analysis in integer and fractional...

25
Analysis in Integer and Fractional Dimensions Ron Blei University of Connecticut

Upload: others

Post on 22-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Analysis in Integer and FractionalDimensions

Ron BleiUniversity of Connecticut

Page 2: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

published by the press syndicate of the university of cambridgeThe Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press

The Edinburgh Building, Cambridge CB2 2RU, UK40 West 20th Street, New York, NY 10011-4211, USA10 Stamford Road, Oakleigh, VIC 3166, AustraliaRuiz de Alarcon 13, 28014 Madrid, SpainDock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

c© Ron C. Blei 2001

This book is in copyright. Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface CMR 10/13 System LATEX [HBA]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Blei, R. C. (Ron C.)Analysis in integer and fractional dimensions/Ron Blei.

p. cm. – (Cambridge studies in advanced mathematics; 71)Includes bibliographical references and index.ISBN 0 521 65084 4

1. Harmonic analysis. 2. Functional analysis. 3. Probabilities.4. Inequalities (Mathematics) I. Title. II. Series.

QA403 .B54 2001515′.2433–dc21 00-064229

ISBN 0 521 65084 4 hardback

Page 3: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

I A Prologue: Mostly Historical . . . . . . . . . . . . . . . . . . . . . . . 11. From the Linear to the Bilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . 12. A Bilinear Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63. More of the Bilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84. From Bilinear to Multilinear and Fraction-linear . . . . . . . . . . 10Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Hints for Exercises in Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Three Classical Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 191. Mise en Scene: Rademacher Functions . . . . . . . . . . . . . . . . . . . . 192. The Khintchin L1–L2 Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 213. The Littlewood and Orlicz Mixed-norm Inequalities . . . . . . . 234. The Three Inequalities are Equivalent . . . . . . . . . . . . . . . . . . . . 255. An Application: Littlewood’s 4/3-inequality . . . . . . . . . . . . . . 266. General Systems and Best Constants . . . . . . . . . . . . . . . . . . . . . 28Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Hints for Exercises in Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III A Fourth Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381. Mise en Scene: Does the Khintchin L1–L2 Inequality

Imply the Grothendieck Inequality? . . . . . . . . . . . . . . . . . . . . . . 382. An Elementary Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403. A Second Elementary Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434. Λ(2)-uniformizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465. A Representation of an Inner Product

in a Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516. Comments (Mainly Historical) and Loose Ends . . . . . . . . . . . 53

vii

Page 4: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

viii Contents

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Hints for Exercises in Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

IV Elementary Properties of the FrechetVariation – an Introduction to TensorProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601. Mise en Scene: The Space Fk(N, . . . , N) . . . . . . . . . . . . . . . . . . . 602. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613. Finitely Supported Functions are Norm-dense

in Fk(N, . . . , N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634. Two Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675. The Space Vk(N, . . . , N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726. A Brief Introduction to General Topological Tensor

Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807. A Brief Introduction to Projective Tensor Algebras . . . . . . . 828. A Historical Backdrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Hints for Exercises in Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

V The Grothendieck Factorization Theorem . . . . . . . . . . . . . 951. Mise en Scene: Factorization in One

Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952. An Extension to Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 963. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984. The g-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005. The g-norm in the Multilinear Case . . . . . . . . . . . . . . . . . . . . . . 103Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Hints for Exercises in Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

VI An Introduction to MultidimensionalMeasure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071. Mise en Scene: Frechet Measures . . . . . . . . . . . . . . . . . . . . . . . . 1072. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083. The Frechet Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114. An Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165. Integrals with Respect to Fn-measures . . . . . . . . . . . . . . . . . . . 1186. The Projective Tensor Algebra Vn(C1, . . . ,Cn) . . . . . . . . . . . 1217. A Multilinear Riesz Representation Theorem . . . . . . . . . . . . 1228. A Historical Backdrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129Hints for Exercises in Chapter VI . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Page 5: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Contents ix

VII An Introduction to Harmonic Analysis . . . . . . . . . . . . 1351. Mise en Scene: Mainly a Historical Perspective . . . . . . . 1352. The Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383. Elementary Representation Theory . . . . . . . . . . . . . . . . . . . 1424. Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465. Analysis of Walsh Systems: a First Step . . . . . . . . . . . . . . 1476. Wk is a Rosenthal Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517. Restriction Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578. Harmonic Analysis and Tensor Analysis . . . . . . . . . . . . . . 1599. Bonami’s Inequalities: A Measurement

of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16710. The Littlewood 2n/(n + 1)-Inequalities: Another

Measurement of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 17511. p-Sidon Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18112. Transcriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196Hints for Exercises in Chapter VII . . . . . . . . . . . . . . . . . . . . . . . . 202

VIII Multilinear Extensions of the GrothendieckInequality (via Λ(2)-uniformizability) . . . . . . . . . . . . . 2061. Mise en Scene: A Basic Issue . . . . . . . . . . . . . . . . . . . . . . . . . . 2062. Projective Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2083. Uniformizable Λ(2)-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2094. A Projectively Bounded Trilinear Functional . . . . . . . . . . . 2145. A Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2216. Projectively Unbounded Trilinear Functionals . . . . . . . . . . 2257. The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278. ϕ ≡ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2309. Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Hints for Exercises in Chapter VIII . . . . . . . . . . . . . . . . . . . . . . . 245

