an introduction to oleds: the other solid state lighting ... · • 2011: samsung announces they...

47
An Introduction to OLEDs: An Introduction to OLEDs: The Other SolidState Lighting Technology February 4, 2016 Dr. John W. Curran, President LED Transformations, LLC On behalf of the U S Department of Energy On behalf of the U.S. Department of Energy and NETL Morgantown © 2016 LED Transformations, LLC 1 Copyright Materials This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of LED Transformations, LLC is prohibited. © 2016 LED Transformations, LLC 2

Upload: others

Post on 14-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

An Introduction to OLEDs:An Introduction to OLEDs:The Other Solid‐State Lighting Technology

February 4, 2016

Dr. John W. Curran, PresidentLED Transformations, LLC

On behalf of the U S Department of EnergyOn behalf of the U.S. Department of Energy

and NETL Morgantown

©  2016 LED Transformations, LLC 1

Copyright  Materials

This presentation is protected by US and International copyright laws.  Reproduction, distribution, display and use of the presentation without 

written permission of LED Transformations, LLC is prohibited.

©  2016 LED Transformations, LLC 2

Page 2: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Course Description

LEDs are the main topic of conversation when it comes tolighting. However, there is another solid‐state lighting familymember that is starting to attract attention. Organic light‐emitting diodes, or OLEDs, are beginning to move from beinghigh‐priced novelty products to being more mainstreamg p y p gillumination solutions. OLEDs offer new and exciting capabilitieswherein the light becomes the luminaire. In this presentation,Jack Curran will provide an introduction for those unfamiliar withJack Curran will provide an introduction for those unfamiliar withthe technology. Included will be a comparison of OLEDs withLEDs, highlighting the advantages and disadvantages that OLEDs

©  2016 LED Transformations, LLC 3

offer, as well as what the future holds for this unique technology.

Learning Objectives

1. Attendees will learn how OLEDs function and the fundamental differences between OLED and LED technology

2. Performance comparisons between LEDs and OLED will be presented allowing attendees to plan where OLEDs could be an appropriate choice for future facilities projectsan appropriate choice for future facilities projects

3. The physical characteristics of OLEDs will be discussed, providing attendees a basis for the aesthetic appeal of the technology to many lighting designers and architectstechnology to many lighting designers and architects

4. Understanding how OLED’s unique properties can change the design of facilities in terms of lighting

©  2016 LED Transformations, LLC 4

Page 3: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Outline

• Introduction – What are OLEDsIntroduction  What are OLEDs

• Unique Features – What makes OLEDs different from other light sources?

• Comparison – Advantages and disadvantagesComparison  Advantages and disadvantages of OLED and LED technologies

A li i E l f OLED

Source:  GE

• Applications – Examples of OLED                               design

©  2016 LED Transformations, LLC 5

IntroductionCreating White Light With LEDs Ph h h

Downconverting PhosphorBl LED + YAG (Ytt i l i t) C l Whit

Creating White Light With LEDs – Phosphor approach

•Blue LED + YAG (Yttrium aluminum garnet) = Cool White•Blue LED + YAG + Other phosphor (red, green, etc.) = Warm White•UV LED + Red phosphor + Green phosphor + Blue phosphor

C ti C ti

Yellow and Red Phosphor

Cool/Warm White LED Spectra

Convention Coating

Yellow Phosphor

InGaN Die

Phosphor 

Conformal Coating

400 450 500 550 600 650 700 750

Wavelength

InGaN Die

©  2016 LED Transformations, LLC 6

Blue Die

Page 4: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

IntroductionHow does the LED make light?

electron

photonRadiative recombinationPhoton generation

How does the LED make light?

hole– Photon generation

©  2016 LED Transformations, LLC 7

IntroductionHow does the LED make light?

electron

photonNonradiative recombinationPhonon or heat generation

How does the LED make light?

hole– Phonon or heat generation

C t h t i t d f li ht

©  2016 LED Transformations, LLC 8

Creates heat instead of light

Page 5: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Creating Light with LEDs Diff t l diff t b d

IntroductionCreating Light with LEDs – Different colors; different bandgaps

Ec ‐ Bottom of Conduction Band Proton

Neutron

l

E T f V l B d

EgAlInGaP

EgInGaN

Electron

Electron Hole Photon

Ev ‐ Top of Valence Band 

Smaller bandgap Lo er energ Longer a elength photon Red

When electrons and holes combine, the resulting photon has a wavelength related to the bandgap energy given by   λ =  1239 / Eg

©  2016 LED Transformations, LLC 9

Smaller bandgap Lower energy Longer wavelength photon RedLarger bandgap Higher energy Shorter wavelength photon Blue

IntroductionWhat is an OLED?

•An OLED or organic light‐emitting 

What is an OLED?

A "layer cake" with a thickness less than that of a human hairg g g

diode is a semiconductor device which consists of an electroluminescent organic layer(s) sandwiched between two electrodes at least one of whichtwo electrodes, at least one of which is transparent.

• The device is fabricated by sequentially depositing organic layers q y p g g yon a conducting substrate followed by another conducting electrode.

• A common device structure i l b t t t dcomprises a glass substrate coated 

with indium tin oxide (ITO) as transparent anode and a thin, opaque metal film as cathode.

©  2016 LED Transformations, LLC 10

• Typical separation between layers is 100 nm or less

Page 6: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

IntroductionWhat is an OLED?

The major elements of an OLED device consist of the following:

What is an OLED?

• Substrate – the support material that forms the base of the OLED; it can be of glass, metal or plastic;

• Backplane the circuitry that provides the power that drives• Backplane – the circuitry that provides the power that drives the OLED panel (simple for lighting, complex for displays);

• Organic layers – the actual OLED materials; phosphorescent g y p pand fluorescent materials that convert electrical energy into visible light energy; 

• Encaps lation the protecti e la ers that pre ent moist re• Encapsulation – the protective layers that prevent moisture and oxygen from contaminating the organic (light producing) layers of the OLED.

