogenated and hydrohalogenated d e r i v a t i v e s of cyclohexene, found i n both t h e renovated and t r e a t e d w e l l water, i n a l l p r o b a b i l i t y are

f i n i s h e d municipal water s u p p l i e s and are u n r e l a t e d t o t h e r enova t ion sys- t e m . That i s , i t is q u i t e l i k e l y t h a t changing t o a d i f f e r e n t sou rce of c h l o r i n e w i l l e l i m i n a t e t h e i r presence.

contaminants of t h e c h l o r i n e used i n d i s i n f e c t i o n . They have been found i n

It is a r easonab le judgment t h e r e f o r e , t h a t t h e s p e c i f i c a l l y i d e n t i f i e d o rgan ic chemicals a r i s i n g from t h i s waste r enova t ion process do no t con- s t i t u t e a human hazard were t h i s water t o be used as contemplated i n f u l l r e c y c l e . One might n e v e r t h e l e s s ra ise t h e q u e s t i o n of t h e p o s s i b l e h e a l t h hazard from o rgan ic s n o t y e t i d e n t i f i e d . It i s u n l i k e l y t h a t , i n terms of t h e r e u s e of t h i s water f o r p rocess ing p o u l t r y , such o rgan ic s would be hazardous, s i n c e they a r i se p r i m a r i l y and o r i g i n a l l y from t h e p o u l t r y wastes and are l i k e l y t o be only n a t u r a l materials and t h e i r deg rada t ion p roduc t s . A p o s s i b l e q u e s t i o n concerns t h e r e a c t i o n of c h l o r i n e wi th t h e s e materials t o form hazardous by-products. This concern i s d i f f i c u l t t o addres s . It should be pointed o u t , however, t h a t c h l o r i n a t i o n i s p r a c t i c e d i n c e r t a i n food p rocess ing , and has probably n o t been a s s o c i a t e d wi th any ill e f f e c t s i n humans.

The measured g r o s s o rgan ic parameters , namely BOD, CCE, TOC, and o rgan ic n i t r o g e n , are a l s o of i n t e r e s t as i n d i c a t o r s of s p e c i f i c o rgan ic c o n s t i t u e n t s . The higher o rgan ic n i t r o g e n i n t h e renovated water most probably r e f l e c t s t h e proteinaceous material and i ts breakdown products from t h e p o u l t r y , b u t only those c o n s t i t u e n t s t h a t are n o t r e a d i l y biodegradable , s i n c e t h e BOD v a l u e s f o r t h e renovated and t r e a t e d w e l l waters were q u i t e comparable. The mean BOD v a l u e of 3.4 mg/l f o r t h e renovated water i s no t u n t y p i c a l of many r a w s u r f a c e waters t h a t are used f o r municipal water s u p p l i e s , such as Minneapolis and S t . Cloud ( 9 ) .

The mean TOC v a l u e s f o r t he renovated ani? z rea t ed w e l l wa te r , 20 and 1 4 mg/l , r e s p e c t i v e l y , are perhaps somewhat id&, b u t n o t unusuaily s o . The s t a t e w i d e average €or t h e major Minnesota r i v e r s i s 20 mg/l , w i t h several

407

l a r g e munic ipa l s u p p l i e s u t i l i z i n g them as r a w water s u p p l i e s ( 9 ) . S i m i l a r - l y , most of t h e l a r g e r r ivers t h e r e have concen t r a t ions of 15 t o 30 mg/l. I n a s tudy of 80 munic ipa l water supply systems of t h e U.S., non -vo la t i l e TOC concen t r a t ions a s h igh as 1 9 mg/l were measured i n t h e r a w water and 1 2 mg/l i n t h e f i n i s h e d water ( 6 ) . About 98 per c e n t of t h e l a t te r w e r e less than 5 mg/l. This i n d i c a t e s t h a t , i n terms of a f i n i s h e d water supply , t h e renovated w a t e r TOC v a l u e s are undoubtedly high. w i th t h e r a w w e l l water and then f u l l scale t r ea tmen t , t h e f i n a l mix tu re should no t be s i g n i f i c a n t l y d i f f e r e n t i n TOC than t h e c u r r e n t l y used t r e a t e d w e l l water.