IX Product Frechet Measures . . . . . . . . . . . . . . . . . . . . . . . . . 2481. Mise en Scene: A Basic Question . . . . . . . . . . . . . . . . . . . . . . 2482. A Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2493. Projective Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2534. Every µ ∈ F2 is Projectively Bounded . . . . . . . . . . . . . . . . . 2575. There Exist Projectively Unbounded F3-measures . . . . . . 2586. Projective Boundedness in Topological Settings . . . . . . . . 2607. Projective Boundedness in Topological-group

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Page 6: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

x Contents

8. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Hints for Exercises in Chapter IX . . . . . . . . . . . . . . . . . . . . . . . . 276

X Brownian Motion and the Wiener Process . . . . . . . . . 2791. Mise en Scene: A Historical Backdrop

and Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2792. A Mathematical Model for Brownian Motion . . . . . . . . . 2853. The Wiener Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2884. Sub-Gaussian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2955. Random Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3006. Variations of the Wiener F2-measure . . . . . . . . . . . . . . . . . 3077. A Multiple Wiener Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 3118. The Beginning of Adaptive Stochastic

Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3169. Sub-α-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

10. Measurements of Stochastic Complexity . . . . . . . . . . . . . . 32211. The nth Wiener Chaos Process and its

Associated F -measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32512. Mise en Scene (§1 continued): Further

Approximations of Brownian Motion . . . . . . . . . . . . . . . . . 32913. Random Walks and Decision Making Machines . . . . . . . 33114. α-Chaos: A Definition, a Limit Theorem, and Some

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339Hints for Exercises in Chapter X . . . . . . . . . . . . . . . . . . . . . . . . . 344

XI Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3481. Mise en Scene: A General View . . . . . . . . . . . . . . . . . . . . . . 3482. Integrators and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3503. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3574. More Examples: α-chaos, Λ(q)-processes,

p-stable Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3635. Two Questions – a Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3796. An Application of the Grothendieck

Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3857. Integrators Indexed by n-dimensional Sets . . . . . . . . . . . . 3888. Examples: Random Constructions . . . . . . . . . . . . . . . . . . . . 3969. Independent Products of Integrators . . . . . . . . . . . . . . . . . . 397

10. Products of a Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . 40211. Random Integrands in One Parameter . . . . . . . . . . . . . . . . 409

Page 7: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Contents xi

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419Hints for Exercises in Chapter XI . . . . . . . . . . . . . . . . . . . . . . . . 424

XII A ‘3/2-dimensional’ Cartesian Product . . . . . . . . . . . . 4271. Mise en Scene: Two Basic Questions . . . . . . . . . . . . . . . . . . 4272. A Littlewood Inequality in ‘Dimension’ 3/2 . . . . . . . . . . . 4283. A Khintchin Inequality in ‘Dimension’ 3/2 . . . . . . . . . . . . 4344. Tensor Products in ‘Dimension’ 3/2 . . . . . . . . . . . . . . . . . . . 4405. Frechet Measures in ‘Dimension’ 3/2 . . . . . . . . . . . . . . . . . . 4476. Product F -measures and Projective Boundedness

in ‘Dimension’ 3/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453Hints for Exercises in Chapter XII . . . . . . . . . . . . . . . . . . . . . . . 455

XIII Fractional Cartesian Products and CombinatorialDimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4561. Mise en Scene: Fractional Products . . . . . . . . . . . . . . . . . . . 4562. A Littlewood Inequality in Fractional ‘Dimension’ . . . . . 4583. A Khintchin Inequality in Fractional ‘Dimension’ . . . . . . 4704. Combinatorial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4755. Fractional Cartesian Products are q-products . . . . . . . . . . 4786. Random Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4837. A Relation between the dim-scale and the σ-scale . . . . . 4888. A Relation between the dim-scale and the δ-scale . . . . . . 495Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500Hints for Exercises in Chapter XIII . . . . . . . . . . . . . . . . . . . . . . 501

XIV The Last Chapter: Leads and Loose Ends . . . . . . . . . 5021. Mise en Scene: The Last Chapter . . . . . . . . . . . . . . . . . . . . . 5022. Frechet Measures in Fractional Dimensions . . . . . . . . . . . . 5033. Combinatorial Dimension in Topological

and Measurable Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5164. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5185. Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5216. α-chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5257. Integrators in Fractional Dimensions . . . . . . . . . . . . . . . . . . 528Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531Hints for Exercises in Chapter XIV . . . . . . . . . . . . . . . . . . . . . . 533

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .534

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .547

Page 8: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

IA Prologue: Mostly Historical

1 From the Linear to the Bilinear

At the start and at the very foundation, there is the Riesz representationtheorem. In original form it is

Theorem 1 (F. Riesz, 1909). Every bounded, real-valued linear func-tional α on C([a, b]) can be represented by a real-valued function g ofbounded variation on [a, b], such that

α(f) =∫ b

a

f dg, f ∈ C([a, b]), (1.1)

where the integral in (1.1) is a Riemann–Stieltjes integral.