©  2016 LED Transformations, LLC 11

IntroductionA Close up View of an OLEDA Close‐up View of an OLED

Diagram of a Bottom Emitting, Stacked OLED

Electron Transport Layer

H l Bl ki LHole Blocking Layer

{Emission Layers

Electron Blocking Layer

{Hole Transport Layer

ITO ‐ Indium Tin Oxide layer f l d

©  2016 LED Transformations, LLC 12

forms a transparent electrode

Page 7: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

IntroductionOLED Configurations Diff t t t f diff t li ti

OLEDs can be configured as larger‐area, more diffuse light sources, which may be more practical for general ambient lighting because the soft light can be viewed 

OLED Configurations – Different structures for different applications

p g g g gdirectly, with less need for shades, diffusers, lenses, louvers, or parabolic shells. The diffuse light from OLEDs allows them to be used very close to the task surface without creating glare for the user, which means that less total light can be used in order to achieve desired illuminance levelsorder to achieve desired illuminance levels.

©  2016 LED Transformations, LLC 13

Source:  OLED Basics; US Department of Energy

IntroductionOLED Materials Ph h t fl t

OLED emissive layer can be made of either phosphorescent or fluorescent materials

OLED Materials – Phosphorescent versus fluorescent

fluorescent materials

• Phosphorescent Materials (PHOLED)– More efficient with up to 100% internal quantum efficiency (IQE)p q y ( )

– Lifetimes are typically shorter, particularly blue

– Require heavy metals, typically iridium which is also in short supply

• Fluorescent Materials• Fluorescent Materials– Longer lifetimes than phosphorescent

– Less efficient with the maximum internal quantum efficiency of only 25%

• Hybrid approach– Use phosphorescent for red and green layer

Use florescent for blue layer

©  2016 LED Transformations, LLC 14

– Use florescent for blue layer

Page 8: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

The LED Marketplace LED t k

IntroductionThe LED Marketplace – LEDs take over

Luminaire Unit Shipments by Lamp Type, World Markets

Source: Navigant Research

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

HID

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

0.80% 0.67% 0.55% 0.46% 0.39% 0.32% 0.24% 0.17% 0.14% 0.10%

©  2016 LED Transformations, LLC 15

The OLED Market E d d th t d

IntroductionThe OLED Market – Expanded growth as costs come down

Source:  Yole Development

©  2016 LED Transformations, LLC 16

Souce:  Yole Development

Page 9: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

IntroductionOLED Market Forecasts Wid l i j ti

• Lux Research – $58M by 2020

OLED Market Forecasts – Widely varying projections

Lux Research  $58M by 2020

• NanoMarkets – $1.4B by 2019

h $ b 2020• UBI Research – $4.7B by 2020 

OLED Lighting Market

3,000

4,000

5,000

$M US)

0

1,000

2,000

Sales in 

©  2016 LED Transformations, LLC 17

2015 2016 2017 2018 2019 2020

YearSource:  UBI Research

IntroductionAn Experiment Wh t l i th b ll?An Experiment – What color is the ball?

©  2016 LED Transformations, LLC 18

Page 10: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

IntroductionAn Experiment Wh t l i th b ll?An Experiment – What color is the ball?

Without light objects have NO Color

Red object – Absorbs blue & green

©  2016 LED Transformations, LLC 19

IntroductionCreating White Light With LEDs RGB h

Combining different LED colors provides a wide spectrum of possibilities – including white

Creating White Light With LEDs – RGB approach

wide spectrum of possibilities including white

©  2016 LED Transformations, LLC 20

Page 11: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Outline

• Introduction – What are OLEDsIntroduction  What are OLEDs

• Unique Features – What makes OLEDs different from other light sources?

• Comparison – Advantages and disadvantagesComparison  Advantages and disadvantages of OLED and LED technologies

A li i E l f OLED

Source:  GE

• Applications – Examples of OLED                               design

©  2016 LED Transformations, LLC 21

Unique FeaturesSome OLED Terms

• Small molecule OLEDs (SM‐OLEDs)– Molecule weight less than 1 000 g/mole

Some OLED Terms

Molecule weight less than 1,000 g/mole

– Majority of today’s devices, high performance, generally deposited by vapor phase deposition

L l l OLED (P OLED P l OLED )• Large molecule OLEDs (P‐OLEDs or Polymer OLEDs)– Are solution processable (i.e. ink‐jet printing and spin coating 

fabrication which could drastically reduce manufacturing cost)

– Still at the development stage

• Phosphor – a material that emits light at low temperatures– Florescent – decay time for light emission occurs within a fewFlorescent  decay time for light emission occurs within a few 

nanoseconds (10‐9 seconds)

– Phosphorescent – decay time for light emission occurs within a few milliseconds (10‐3 seconds)

©  2016 LED Transformations, LLC 22

milliseconds (10 seconds)

Page 12: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Unique FeaturesSome OLED TermsSome OLED Terms

• Stacked OLED– Simple stack – organic material sandwiched between the twoSimple stack  organic material sandwiched between the two 

electrodes

• For RGB organic layers, can only produce white light

– True stack – each of the three organic layers is separated by an– True stack – each of the three organic layers is separated by an electrode to allow each layer to be controlled independently

• Device can create a range of colors

Whit OLED f b i ti• White OLED fabrication

– Combine red, green and blue OLEDs

– Combine blue and yellow OLEDs (similar approach to white LEDs)Combine blue and yellow OLEDs (similar approach to white LEDs)

• Emission direction (pertains mainly to display devices)

– Bottom emitting:  reflective cathode / transparent anode (ITO)

©  2016 LED Transformations, LLC 23

– Top emitting:  reflective anode (ITO) / transparent cathode

Research D i b di l d tl

Unique FeaturesResearch – Driven by display needs presently

Majority of commercial investment in OLED technology has been j y gyfocused on display applications – for example,                                         Samsung has recently averaged                                                             about $5B per year

Source: LG Electronics

about $5B per year.