However, a f t e r mixing 50/50

The CCE measurements of t h e f i n i s h e d water show cons ide rab le v a r i a b i l i t y . However, t i m e v a r i a t i o n s , s e a s o n a l o r o therwise , are a l s o common i n f i n i s h e d munic ipa l water s u p p l i e s ( 4 ) . S i m i l a r l y , concen t r a t ions of 1 .0 mg/l of CCE are n o t uncommon i n f i n i s h e d water s u p p l i e s , and concen t r a t ions cons iderably h igher than t h i s have been fourid i n rivers. The average concen t r a t ion of 0.7 mg/l f o r t h e renovated w a t e r system had been r e c e n t l y proposed as a cr i ter- i o n v a l u e f o r p u b l i c water s u p p l i e s .

One can reasonably conclude t h a t t h e o rgan ic water con ten t of bo th t h e treat- ed w e l l water and t h e renovated water i s somewhat h igh . Never the less , no s p e c i f i c o rgan ic s i n t h e renovated water have been found a t high enough con- c e n t r a t i o n s f o r t h e renovated water t o be cons idered a s i g n i f i c a n t r i s k t o human h e a l t h . A t t h e same t i m e , t h e most l i k e l y non-hazardous n a t u r e of any incrementa l o rgan ic mater ia l no t y e t i d e n t i f i e d i n t h e renovated water is such as t o r e i n f o r c e t h a t judgment.

An e v a l u a t i o n of many of t h e s e r e s u l t s w a s performed immediately fol lowing t h e completion of Phase 2 by a committee c o n s t i t u t e d t o do s o and make a recommendation about proceeding t o Phase 3 , a three-month t r i a l pe r iod of f u l l r e c y c l i n g through t h e p l a n t and w a t e r r euse . That committee d i d no t a t t h e t i m e have access t o some measurements of o rgan ic water q u a l i t y which were done subsequent t o Phase 2 , i nc lud ing most of t h e CCE ana lyses , and a l l of t h e TOC and spec i f ' i c o rgan ic s , o t h e r than p e s t i c i d e s . The committee recom- mended t h a t t h e r e w a s no s i g n i f i c a n t r i s k i n proceeding t o Phase 3 . W e con- c lude t h a t t h e a d d i t i o n a l d a t a on o rgan ic chemical q u a l i t y should n o t modify t h a t judgment.

Never the less , t h e f i n a l d e c i s i o n t o proceed t o Phase 3 w a s n o t and has n o t been made as of t h i s w r i t i n g . The de lay a r o s e because of t h e requirement of t h e Department of A g r i c u l t u r e t h a t t h e water t o be reused i n t h e p l a n t be des igna ted as po tab le . There are d i f f e r i n g opin ions as t o whether i t cculd be so regarded. The concerns c e n t e r around two areas. F i r s t , i s t h e chemical and mic rob io log ica l q u a l i t y of t h e renovated water s u f f i c i e n t t o meet c r i t e r i a of p o t a b i l i t y ? I n terms of meeting c o n s t i t u e n t l i m i t s spec i - f i e d i n d r ink ing water s t anda rds o r r e g u l a t i o n s , t h e answer i s yes . The g r o s s o rgan ic load i s h igh , bu t no t much more so than t h e normally t r e a t e d w e l l water . t h e l e g a l l y au tho r i zed agency, t h e S t a t e of Maryland.