The measure-theoretic version, headlined also the Riesz representationtheorem, effectively marks the beginning of functional analysis. In gen-eral form, it is

Theorem 2 Let X be a locally compact Hausdorff space. Every bounded,real-valued linear functional on C0(X) can be represented by a regularBorel measure ν on X, such that

α(f) =∫

X

f dν, f ∈ C0(X). (1.2)

And in its most primal form, measure-theoretic (and non-trivial!) detailsaside, the theorem is simply

1

Page 9: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

2 I A Prologue: Mostly Historical

Theorem 3 If α is a real-valued, bounded linear functional on c0(N) =c0, then

‖α‖1 :=∑

n

|α(n)| < ∞, (1.3)

and

α(f) =∑

n

α(n)f(n), f ∈ c0,

where α(n) = α(en) (en(n) = 1, and en(j) = 0 for j 6= n).

The proof of Theorem 3 is merely an observation, which we state interms of the Rademacher functions.

Definition 4 A Rademacher system indexed by a set E is the collectionrx : x ∈ E of functions defined on −1, 1E , such that for x ∈ E

rx(ω) = ω(x), ω ∈ −1, 1E . (1.4)

To obtain the first line in (1.3), note that

sup

∥∥∥∥∥N∑

n=1

α(n) rn

∥∥∥∥∥∞

: N ∈ N

= ‖α‖1, (1.5)

and to obtain the second, use the fact that finitely supported functionson N are norm-dense in c0(N).

Soon after F. Riesz had established his characterization of boundedlinear functionals, M. Frechet succeeded in obtaining an analogous char-acterization in the bilinear case. (Frechet announced the result in 1910,and published the details in 1915 [Fr]; Riesz’s theorem had appeared in1909 [Rif1].) The novel feature in Frechet’s characterization was a two-dimensional extension of the total variation in the sense of Vitali. Towit, if f is a real-valued function on [a, b]× [a, b], then the total variationof f can be expressed as

sup

∥∥∥∥∥∑n,m

∆2f(xn, ym) rnm

∥∥∥∥∥∞

: a < · · · < xn < · · · < b,

a < · · · < ym < · · · < b

, (1.6)

Page 10: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

From the Linear to the Bilinear 3

where ∆2 is the ‘second difference’,

∆2f(xn, ym)

= f(xn, ym) − f(xn−1, ym) + f(xn−1, ym−1) − f(xn, ym−1), (1.7)

and rnm : (n, m) ∈ N2 is the Rademacher system indexed by N

2.The two-dimensional extension of this one-dimensional measurement isgiven by:

Definition 5 The Frechet variation of a real-valued function f on[a, b] × [a, b] is

‖f‖F2 = sup

∥∥∥∥∥∑n,m

∆2f(xn, ym) rn⊗rm

∥∥∥∥∥∞

: a < · · · < xn < · · · < b,

< · · · < ym < · · · < b

. (1.8)

(rn ⊗ rm is defined on −1, 1N × −1, 1N by

rn ⊗ rm(ω1, ω2) = ω1(n)ω2(m),

and ‖ · ‖∞ is the supremum over −1, 1N × −1, 1N.)

Based on (1.8), the bilinear analog of Riesz’s theorem is

Theorem 6 (Frechet, 1915). A real-valued bilinear functional β onC([a, b]) is bounded if and only if there is a real-valued function h on[a, b] × [a, b] with ‖h‖F2 < ∞, and

β(f, g) =∫ b

a

∫ b

a

f⊗g dh, f ∈ C([a, b]), g ∈ C([a, b]), (1.9)

where the right side of (1.9) is an iterated Riemann–Stieltjes integral.

The crux of Frechet’s proof was a construction of the integral in (1.9),a non-trivial task at the start of the twentieth century when integrationtheories had just begun developing.

Like Riesz’s theorem, Frechet’s theorem can also be naturally recastin the setting of locally compact Hausdorff spaces; we shall come to thisin good time. At this juncture we will prove only its primal version.

Page 11: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

4 I A Prologue: Mostly Historical

Theorem 7 If β is a bounded bilinear functional on c0, and β(em, en) :=β(m, n), then

sup

∥∥∥∥∥∑

m∈S,n∈T

β(m, n) rm ⊗ rn

∥∥∥∥∥∞

: finite sets S ⊂ N, T ⊂ N

:= ‖β‖F2 < ∞, (1.10)

and

β(f, g) =∞∑

m=1

( ∞∑n=1

β(m, n) g(n)

)f(m)

=∞∑

n=1

( ∞∑m=1

β(m, n) f(m)

)g(n),

f ∈ c0, g ∈ c0. (1.11)

Conversely, if β is a real-valued function on N×N such that ‖β‖F2 < ∞,then (1.11) defines a bounded bilinear functional on c0.