Source: LG Electronics

LG plans to produce 600 000 OLED

©  2016 LED Transformations, LLC 24

LG plans to produce 600,000 OLED TVs (55", 65" and 77" during 2015

Page 13: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Unique FeaturesSome OLED Terms Wh t d " "

“Gen” refers to the generation of manufacturing line which is 

Some OLED Terms – What does "gen" mean

g gbased on size of glass panel which the line is capable of producing.  Each generation is capable of producing larger and larger panels of glass This brings down the cost of theand larger panels of glass.  This brings down the cost of the substrate on which the OLED is manufactured.

PresentlyGen 5.5Gen 5.5

©  2016 LED Transformations, LLC 25

Source:  CLSA Asia‐Pacific Markets

Unique FeaturesHistory of OLED Development Di l d li hti

• 1950: Electroluminance in organic materials is observed for the first time

History of OLED Development – Displays and some lighting

• 1987: The world’s first OLED device is developed at Eastman Kodak

• 1998: Kodak and Sanyo show the world’s first AMOLED display

• 2009: LG buys Kodak OLED unit

First visible LED developed 22 years earlier

• 2010: Sony stops XEL‐1 OLED TV production

• 2010: DuPont develops new OLED printing technology, can print a 50″ panel in less than two minutes

• 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011

• 2011: Verbatim starts shipping color‐tunable OLED lighting panels (VELVE)

• 2011: Panasonic develops the world’s most efficient white OLED (128 lm/W)

• 2012: The world’s first transparent OLED lighting panel now shipping from COMEDD

• 2013: NEC developed the world’s most efficient OLED lighting device (156 lm/W)

2014 LG h 77” b d bl OLED TV

©  2016 LED Transformations, LLC 26

• 2014: LG shows 77” bendable OLED TV prototypes

Source:  The OLED Handbook; Ron Mertins; 2014

Page 14: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Advantages of OLEDsUnique Features

• Flat Form Factor

Advantages of OLEDs

– Emits light over entire surface; also allows for easy heat dissipation

• Flexibility– As encapsulation techniques improve, ability to use                                       

Source:  DuPont Displays

flexible substrates such as metal foils or plastic

• Color Tunability– Spectra depends on the emitter material; generally                                                 

wider and more flat than that of inorganic LEDs

• Efficiency– Target for 2020 is 190 lumens/W

Source:  Novaled

– Very low luminaire efficiency losses

• Transparency– Transparent OLEDs can be made which emit light                                                     

©  2016 LED Transformations, LLC 27

from both sides when on, and are see‐through in their                                            off state (using transparent electrodes & substrate materials)

Unique FeaturesHow LEDs Achieve Diffuse Light Ed li htiHow LEDs Achieve Diffuse Light – Edge lighting

©  2016 LED Transformations, LLC 28

Source:  Shenzhen Powerstar

Page 15: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

FlexibilityUnique Features

Flexibility

©  2016 LED Transformations, LLC 29

Source:  Michael Hack, Universal Display Corporation

Transparency Di h t i

Unique FeaturesTransparency – Disappears when not in use

©  2016 LED Transformations, LLC 30

Source:  Universal Display Corporation

Source:  Yuan‐Sheng Tyan, Kodak

Page 16: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Unique FeaturesColor Tunability B d tColor Tunability – Broad spectra

• Wide range of phosphors and fluorescent materials allows broader spectra thanbroader spectra than available with LED technology

L t ll• Layer geometry allows uniform mixing of colors without pixialization or color pshadows that often occur when mixing LED colors

©  2016 LED Transformations, LLC 31

Unique FeaturesColor Tunability B d tColor Tunability – Broad spectra

A combination of flexibility and color 

bilitunability

©  2016 LED Transformations, LLC 32

Source:  Konica‐Minolta

Page 17: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

The Major Issues P f t d lif ti

Unique Features

• Trapping of light inside OLED layers

The Major Issues – Performance, cost and lifetime

• Phosphorescent blue material does not match performance of red and green– Use of hybrid fluorescent blue and phosphorescent red and greenUse of hybrid fluorescent blue and phosphorescent red and green

• Unlikely development of low cost, low                                                    resistance, transparent sheet conductors

OLED defects caused by moisture1

– Use of wire grids may eliminate this issue

• Encapsulation to avoid moisture contamination

• Low volume production means high cost• Low volume production means high cost– Cost reductions driven by display manufacturing which typically does 

not require the high light output, long lifetimes and high efficacy req ired for lighting

©  2016 LED Transformations, LLC 33

required for lighting

– Initial luminaire may require tiling approach 1Source: Yuan‐Sheng Tyan, Kodak

Unique FeaturesThe Major Issues P f t d lif ti

Issue Problem Solution

The Major Issues – Performance, cost and lifetime

Issue Problem Solution

EfficacySome lab devices can compete with conventional technologies,early products have low efficacy

Work needed to develop efficient, long‐lasting blue emitter; next 

generation products reaching levels that compete with conventionalearly products have low efficacy that compete with conventional 

lighting sources

LifetimeShort lifetimes for blue materials; susceptibility to moisture intrusion

Work needed on high current density, more stable materials, better and low 

cost encapsulation

Light Output

Current OLED packages produce “dim” light

Work needed to improve light extraction, high current density 

CostToo high; lower cost device and luminaire materials are needed 

Infrastructure investment needed to develop commercial OLED products 

d d l l blNeed for reliable test methods

©  2016 LED Transformations, LLC 34

Testing Standards

No standards presently available for testing OLED products

Need for reliable test methods standards to establish consistency and 

reduce uncertainty 

Page 18: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Outline

• Introduction – What are OLEDsIntroduction  What are OLEDs

• Unique Features – What makes OLEDs different from other light sources?