Never the less , a c e r t i f i c a t i o n of p o t a b i l i t y has been made by

408

The second area of concern r e l a t e d t o p o t a b i l i t y is t h e n a t u r e of t h e r a w water source. A long-standing concept, as s t a t e d i n t h e 1962 P u b l i c Heal th S e r v i c e Drinking Water Standards ( l o ) , i s t h e fol lowing:

"The water supply should be obtained from t h e most d e s i r a b l e sou rce which i s f e a s i b l e , and e f f o r t should be made t o p reven t or c o n t r o l p o l l u t i o n of t h e source. I f t h e sou rce i s n o t adequately p r o t e c t e d by n a t u r a l means, t h e supply s h a l l be adequately p r o t e c t e d by t r ea tmen t . I '

I n terns of t h e intended g o a l of t h i s water r enova t ion system, namely t h e augmentation of t h e l i m i t e d non-community w e l l water sou rce f o r t h e Ster- l i n g p l a n t , o t h e r p o s s i b l e a v a i l a b l e sou rces should be considered, using t h e above concept. The l o c a l community, Oakland, w i l l no t and cannot pi-m-ide clddi t ional water t o t h e S t e r l i n g p l a n t . The only o t h e r p o s s i b l e s o a c e i s t h e L i t t l e Youghiogheny River, o f t e n n o t more than a s m a l l c r eek , p o l l u t e d immediately upstream by r a w , municipal sewage from Oakland. I t i s thus apparent t h a t i n terms of t h e concept of most d e s i r a b l e f e a s i b l e sour"e, t h e r enova t ion system meets t h a t c r i t e r i o n . I t must a l s o be empha- s i z e d t h a t t h e renovated water, s t u d i e d i n Phase 2 , w i l l r e c e i v e t h e addi- t i o n a l f u l l - s c a l e , normal water t r ea tmen t during t h e Phase 3 t r i a l per iod of r euse . I n t h i s s ense i t may a l s o be regarded as a r a w water sou rce , and certainly a most d e s i r a b l e one.

Nevertheless , one can and perhaps should p u t a s i d e t h i s l e g a l q u e s t i o n of pocabj Z i t . ; 2nd consider t h e fol lowing ques t ion . I f t h i s renovated water w e r e t o be recycled i n t o t h e p l a n t as desc r ibed and used as in t ended , would t h e r e be any s i g n i f i c a n t , d i s c e r n i b l e r i s k t o t h e consumers of t h e chickens processed t h e r e ? I t i s our considered judgment a f t e r weighing a l l t h e re- s u l t s of t h i s s tudy and t h a t which preceded i t , t h a t t h e Phase 3 t r i a l per iod of f u l l r e c y c l e and r e u s e should proceed, and t h a t t h e p u b l i c h e a l t h w i l l n o t be jeopardized i n so doing. I n view of t h e urgent need t o conserve our water r e s o u r c e s , l i m i t w a s t e d i s c h a r g e s , and improve water q u a l i t y , t h e n a t i o n w i l l have t o proceed t o s e l e c t i v e reuse of wastewater. Such a p r o j e c t as t h i s i s a u s e f u l s t e p i n t h a t d i r e c t i o n .

ACKNOWLEDGEMENTS

This s tudy i s a j o i n t e f f o r t by t h e Maryland S ta te Department of Heal th and Mental Hygiene (MHD), t h e S t e r l i n g Processing Company, and t h e Graduate School of P u b l i c Heal th , Un ive r s i ty of P i t t s b u r g h (GSPH). The s tudy i s being funded by t h e E.P.A. under two g r a n t s , one t o GSPH and t h e o t h e r t o MHD. The au tho r s g r a t e f u l l y acknowledge t h i s support and t h e t e c h n i c a l guidance and encourage- ment of t h e two E.P.A. p r o j e c t o f f i c e r s , Herbert Pahren and Jack Witherow. We are also pleased t o acknowledge t h e e n t h u s i a s t i c cooperat ion and p a r t i c i - p a t i o n of M r . Gilman S y l v e s t e r , t h e manager of t h e S t e r l i n g Processing Corpora- t i o n , and h i s s t a f f ; a l s o , Dan McGrail who has been ope ra t ing t h e water reno- v a t i o n system, and Edward S . Hopkins, who s u p e r v i s e s i t s ope ra t ion .