The key to Theorem 7 is

Lemma 8 If β = (β(m, n) : (m, n) ∈ N2) is a scalar array, then

‖β‖F2 = sup

∣∣∣∣∣∑

m∈S,n∈T

β(m, n) xm yn

∣∣∣∣∣ : xm ∈ [−1, 1],

yn ∈ [−1, 1], finite sets S ⊂ N, T ⊂ N

. (1.12)

Proof: The right side obviously bounds ‖β‖F2 . To establish the reverseinequality, suppose S and T are finite subsets of N, and ω ∈ −1, 1N.Then

‖β‖F2 ≥∥∥∥∥∥∥

∑n∈T,m∈S

β(m, n) rm ⊗ rn

∥∥∥∥∥∥∞

,

≥∑n∈T

∣∣∣∣∣∑m∈S

β(m, n) rm(ω)

∣∣∣∣∣ . (1.13)

Page 12: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

From the Linear to the Bilinear 5

If yn ∈ [−1, 1] for n ∈ T , then the right side of (1.13) bounds∣∣∣∣∣∑n∈T

(∑m∈S

β(m, n) rm(ω)

)yn

∣∣∣∣∣ =∣∣∣∣∣∑m∈S

(∑n∈T

β(m, n) yn

)rm(ω)

∣∣∣∣∣ .(1.14)

By maximizing the right side of (1.14) over ω ∈ −1, 1N, we concludethat ‖β‖F2 bounds

∑m∈S

∣∣∣∣∣∑n∈T

β(m, n) yn

∣∣∣∣∣ . (1.15)

If xm ∈ [−1, 1] for m ∈ S, then (1.15) bounds∣∣∣∣∣∑m∈S

(∑n∈T

β(m, n) yn

)xm

∣∣∣∣∣=

∣∣∣∣∣∑

m∈S,n∈T

β(m, n) xm yn

∣∣∣∣∣, (1.16)

which implies that ‖β‖F2 bounds the right side of (1.12).

Proof of Theorem 7: If β is a bilinear functional on c0, with norm‖β‖ := sup|β(f, g)| : f ∈ Bc0 , g ∈ Bc0, then (because finitely sup-ported functions are norm-dense in c0)

‖β‖ = sup

∣∣∣∣∣∑

m∈S,n∈T

β(m, n) xm yn

∣∣∣∣∣ : xm ∈ [−1, 1],

yn ∈ [−1, 1], finite sets S ⊂ N, T ⊂ N

,

and Lemma 8 implies (1.10).Let f ∈c0 and g∈c0. If N ∈N, then let fN=f1[N ] and gN=g1[N ]. (Here

and throughout, [N ] = 1, . . . , N.) Because fN → f and gN → g asN → ∞ (convergence in c0), and β is continuous in each coordinate, weobtain β(fN , g) → β(f, g) and β(f, gN ) → β(f, g) as N → ∞, and thenobtain (1.11) by noting that β(fN , gN ) = ΣN

m=1ΣNn=1β(m, n)g(n)f(m).

Conversely, if β is a scalar array on N × N, and f and g are finitelysupported real-valued functions on N, then define

β(f, g) =∑m

∑n

β(m, n)g(n)f(m). (1.17)

Page 13: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

6 I A Prologue: Mostly Historical

By Lemma 8 and the assumption ‖β‖F2 < ∞, β is a bounded bilinearfunctional on a dense subspace of c0, and therefore determines a boundedbilinear functional on c0. The first part of the theorem implies (1.10)and (1.11).

Theorem 7 was elementary, basic, and straightforward – view it as awarm-up. In passing, observe that whereas every bounded linear func-tional on c0 obviously extends to a bounded linear functional on l∞, theanalogous fact in two dimensions, that every bounded bilinear functionalon c0 extends to a bounded bilinear functional l∞ is also elementary, butnot quite as easy to verify. This ‘two-dimensional’ fact, specifically that(1.11) extends to f and g in l∞, will be verified in a later chapter.

2 A Bilinear Theory

Notably, Frechet did not consider in his 1915 paper the question whetherthere exist functions with bounded variation in his sense, but with infi-nite total variation in the sense of Vitali. Whether bilinear functionalson C([a, b]) can be distinguished from linear functionals on C([a, b]2) isindeed a basic and important issue (Exercises 1, 2, 4, 8). So far as Ican determine, Frechet never considered or raised it (at least, not inprint). Be that as it may, this question led directly to the next advance.

Littlewood began his classic 1930 paper [Lit4] thus: ‘ProfessorP.J. Daniell recently asked me if I could find an example of a functionof two variables, of bounded variation according to a certain definitionof Frechet, but not according to the usual definition.’ Noting that theproblem was equivalent to finding real-valued arrays

β = (β(m, n) : (m, n) ∈ N2)

with ‖β‖F2 < ∞ and ‖β‖1 = Σm,n|β(m, n)| = ∞, Littlewood settledthe problem by a quick use of the Hilbert inequality (Exercise 1). Hethen considered this question: whereas there are β with ‖β‖F2 < ∞and ‖β‖1 = ∞, and (at the other end) ‖β‖F2 < ∞ implies ‖β‖2 < ∞(Exercise 3), are there p ∈ (1, 2) such that

‖β‖F2 < ∞ ⇒ ‖β‖p < ∞?

Littlewood gave this precise answer.

Theorem 9 (the 4/3 inequality, 1930).

‖β‖p < ∞ for all β with ‖β‖F2 < ∞ if and only if p ≥ 43.