• Comparison – Advantages and disadvantagesComparison  Advantages and disadvantages of OLED and LED technologies

A li i E l f OLED

Source:  GE

• Applications – Examples of OLED                               design

©  2016 LED Transformations, LLC 35

Lifetime Considerations T diti l LED l

Comparison

• Traditional lamps– Choose a statistically valid population of lamps

X   X XX   X

Lifetime Considerations – Traditional vs. LED lamps

– Choose a statistically valid population of lamps

– Run them at specified ambient temperature

– Cycle them on/off at a prescribed pattern

The time at which half the population has failed

X

X X

X   X

X X

XX

X

X

– The time at which half the population has failed                                                  is considered the lifetime for that lamp

– Typically this process can take up to 15 months for lamps rated at 10 000 hours

X   X X   XX

10,000 hours

• LED lamps– Since LEDs typically don’t fail catastrophically, but rather slowly dim, 

h i d h d fi d d f lif b h i hi h h Lthe industry has defined end of life to be the point at which the LED outputs 70% of the light it produced initially

– Need a different method of measuring lifetime

h b

©  2016 LED Transformations, LLC 36

– More on that subject in Section 4

Page 19: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

LED Luminaire Lifetime A l i i i t

Comparison

LED sourceThe failure of any one 

LED Luminaire Lifetime – A luminaire is a system

Controller

LED sourceycomponent can cause the entire system to stop functioningstop functioning

Luminaire designers make trade‐offs among the

Optics

trade offs among the components, depending on the desired performance it i f l th Driver

Thermal 

criteria – for example the  number of LEDs ($$$) versus drive current (lifetime) Luminaire

©  2016 LED Transformations, LLC 37

ManagementLuminaireHousing

Electronics/Driver R li bilit d d th d i ll

Comparison

Two examples of failures caused by the driver

Electronics/Driver – Reliability depends on the driver as well

Two examples of failures caused by the driver

Stop & Shop, Raritan, NJ – 6 weeks City Center, Las Vegas – 5 months

©  2016 LED Transformations, LLC 38

Not quite 50,000 hours!

Page 20: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonElectronics/Driver R li bilit d d th d i llElectronics/Driver – Reliability depends on the driver as well

Source Appalachian Lighting SystemsSource:  Appalachian Lighting Systems

©  2016 LED Transformations, LLC 39

ComparisonOLED Lifetimes D d th l ( h h )

PHOLED ColorCIE 1931 Color Coordinates

Lifetime ‐ 95% (in hours)

Lifetime ‐ 50% (in hours)

OLED Lifetimes – Depends on the color (phosphor)

OLED lifetimes can                                                                                             b d

( ) ( )

Deep Red 0.69, 0.31 14,000 250,000

Red 0.66, 0.34 23,000 600,000

Red 0.64, 0.36 50,000 900,000

vary by two orders                                                                                             of magnitude                                                                                                      (100x's) based on                                                                                               

Source:  Universal Display Corporation

Yellow 0.44, 0.54 85,000 1,450,000

Green 0.31, 0.63 18,000 400,000

Light Blue 0.18, 0.42 700 20,000

the phosphor used

LED lifetimes as a function of color show much less variation L70 in hours

1 000mA 700mA1,000mA 700mA

Royal Blue 65,100 136,000

Blue 109,000 109,000

Green 83,600 86,900

©  2016 LED Transformations, LLC 40

Source:  Lighting Research Center

Amber 79,600 59,900

Red 127,000 98,600Source:  Cree

Page 21: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

OLED Different Shapes & Sizes U t 320 2 i i l l

ComparisonOLED Different Shapes & Sizes – Up to 320 mm2 in a single panel

LG Chem

Lumiotec

OsramPhilips – Lumiblade

©  2016 LED Transformations, LLC 41

ComparisonEfficacy Wh t it i d h it i i t t

Efficacy is a measure of the performance of a device.  For lighting efficacy is measured in lumens per watt The higher the efficacy

Efficacy – What it is and why it is important

efficacy is measured in lumens per watt.  The higher the efficacy, the greater the energy savings.

Typical Light Source Efficacies

At least one LED mfg now offers an LEDoffers an LED with efficacy of 200 lm/W (at 25OC and 350 mA)

©  2016 LED Transformations, LLC 42

Source:  DOE publication Energy Efficacy of LEDs (March 2013)

350 mA)

Page 22: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonLED Luminaire Efficacy h h l f

Output of the LEDs is only the starting point

LED Luminaire Efficacy – Where the losses come from

p y g pLED efficacy (@ 25OC & 350 mA) = 200 lumens/watt

Temperature Loss (@85OC) 87.9% = 175.8 lumens/watt

Drive Current Loss (1050 mA) 87 6% 154 0 lumens/wattDrive Current Loss (1050 mA) 87.6% = 154.0 lumens/watt

Driver Loss 87.5% = 138.6 lumens/watt

Secondary Optics Loss 90% = 127.5 lumens/watt

Fixture Loss 95% = 121.1 lumens/watt

A fixture using 200 lm/W LEDs yields a luminaire efficacy of about 121 lm/Wg / y y /

©  2016 LED Transformations, LLC 43

OLED fixture designs typically don't have these losses

ComparisonGlare Reduction OLED ff " ft " li ht t tGlare Reduction – OLEDs offer a "softer" light output

The LED's point‐source characteristic concentrates the light at h h h b h h lthe source which creates an intense beam which can cause glare when viewed directly.