Many ana lyses w e i e performed by t h e CmLerland l a b o r a t o r y of MHD, and s e v e r a l by the Analytical . S e r v i c e s Laboratory cf t h e NUS Corporation i n P i t t s b u r g h .

409

D r s . John Armstrong and Robert Yee, f a c u l t y members of t h e Microbiology Department of GSPH, have been p a r t i c u l a r l y h e l p f u l i n advis ing on t h e mic rob io log ica l ana lyses , as has D r . I a i n Campbell of t h e L i f e Sciences Div is ion of t h e Univers i ty of P i t t s b u r g h on t h e trace organic ana lyses . Seve ra l s t a f f members a t GSPH w e r e f u l l y involved i n t h i s p r o j e c t , most no tab ly Teresa Lester, who had t h e p r i n c i p a l r e s p o n s i b i l i t y f o r a l l as- p e c t s of t h e mic rob io log ica l ana lyses .

REFERENCES

1.

2 .

3.

4.

5.

6.

7 .

8.

9.

10.

Cl ise , J . D . , Pou l t ry Process ing Wastewater Treatment and Reuse, Environmental P r o t e c t i o n Technology Series, EPA-660/2-74-060, U.S. Environmental P r o t e c t i o n Agency, Washington, D . C . , March, 1974.

Huber, W.G. , Car lson, M.B. , and M.H. Lepper, " P e n i c i l l i n and Anti- mic rob ia l Residues i n Domestic Animals a t S laugh te r , " J . Amer. V e t . Med. ASSOC., 2, 1590-1595 (1969).

Read, R.B.,Bradshaw, J . G . , Swar tzent ruber , A.A., and A.R. B r a z i s , "Detect ion of S u l f a Drugs and A n t i b i o t i c s i n Milk," Applied Micro., 2 1 , 806-808 (1971).

Buelow, R.W., C a r s w e l l , J . K . , and J . M . Symons, "An Improved Method f o r Determining Organics by Act iva ted Carbon Absorpt ion and Solvent Ex t rac t ion - P a r t 1, 'I J . Amer. Water Works ASSOC., - 65, 57-72 (1973).

Bellar, T. and J .J . Lichtenberg, "Determining V o l a t i l e Organics a t Microgram-per-l i tre Levels by G a s Chromatography," J . Amer. Water Works ASSOC., 66, 739-744 (1974).

Symons, J . M . , Bellar, T.A. , C a r s w e l l , J . K . , DeMarco, J . , Kropp, K.L. , Robeck, G.G. , Seeger , D . R . , Slocum, C . J . , Smith, B.L., and A.A. Stevens,

Nat iona l Organics Reconnaissance Survey f o r Halogenated Organics," J . h e r . Water Works ASSOC., 67, 634-647 (1975). 1 1

Shackelford, W.M. and L.H. Kei th , Frequency of Organic Compounds 1dent i . f ied i n Water, Environmental Monitoring S e r i e s , EPA-600/4-76-062, U.S. Environmental P r o t e c t i o n Agency, Washington, D . C . , December 1976.

Hamza, A . , Saad, S . , and J . Witherow, "Water Reuse i n P o u l t r y Pro- cess ing: Case Study i n Egypt," THESE PROCEEDINGS.

Maier, W . J . and H.L. McConnell, "Carbon Measurements i n Water Qual i ty Monitoring," J . Water P o l l u t i o n Cont ro l Feder . , 46, 623-633 (1974).

U.S. P u b l i c Heal th Se rv ice , Drinking Water Standards , 1962, U.S. Department of Heal th , Education and Welfare , Washington, D . C .

41 0

top related