Page 14: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

A Bilinear Theory 7

To establish ‘sufficiency’, that ‖β‖F2 < ∞ implies ‖β‖4/3 < ∞,Littlewood proved and used the following:

Theorem 10 (the mixed (l1, l2)-norm inequality, 1930). For allreal-valued arrays β = (β(m, n) : (m, n) ∈ N

2),

∑m

(∑n

|β(m, n)|2) 1

2

≤ κ‖β‖F2 , (2.1)

where κ > 0 is a universal constant.

This mixed-norm inequality, which was at the heart of Littlewood’sargument, turned out to be a precursor (if not a catalyst) to a sub-sequent, more general inequality of Grothendieck. We shall come toGrothendieck’s inequality in a little while.

To prove ‘necessity’, that there exists β with ‖β‖F2 < ∞ and

‖β‖p = ∞ for all p < 4/3,

Littlewood used the finite Fourier transform. (You are asked to workthis out in Exercise 4, which, like Exercise 1, illustrates first steps inharmonic analysis.)

Besides motivating the inequalities we have just seen, Frechet’s 1915paper led also to studies of ‘bilinear integration’, first by Clarkson andAdams in the mid-1930s (e.g., [ClA]), and then by Morse and Transue inthe late 1940s through the mid-1950s (e.g., [Mor]). For their part, firmlybelieving that the two-dimensional framework was interesting, challeng-ing, and important, Morse and Transue launched extensive investiga-tions of what they dubbed bimeasures: bounded bilinear functionals onC0(X)×C0(Y ), where X and Y are locally compact Hausdorff spaces. Inthis book, we take a somewhat more general point of view:

Definition 11 Let X and Y be sets, and let C ⊂ 2X and D ⊂ 2Y

be algebras of subsets of X and Y , respectively. A scalar-valued set-function µ on C × D is an F2-measure if for each A ∈ C, µ(A, ·) isa scalar measure on (Y, D), and for each B ∈ D, µ(·, B) is a scalarmeasure on (X, C).

That bimeasures are F2-measures is the two-dimensional extension ofTheorem 2. (The utility of the more general definition is illustrated inExercise 8.)

When highlighting the existence of ‘true’ bounded bilinear functionals,Morse and Transue all but ignored Littlewood’s prior work. In their first

Page 15: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

8 I A Prologue: Mostly Historical

paper on the subject, underscoring ‘the difficult problem which Clarksonand Adams solve . . . ’, they stated [MorTr1, p. 155]: ‘That [the Frechetvariation] can be finite while the classical total variation . . . of Vitali isinfinite has been shown by example by Clarkson and Adams [in [ClA]].’(In their 1933 paper [ClA], the authors did, in passing, attribute toLittlewood the first such example [ClA, p. 827], and then proceeded togive their own [ClA, pp. 837–41]. I prefer Littlewood’s simpler example,which turned out to be more illuminating.) The more significant missby Morse and Transue was a fundamental inequality that would playprominently in the bilinear theory – the same inequality that had beenforeshadowed by Littlewood’s earlier results.

3 More of the Bilinear

The inequality missed by Morse and Transue first appeared inGrothendieck’s 1956 work [Gro2], a major milestone that was missed bymost. The paper, pioneering new tensor-theoretic technology, was diffi-cult to read and was hampered by limited circulation. (It was publishedin a journal carried by only a few university libraries.) The inequal-ity itself, the highlight of Grothendieck’s 1956 paper, was eventuallyunearthed a decade or so later. Recast and reformulated in a Banachspace setting, this inequality became the focal point in a seminal 1968paper by Lindenstrauss and Pelczynski [LiPe]. The impact of this 1968work was decisive. Since then, the inequality, which Grothendieck him-self billed as the ‘theoreme fondamental de la theorie metrique des pro-duits tensoriels’ has been reinterpreted and broadly applied in variouscontexts of analysis. It has indeed become recognized as a fundamentalcornerstone.

Theorem 12 (the Grothendieck inequality). If β = (β(m, n) :(m, n) ∈ N

2) is a real-valued array, and xn and yn are finite subsetsin Bl2 , then

∣∣∣∣∣∑n,m

β(m, n)〈xm,yn〉∣∣∣∣∣ ≤ κG ‖β‖F2 , (3.1)

where Bl2 is the closed unit ball in l2, 〈·, ·〉 denotes the usual inner productin l2, and κG > 1 is a universal constant.

Page 16: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

More of the Bilinear 9

Restated (via Lemma 8), the inequality in (3.1) has a certain aestheticappeal:

sup

∣∣∣∣∣∑

m∈S,n∈T

β(m, n)〈xm,yn〉∣∣∣∣∣ : xm ∈ l2,yn ∈ l2,

‖xm‖2 ≤ 1, ‖yn‖2 ≤ 1, finite S ⊂ N, T ⊂ N

≤ κG sup

∣∣∣∣∣∑

m∈S,n∈T

β(m, n)xmyn

∣∣∣∣∣ : xm ∈ R,

yn ∈ R, |xm| ≤ 1, |yn| ≤ 1, finite S ⊂ N, T ⊂ N

. (3.2)

So stated, the inequality says that products of scalars on the right side of(3.2) can be replaced, up to a universal constant, by the dot product in aHilbert space. In this light, a question arises whether one can replace thedot product on the left side of (3.1) with, say, the dual action betweenvectors in the unit balls of lp and lq, 1/p + 1/q = 1 and p ∈ [1, 2). Theanswer is no (Exercise 6).