The OLED's uniform light distribution spreads the light over the entire area of the panel creating a soft, glowing light source h i d di tlwhen viewed directly.

©  2016 LED Transformations, LLC 44

Page 23: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonSpectral Power Comparison L di i th

OLED spectral power distribution can be designed to more closely 

Spectral Power Comparison – Less severe dip in the green

p p g ymatch natural sunlight that the corresponding LED spectrum

©  2016 LED Transformations, LLC 45

Source: LG Chem

LED Green Gap

ComparisonCreating White Light With OLEDs h h hCreating White Light With OLEDs – Phosphor approach

Color shadows result from insufficient mixing of the RGB LED sources.  Slight physical separation of the different LED RGB sources causes distinctLED RGB sources causes distinct shadows from each source.  Designers typically solve this by using either secondary optics or mixingeither secondary optics or mixing chambers

Source:  Scott W. Vincent / http://www.lungstruck.com/tag/led/

The narrow separation between RGB elements of the OLED layout minimizes any shadowing

©  2016 LED Transformations, LLC 46

layout minimizes any shadowing

Source:  DuPont

Page 24: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonLEDs and Drivers S b i

Why do we need drivers (power supplies)?

LEDs and Drivers – Some basics

• LEDs are non‐linear devices (If  vs. Vf) with a                                                      forward voltage that is temperature                                                                      dependent – they operate best when                                                                       provided with a constant current source

• LEDs are low voltage devices (with typical                                                    forward voltages ranging from 2.8 – 3.5 V).                                                                Th i i i di i iThey require some minimum conditioning

• LEDs are diodes and therefore will only                                                                     operate when current flows in one direction

h l h h l h h

Source: Philips Lumileds data sheet

• The light source that LEDs replace with the greatest improvement in efficacy (incandescent) are purely resistive loads with a Power Factor equal to 1 – therefore it is desirable for the driver circuitry to provide a power factor as close as possible to 1

©  2016 LED Transformations, LLC 47

a power factor as close as possible to 1

• Drivers also need to control harmonic current effects on the mains

Switch Mode Power Supply Wh t i it?

Comparison

Advantages• Greater efficiency since the switching transistor 

Switch Mode Power Supply – What is it?

Greater efficiency since the switching transistor dissipates little power when acting as a switch

• Smaller size• Lighter weight from the elimination of heavy li f t fline‐frequency transformers

• Lower heat generation due to higher efficiency

DisadvantagesDisadvantages• Greater complexity• Generation of high‐amplitude,                                             high‐frequency energy that                                                             

First Switched Mode Power Supply Patent

g q y gyrequires a low‐pass filter                                                                to block

©  2016 LED Transformations, LLC 48

Source:  Philips Semiconductors –Power Semiconductors Applications

Page 25: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Controlling LED Light Output A lit d d PWM d l ti

Comparison

• Amplitudemodulation controls the amount of light output from the LEDs by varying the amount of current flowing through the LEDs

Controlling LED Light Output – Amplitude and PWM modulation

• PWM controls the amount of light output from the LEDs by turning them on and off very quickly (typically thousands of times per second).  The percentage of time the LEDs are on is the duty cycle and is directly related 

At high output, the switch is held on most of the period; for less output, Pulse Width Modulation

to their light output (e.g. 50% duty cycle results in 50% light output as compared to constant current)

g p , p ; p ,the percent of on time is reduced.  Losses include switch and inductor resistance and heat generated in the flyback diode (still small)

Amplitude Modulation

At max and min output, power wasted in adjustable resistor is at a minimum while at 50%  setting, half f h i d i h

Amplitude Modulation

©  2016 LED Transformations, LLC 49

of the power is wasted in that resistor.  If load appears reactive, this efficiency drops further 95%                50%                5%

ComparisonDrivers LED d OLED d i i diff t d i

• LEDs 

Drivers – LED and OLED devices require different drivers

– Can use constant voltage or constant current

• OLEDs– Require constant current onlyq y

• Static resistance of OLED devices increases over time.  If used with a constant voltage device, the drive current will decrease resulting in loss of light output

OLED driven with constant voltage source OLED driven with constant current source

Note decrease in lumen depreciation over time for constant current case

L70 point

©  2016 LED Transformations, LLC 50

Note decrease in lumen depreciation over time for constant current caseSource:  Osram

Page 26: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonDrivers OLED d i i t t t d iDrivers – OLED devices require constant current drivers

The light output of an OLED device is also much more sensitive to h i l hchanges in voltage than current

©  2016 LED Transformations, LLC 51

Source:  Osram

ComparisonDrivers OLED h t i tiDrivers – OLED characteristics

• The preferred method to dim OLEDs is by changing the DC li d f h d i id h i OLED lifamplitude of the drive current to avoid shortening OLED life

• The use of Pulse Width Modulation (PWM) dimming drivers will significantly shorten the life of the OLED devicesignificantly shorten the life of the OLED device

• Due to the high capacitance of OLEDs, the driver should be designed to take that into account.  Otherwise high current or l k l / ff d fvoltage spikes may result on turn‐on/turn‐off or at edges of 

PWM signals 

• Drivers for use with OLED devices should be designed to provideDrivers for use with OLED devices should be designed to provide minimum ripple current, unlike LED drivers which often trade higher ripple current for lower cost 

©  2016 LED Transformations, LLC 52

Source:  Osram

Page 27: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonEfficacy T t f OLED d iEfficacy – Targets for OLED devices

Comparison of OLED and LED Target Projections

LED Package Efficacy Projections(Commercial Products)

OLED Efficacy Projections(White Light Panels)