Grothendieck did not explicitly write what had led him to his ‘theo-reme fondamental’, but did remark [Gro2, p. 66] that Littlewood’smixed-norm inequality (Theorem 10) was an instance of it (Exercise 5).The actual motivation not withstanding, the historical connectionsbetween Grothendieck’s inequality, Morse’s and Transue’s bimeasures,Littlewood’s inequality(ies), and Frechet’s 1915 work are apparent inthis important consequence of Theorem 12.

Theorem 13 (the Grothendieck factorization theorem). Let X bea locally compact Hausdorff space. If β is a bounded bilinear functionalon C0(X) (a bimeasure on X ×X), then there exist probability measuresν1 and ν2 on the Borel field of X such that for all f ∈ C0(X), g ∈ C0(X),

|β(f, g)| ≤ κG‖β‖‖f‖L2(ν1)‖g‖L2(ν2), (3.3)

where κG > 0 is a universal constant, and

‖β‖ = sup|β(f, g)| : (f, g) ∈ BC0(X) × BC0(X).

This ‘factorization theorem’, which can be viewed as a two-dimensionalsurrogate for the ‘one-dimensional’ Radon–Nikodym theorem, has a far-reaching impact. A case for it will be duly made in this book.

Page 17: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

10 I A Prologue: Mostly Historical

4 From Bilinear to Multilinear and Fraction-linear

Up to this point we have focused on the bilinear theory. As our storyunfolds in chapters to come, we will consider questions about extend-ing ‘one-dimensional’ and ‘two-dimensional’ notions to other dimensions:higher as well as fractional. Some answers will be predictable and obvi-ous, but some will reveal surprises. In this final section of the prologue,we briefly sketch the backdrop and preview some of what lies ahead.

The multilinear Frechet theorem in its simplest guise is a straight-forward extension of Theorem 7:

Theorem 14 An n-linear functional β on c0 is bounded if and only if‖β‖Fn < ∞, where β(k1, . . . , kn) = β(ek1 , . . . , ekn) and

‖β‖Fn = sup

∥∥∥∥∥∑

k1∈T1,...,kn∈Tn

β(k1, . . . , kn)rk1⊗ · · · ⊗rkn

∥∥∥∥∥∞

:

finite sets T1 ⊂ N, . . . , Tn ⊂ N

. (4.1)

Moreover, the n-linear action of β on c0 is given by

β(f1, . . . , fn) =∑k1

. . .

(∑kn

β(k1, . . . , kn)fn(kn)

)· · · f1(k1),

(f1, . . . , fn) ∈ c0× · · · ×c0. (4.2)

Though predictable, the analogous general measure-theoretic versionrequires a small effort. (The proof is by induction.)

The extension of Littlewood’s 4/3-inequality to higher (integer)dimensions is not altogether obvious. (So far that I know, Littlewoodhimself never addressed the issue.) This extension, needed in a harmonic-analytic context, was stated and first proved by G. Johnson andG. Woodward in [JWo]:

Theorem 15

‖β‖p < ∞ for all n-arrays β with ‖β‖Fn< ∞

if and only if p ≥ 2n

n + 1.

‘One half’ of this theorem could be found also in [Da, p. 33]. For hispurpose in [Da], Davie called on Littlewood’s mixed-norm inequality

Page 18: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Multilinear and Fraction-linear 11

(Theorem 10), but did not need the 4/3-inequality. Nevertheless, hestated the latter, and remarked in passing without supplying proof that‘it [was] not hard to extend Littlewood’s result’ to obtain

‖β‖2n/(n+1) ≤ 3n−1

2 nn+12n ‖β‖Fn . (4.3)

(Davie did not state that (4.3) was optimal.)Davie’s paper is interesting in our context not only for its connec-

tion with Littlewood’s inequalities, but also for a discussion therein of aseemingly unrelated, then-open question concerning multidimensionalextensions of the von-Neumann inequality. This particular questionwas subsequently answered in the negative by N. Varopoulos, who, enroute, demonstrated that there was no general trilinear Grothendieck-type inequality. The latter result concerning feasibility of Grothendieck-type inequalities in higher dimensions is a crucial part of our storyhere, indeed leading back to questions about extensions of Littlewood’s4/3-inequality. I will not dwell here or anywhere else in the book onthe original problem concerning the von-Neumann inequality. But Ishall state here the question, not only for its role as a catalyst, but alsobecause an interesting related problem remains open. It is worth a smalldetour.

The von-Neumann inequality asserts that if T is a contraction on aHilbert space and p is a complex polynomial in one variable, then

‖p(T )‖ ≤ ‖p‖∞ := sup|p(z)| : |z| ≤ 1, (4.4)

where ‖·‖ above denotes the operator norm. The two-dimensional exten-sion of (4.4) asserts that if T1 and T2 are commuting contractions on aHilbert space, and p is a complex polynomial in two variables, then

‖p(T1, T2)‖ ≤ ‖p‖∞ := sup|p(z1, z2)| : |z1| ≤ 1, |z2| ≤ 1. (4.5)

(These inequalities can be found in [NF, Chapter 1].) The questionwhether

‖p(T1, . . . , Tn)‖ ≤ ‖p‖∞,

where n ≥ 3, T1, . . . , Tn are commuting contractions on a Hilbert space,and p is a complex polynomial in n variables, was resolved in the negativein [V4]. But a question remains open: for integers n ≥ 3, are thereKn > 0 such that if T1, . . . , Tn are commuting contractions on a Hilbertspace, and p is a complex polynomial in n variables, then

‖p(T1, . . . , Tn)‖ ≤ Kn‖p‖∞? (4.6)

Page 19: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

12 I A Prologue: Mostly Historical

Let us return to the general 2n/n+1-inequality in Theorem 15. Thearguments used to prove Littlewood’s inequality(ies) start from theobservation that Rademacher functions are independent in the basicsense manifested by (1.5). The analogous observation in a Fourier-analysis setting is that the lacunary exponentials ei3mx : m ∈ N on[0, 2π) := T are independent in a like sense. Specifically, if Σmα(m) ei3mx

is the Fourier series of a continuous function on T, then Σm|α(m)| < ∞(cf. (1.5)). This phenomenon had been noted first by S. Sidon in 1926[Si1], and later gave rise to a general concept whose systematic studywas begun by Walter Rudin in his classic 1960 paper [RU1]:

Definition 16 F ⊂ Z is a Sidon set if

f ∈ CF (T) ⇒ f ∈ l1(F ), (4.7)

where CF (T) := f ∈ C(T) : f(m) = 0 for m 6∈ F.

Note that the counterpoint to Sidon’s theorem (asserting that 3k :k ∈ N is a Sidon set) is that Placherel’s theorem is otherwise optimal;that is,

f ∈ lp(Z) for all f ∈ C(T) ⇔ p ≥ 2. (4.8)

These two ‘extremal’ properties – Sidon’s theorem at one end, and (4.8)at the other – lead naturally to a question: for arbitrary p ∈ (1, 2), arethere F ⊂ Z such that

f ∈ lq(F ) for all f ∈ CF (T) ⇔ q ≥ p? (4.9)

To make matters concise, we define the Sidon exponent of F ⊂ Z by

σF = infp : ‖f‖p < ∞ for all f ∈ CF (T). (4.10)

(Two situations could arise: either ‖f‖σF< ∞ for all f ∈ CF (T), or

there exists f ∈ CF (T) with ‖f‖σF= ∞. Later in the book we will

distinguish between these two scenarios.) Let E = 3k : k ∈ N, anddefine for integers, n ≥ 1

En = ±3k1 ± · · · ± 3kn : (k1, . . . , kn) ∈ Nn. (4.11)

Transported to a context of Fourier analysis, Theorem 15 implies

f ∈ lq(En) for all f ∈ CEn(T) ⇔ q ≥ 2n

n + 1. (4.12)

In particular,

σEn = 2/(

1 +1n

), n ∈ N, (4.13)

Page 20: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Multilinear and Fraction-linear 13

which leads to the p-Sidon set problem (see (4.9)): for arbitrary p ∈(1, 2), are there F ⊂ Z such that σF = p? The resolution of thisproblem – it so turned out – followed a resolution of a seemingly unre-lated problem, that of extending the Grothendieck inequality to higherdimensions.

The Grothendieck inequality (Theorem 12) is a general assertion aboutbounded bilinear forms on a Hilbert space: in Theorem 12, replace l2

by a Hilbert space H, and the inner product 〈·, ·〉 in l2 by a boundedbilinear form on H. A question arises: is there K > 0 such that for allbounded trilinear functionals β on c0, all bounded trilinear forms A ona Hilbert space H, and all finite subsets xn ⊂ BH , yn ⊂ BH , andzn ⊂ BH , ∣∣∣∣∣∣

∑k,n,m

β(m, n, k) A(xk,ym, zn)

∣∣∣∣∣∣ ≤ K‖β‖F3? (4.14)

(Here and throughout, BX denotes the closed unit ball of a normed linearspace X.) The question was answered in the negative by Varopoulos[V4], who demonstrated the following. For H = l2(N2), and ϕ ∈ l∞(N3),define

Aϕ(x,y, z) =∑

k,m,n

ϕ(k, m, n) x(k, m) y(m, n) z(k, n),

(x,y, z) ∈ l2(N2) × l2(N2) × l2(N2), (4.15)

which, by Cauchy–Schwarz, is a bounded trilinear form on H with norm‖ϕ‖∞. By use of probabilistic estimates, Varopoulos proved the exis-tence of ϕ for which there was no K > 0 such that (4.14) would holdwith A = Aϕ and all bounded trilinear functionals β on c0. But a ques-tion remained: were there any ϕ ∈ l∞(N3) for which Aϕ would satisfy(4.14) for all bounded trilinear functionals β on c0?