©  2016 LED Transformations, LLC 53

Source:  DOE Solid‐State Lighting R&D Plan, May 2015

ComparisonOLED Efficacy Wh th lOLED Efficacy – Where the losses are

©  2016 LED Transformations, LLC 54

Page 28: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonLED/OLED Comparison Wh i t ill fLED/OLED Comparison – Where improvement will come from

LED ImprovementsLED Improvements

OLED ImprovementsOLED Improvements

©  2016 LED Transformations, LLC 55

Source:  DOE Solid‐State Lighting R&D Plan, May 2015

ComparisonOne Cost Advantage of OLEDs O ti d th lOne Cost Advantage of OLEDs – Optics and thermal

OLED savings in these areas

©  2016 LED Transformations, LLC 56

Source: Manufacturing Roadmap Solid‐State Lighting Research and Development ; US Department of Energy, August 2014

Page 29: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonOLED Efficacy DOE l d t fOLED Efficacy – DOE goals and present performance 

DOE goals

Source:  US Department of Energy 

g

1 Efficacy projections assume CRI >80,  CCT 3000K

SSL R&D Plan, May 2015

Comparison of commercial versus lab performance

1Commercial panel utilizing a hybrid triple stack with fluorescent blue emitters and phosphorescent red and green. 2Commercial panel utilizing a hybrid 6‐stage stack with fluorescent blue emitters and phosphorescent red and green. 

©  2016 LED Transformations, LLC 57

p g y g p p g3Laboratory panel utilizing a double stack with all phosphorescent emitters 4Test panel utilizing a single stack with polymer/oligomer emitters

OLED Research Projects P f d d b th DOE

ComparisonOLED Research Projects – Programs funded by the DOE

OLEDOLED Research Programs

©  2016 LED Transformations, LLC 58

Source:  US Department of Energy R&D Roadmap, May 2014

Page 30: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonDOE Research Grants All t f lid t t li hti

DOE SSL R&D Active Portfolio

DOE Research Grants – All aspects of solid‐state lighting

OLED Product Development

7%The DOE supports SSL R&D in partnership with industry small business

LED Manufacturing43%

LED Product Development

15%

industry, small business, and academia. Presently there is $50.9 in funding for the current solid‐stateTotal 43%

LED Core Technology

OLED Core Technology8%

the current solid state lighting portfolio.  

Approximately 29% of this 

Total $50.9M

OLED Manufacturing14%

LED Core Technology13% funding is focused on OLED 

technology issues

©  2016 LED Transformations, LLC 59

March 2015

ComparisonComparing Approaches V d iti i k j t

Ink jet printing

Two approaches to OLED manufacturing

Comparing Approaches – Vacuum deposition versus ink jet

Vacuum deposition

Source:  Canon

©  2016 LED Transformations, LLC 60

Source:  KateevaSource:  Aixtron

Page 31: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonOLED Manufacturers M f ili f li hti

• Acuity Brands • Osram Opto

OLED Manufacturers – Many unfamiliar names for lighting

• Astron Fiamm (Blackbody)• First O‐Lite• Kaneka

• Panasonic• Philips Lighting• SamsungKaneka

• Konica Minolta• Ledon/Tridonic

LG Ch

Samsung• Sumitomo Chemical• Toshiba

V b ti• LG Chem• Lumiotec• Moser Baer Technologies

• Verbatim• Visionox• WAC Lighting

• OLEDWorks

©  2016 LED Transformations, LLC 61

ComparisonCost P i t bl OLED Li hti

• GE and DuPont announced a pilot f

Cost – Printable OLED Lighting

program a few years ago to integrate GE’s pre‐pilot roll‐to‐roll manufacturing infrastructure with:– High performance, solution processable

materials– Advanced device architectures– Advanced encapsulation using ultra‐high 

multilayer barrier films (alternate ceramic/plastic layers)

G l Eli i diff i OLED• Goal: Eliminate differences in OLED performance between laboratory‐scale batch process and pre‐pilot production

GE roll-to-roll OLED line demonstration, 2007

©  2016 LED Transformations, LLC 62

• Not much progress in the last few years

Page 32: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonCost P i t bl OLED Li hti

• Project announced for upstate NY

Cost – Printable OLED Lighting

Not all programs are successful

• Project announced for upstate NY– Project partners: DOE, Universal

Display Corporation, Moser Baer Technologies NY’s Smart SystemTechnologies, NY s Smart System Technology & Commercialization Center (STC) 

• Joint effort to design and set upLocated in Canandaigua, NY, the STC will house two

pilot phosphorescent OLED manufacturing linesJoint effort to design and set upnation’s first pilot production facility for OLED lighting panelsF ili id l U S l i i

pilot phosphorescent OLED manufacturing lines.

• Facility was to provide prototype panels to U.S. luminaire manufacturers to incorporate into products

• Funding fell through and the project did not progress

©  2016 LED Transformations, LLC 63

ComparisonCost M t f t i it

LG is planning to construct a new production line for OLED li h i b 2017 Th ill i $185M d hi

Cost – More recent manufacturing sites

lighting by 2017. They will commit $185M toward this new fabrication line, which will increase its production capacity and will lower prices dramatically.

LG also plans to build a new manufacturing plant in Paju Korea scheduled to go on line by 2018.  They plan to invest $8.7B in the facility which will include Gen 9 glass fabrication capability whichfacility which will include Gen 9 glass fabrication capability.  which should reduce their cost of display panels by up to 90%

They also announced that they will build a new 6‐Gen (1500x1850 y y (mm) flexible OLED fab at their Gumi production facility.  The plant will cost $900M and will have a monthly capacity of 7,500 (1.5 million 5 5" panels) Production is scheduled to begin in the first half

©  2016 LED Transformations, LLC 64

million 5.5  panels)  Production is scheduled to begin in the first half of 2017.

Page 33: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonCost M t f t i it

Konica Minolta in 2014 completed $100M f b i i f ili i h

Cost – More recent manufacturing sites

a $100M fabrication facility with capacity to produce  1,000,000 flexible panels per month using a plastic substrate with a roll to roll process 

Largest OLED panels presently available are made by LG and measure 320mm x 320mm (12 6" x 12 6") and cost over $600

Apple is rumored to be planning to convert to OLED displays in their iPhone 8 scheduled for introduction in 2018 which could 

measure 320mm x 320mm (12.6  x 12.6 ) and cost over $600.

©  2016 LED Transformations, LLC 65

dramatically increase the demand for OLED panels

ComparisonPatterns Si l di l ith hi h l ti d l d

Use of OLEDs with patterns

Patterns – Simple displays with high resolution and low power draw

• High resolution (down to the thickness of a human hair) with fine detailH lf di l ibl• Half‐tones display possible

• Only the illuminated areas consume power, thus saving energy when used as displaysused as displays

• Image disappears when OLED is turned off

©  2016 LED Transformations, LLC 66

Page 34: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonLight Extraction LED h

Due to the high Index of Refraction of the semiconductor

( ) d h d i l ( )

Light Extraction – LED approach

(ns) as compared to the epoxy dome material (ne),

by Snell’s law, photons exiting the active layer at

angles greater than the escape cone angle θcill b fl t d b k i t th i d t

neθc

will be reflected back into the semiconductor

and will not exit the device.ns

Active layer

Absorbing substrate

Some device manufacturers cut the sides of the chips to provide better exit angles and extract more light while others rough the surfaces of the chips

to create optical interfaces which can improve the overallto create optical interfaces which can improve the overall

light extraction.  A third approach is to use what are known

as photonic crystals to reduce certain propagation modes

(reflected) and increase others (exiting).

©  2016 LED Transformations, LLC 67

(reflected) and increase others (exiting).

Source:  Lumileds

Light Extraction OLED h

ComparisonLight Extraction – OLED approach

Light extraction is a problem with OLEDs as well as LEDs.  In the case of OLEDs, the light gets trapped in the thin organic layers due to the high difference in refractive indices.

Waveguide entrapment

Improved light extraction methodM li htMore lightMore complex production $$$

©  2016 LED Transformations, LLC 68

Source: Kazuyuki Yamae, et al., Panasonic Corporation

Page 35: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ComparisonLight Extraction OLED h

A second approach to improve light extraction from OLED devices

Light Extraction – OLED approach

Reflecting Electrode

OLED Stack

Transparent Electrode

Internal Extraction Structure

WaveguideEffect

Substrate

Outcoupling Film

A layer of scatterers (transparent objects with a slightly different index of f ti f th di t i l) di t li ht t f th d i

©  2016 LED Transformations, LLC 69

refraction from the surrounding material) redirect light out of the device

Outline

• Introduction – What are OLEDsIntroduction  What are OLEDs

• Unique Features – What makes OLEDs different from other light sources?

• Comparison – Advantages and disadvantagesComparison  Advantages and disadvantages of OLED and LED technologies

A li i E l f OLED

Source:  GE

• Applications – Examples of OLED                              design

©  2016 LED Transformations, LLC 70

Page 36: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsHuman Psychology H li hti ff t ll b iHuman Psychology – How lighting affects our well‐being

©  2016 LED Transformations, LLC 71

ApplicationsNiche Products N f f t b t hi h t

• Offers Architects/Lighting Designers the ability to eliminate 

Niche Products – New form factors but high cost

/ g g g ythe distinction between light source and luminaire 

• Its creates a plane of light with no perceptible volume

• Its form factor is very flexible allowing                                         widely varying form factors and shapes– Future flexible substrates will allowFuture flexible substrates will allow 

infinite variation in shapes

• Provides soft, glare‐free illumination                                       without requiring diffusers baffles etcwithout requiring diffusers, baffles, etc.

Source: Novaled

©  2016 LED Transformations, LLC 72

Source:  Acuity

Source:  Novaled

Page 37: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsNiche Products N f f t b t hi h t

Source:  Osram Source:  Universal Display Corporation

Niche Products – New form factors but high cost

Source: LG Chem

Source: Philips

Source:  LG Chem

Source:  Philips Lumiblade

Source:  LG Chem

©  2016 LED Transformations, LLC 73

Unique Characteristics All l f f t f l i i

ApplicationsUnique Characteristics – Allow unusual form factors for luminaires

©  2016 LED Transformations, LLC 74

Source: LG Chem

Page 38: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsUnique Characteristics All l f f t f l i i

OLED Chandelier

Unique Characteristics – Allow unusual form factors for luminaires

Price: $9,990

©  2016 LED Transformations, LLC 75

Source:  Modern Forms

Unique Characteristics All l f f t f l i i

Applications

Source: LG Chem

Unique Characteristics – Allow unusual form factors for luminaires

Source: Philips Lumiblade (Riva 1920)

©  2016 LED Transformations, LLC 76

Source: Acuity LightingSource: LG Chem

Page 39: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsUnique Characteristics All l f f t f l i iUnique Characteristics – Allow unusual form factors for luminaires

©  2016 LED Transformations, LLC 77

Source:  Blackbody (Astrom FIAMM)

ApplicationsUnique Characteristics All l f f t f l i iUnique Characteristics – Allow unusual form factors for luminaires

Source: Acuity

©  2016 LED Transformations, LLC 78

Source:  Acuity

Page 40: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsUnique Characteristics All l f f t f l i i

Waving your hand up and down in front of the sensor as well as forward and backward changes the light level as well as on/off

Unique Characteristics – Allow unusual form factors for luminaires

forward and backward, changes the light level as well as on/off for the various OLED panels that                                                                    make up the fixture

OLED bed light

From a design competition held in Hong 

Sensor

e d o gKong in 2009

©  2016 LED Transformations, LLC 79

Source:  AcuitySource:  Ken Wong

ApplicationsUnique Characteristics Li ht id tl ill i ti

World's largest OLED installation to date is Seoul National University library which incorporates over 1100 OLED panels in

Unique Characteristics – Light provides gentle illumination

University library which incorporates over 1100 OLED panels in 550 reading lights

©  2016 LED Transformations, LLC 80

Source:  LG Chemical

Page 41: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsUnique Characteristics Fl ibilit ll i t ti l i i d i

Konica Minolta supplied over 15,000 flexible panels used in a tulip display for a Japanese Tulip Festival this past spring

Unique Characteristics – Flexibility allows interesting luminaire designs

tulip display for a Japanese  Tulip Festival this past spring

Source:  Konica Minolta

©  2016 LED Transformations, LLC 81

ApplicationsTransparent OLEDs A l f d i ibilitiTransparent OLEDs – An example of new design possibilities

OLED design luminaire "Rollercoaster" by Osram

©  2016 LED Transformations, LLC 82

Page 42: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsAutomotive E t i li htiAutomotive – Exterior lighting

©  2016 LED Transformations, LLC 83

ApplicationsOLED Ceiling Fixtures US E b (Fi l d)

US Embassy (Finland)

OLED Ceiling Fixtures – US Embassy (Finland)

©  2016 LED Transformations, LLC 84

Source:  AcuityAcuity ‐ Trilia

US Embassy (Finland)

Page 43: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsOLED Fixtures A h d liOLED Fixtures – A chandelier

This beauty can be yours for only $54,000

Fixture designed by Christopher Bauder576 OLED panels

©  2016 LED Transformations, LLC 85

ApplicationsAre OLEDs Only For Multi Millionaires?Are OLEDs Only For Multi‐Millionaires?

©  2016 LED Transformations, LLC 86

Photo Credit: ©John Sutton Photography 2011

Page 44: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

ApplicationsThe Answer is No OLED fi t h i t bi b t

Available now at a store near you

The Answer is No – OLED fixtures showing up at big‐box stores

©  2016 LED Transformations, LLC 87

Final ThoughtsAre OLEDs Ready for Prime Time It d d

• OLEDs still have quite a ways to go to compete head to head with LED technology for many traditional lighting applications

Are OLEDs Ready for Prime Time – It depends

with LED technology for many traditional lighting applications and may, in fact, never get there

• The unique characteristics of OLEDs fit quite nicely with how  designers and architects think of lighting; less so for those whose first impulse is to pull out a light meter

• OLEDs can typically provide a broader spectrum than LEDsOLEDs can typically provide a broader spectrum than LEDs

• OLEDs naturally produce diffuse light; LEDs have to work at it

• OLED manufacturing cost remains one of the major hurtles to f b d d f h h lovercome for broader adoption of the technology

• Both OLEDs and LEDs experience cost benefits from their association with the TV/display industry

©  2016 LED Transformations, LLC 88

/ p y y

• OLEDs will have a place in tomorrow lighting landscape 

Page 45: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Lifecycle Operating Costs F t i l ffi b ildi

Final Thoughts

An often overlooked element ‐ people

C ki

Lifecycle Operating Costs – For a typical office building

Construction5%

Operating7%

Space Heating

Ventilation5%

Water Heating2%

Cooking1%

Other6%

Space Heating25%

Cooling23%ffRefrigeration

Lighting17%

Data source:  E SourceData source:  Graham Ive

Salary/Benefits88%

23%Office Equipment

20%

Refrigeration1%

A 50% reduction in energy usage due to lighting changes represents a 0.6% decrease in lifecycle operating costs, while a 1% decrease in office worker 

©  2016 LED Transformations, LLC 89

performance represents a 0.9% increase in lifecycle operating costs

Lifecycle Operating Costs S l

Final ThoughtsLifecycle Operating Costs – Some examples

Reno Nevada Main Post Office

A $300,000 renovation in the facility’s lighting                                              system, produced a little over $50,000 annual                                              savings ($22,400 in direct energy savings andsavings ($22,400 in direct energy savings and                                               $30,000 in reduced maintenance)

Th t ti lt d i jThat same renovation resulted in major                                                         reductions in operator errors (to 0.1%)                                                      as well as a 6% improvement in                                                             

2 050

2,100

2,150

orted/H

r

Productivity Improvement

employee productivity which was worth                                                        an additional $400,000 annual savings 

1,900

1,950

2,000

2,050

Pieces of Mail So

Renovation Completed

©  2016 LED Transformations, LLC 90

0 20 40 60 80

P

Time (in weeks)

Page 46: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Specialty Lighting N ti l f li ht

Final ThoughtsSpecialty Lighting – Non‐conventional uses of light

• Architainment – using the color capabilities of LED and OLED h l d d l htechnologies to provide new and unique lighting environments

• Plant growth – tailoring light spectra to plant needs at various stages of growthstages of growth

• Productivity of farm animals – improving milk and egg production 

• Combining photovoltaic and LED lighting for off‐grid systems

X =©  2016 LED Transformations, LLC 91

Acknowledgements

Support for the development and presentation of this educational seminar was provided by theprovided by theUS Department of Energyand NETL Morgantownand NETL Morgantown

©  2016 LED Transformations, LLC 92

Page 47: An Introduction to OLEDs: The Other Solid State Lighting ... · • 2011: Samsung announces they will invest $4.8 billion in OLED production in 2011 • 2011: Verbatim starts shipping

Thank YouContact Information:

h ( k) fDr. John (Jack) W. Curran US Department of EnergyPresident LED Transformations, LLC www.ssl.energy.gov PO Box 224, Stanton, NJ  08885(908) 437 6007(908) 437‐[email protected] 

©  2016 LED Transformations, LLC 93