In 1976 I gave a new proof of the Grothendieck inequality [Bl3]. Theproof, cast in a harmonic-analysis framework, was extendible to multi-dimensional settings, and led eventually to characterizations of projec-tively bounded forms [Bl4]. (Projectively bounded forms are those thatsatisfy Grothendieck-type inequalities, as in (4.14).) We illustrate thischaracterization in the case of the trilinear forms in (4.15). Choose andfix an arbitrary two-dimensional enumeration of E = 3k : k ∈ N, sayE = mij : (i, j) ∈ N

2 (any enumeration will do), and consider

E32 := (mij , mjk, mik) : (i, j, k) ∈ N

3. (4.16)

Page 21: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

14 I A Prologue: Mostly Historical

We then have

Theorem 17 For ϕ ∈ l∞(N3), the trilinear form Aϕ is projectivelybounded if and only if there exists a regular Borel measure µ on T3 suchthat

µ(mij , mjk, mik) = ϕ(i, j, k), (i, j, k) ∈ N3. (4.17)

Therefore, the question whether there exist ϕ such that Aϕ is not pro-jectively bounded becomes the question: is E3/2 a Sidon set in Z

3? Theanswer is no.

In the course of verifying that E32 is not a Sidon set, certain combi-

natorial features of it come to light, suggesting that E3/2 is a ‘3/2-fold’Cartesian product of E. Indeed, following this cue, we arrive at a6/5-inequality [Bl5], which, in effect, is a ‘3/2-linear’ extension of theLittlewood (bilinear) 4/3-inequality. For a scalar 3-array β = (β(i, j, k) :(i, j, k) ∈ N

3), define (the ‘3/2-linear’ version of the Frechet variation)

‖β‖F3/2 = sup

∥∥∥∥∥∑

i∈S,j∈T,k∈U

β(i, j, k) rij ⊗ rjk ⊗ rik

∥∥∥∥∥∞

:

finite sets S ⊂ N, T ⊂ N, U ⊂ N

. (4.18)

(Rademacher systems in (4.18) are indexed by N2.) The 6/5-inequality is

Theorem 18

‖β‖p < ∞ for all 3-arrays β with ‖β‖F3/2 < ∞if and only if p ≥ 6/5.

Transporting this inequality to a setting of Fourier analysis, we let

E3/2 = ± mij ± mjk ± mik : (i, j, k) ∈ N3, (4.19)

where mij : (i, j) ∈ N2 is an enumeration of e2πi3kt : k ∈ N, and

obtain that

σE3/2 =65

= 2/(

1 + 1/(

32

))(cf. (4.12)). (4.20)

The assertion in (4.20) is a precise link between the harmonic-analyticindex σE3/2 and the ‘dimension’ 3/2, a purely combinatorial index. This

Page 22: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Exercises 15

link naturally suggests a formula relating the harmonic-analytic indexof a general ‘fractional Cartesian product’ to its underlying dimension,and thus the solution of the p-Sidon set problem. This (and much more)will be detailed in good time. The prologue is over. Let us begin.

Exercises

1. i. (The Hilbert inequality). Prove that if (an) ∈ Bl2 and (bn) ∈ Bl2

are finitely supported sequences, then∣∣∣∣∣∣∑m6=n

anbm/(m − n)

∣∣∣∣∣∣ ≤ K,

where K is a universal constant.ii. Applying the Hilbert inequality, reproduce Littlewood’s proof

of the assertion (on p. 164 of [Li]) that there exist β = (β(m, n) :(m, n) ∈ Z

2) such that ‖β‖F2 < ∞ but ‖β‖1 = ∞.iii. Compute the infimum of the ps such that ‖β‖p < ∞, where β

is the array obtained in ii.2. Here are two other proofs, using probability theory, that there exist

arrays β = (β(m, n) : (m, n) ∈ N2) with ‖β‖F2 < ∞ and ‖β‖1 = ∞.

i. (a) Let Xn : n ∈ N be a system of statistically independentstandard normal variables on a probability space (X, A, P).Show that for every positive integer N , there exists afinite partition Am : m = 1, . . . , 2N of (X, A) such that ifβN (m, n) = 1

nE1AmXn for n = 1, . . . , N and m = 1, . . . , 2N ,and βN (m, n) = 0 for all other (n, m) ∈ N

2 (E denotesexpectation, and 1 denotes an indicator function), then

‖βN‖F2 ≤ D and ‖βN‖1 ≥ D log N,

where D > 0 is an absolute constant.(b) Use (a) to produce β = (β(m, n) : (m, n) ∈ N

2) such that‖β‖F2 < ∞ but ‖β‖1 = ∞ (cf. Exercise 4 iv below). Whatcan be said about ‖β‖p for p > 1?

ii. (a) For each N > 0, define

βN (ω, n) = rn(ω)/N12 2N , ω ∈ −1, 1N , n ∈ [N ].

Prove that ‖βN‖F2 ≤ 1. Compute ‖βN‖p for p ≥ 1.

Page 23: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

16 I A Prologue: Mostly Historical

(b) Use (a) to produce β = (β(m, n) : (m, n) ∈ N2) such that

‖β‖F2 < ∞, ‖β‖1 = ∞, and ‖β‖p < ∞ for all p > 1.

(Do you see similarities between the constructions in Parts i andii? Do you see a similarity between the construction in Part ii andExercise 4 below?)

3. Verify that if β = (β(m, n) : (m, n) ∈ N2) is a scalar array then

‖β‖2 ≤ ‖β‖F2 .4. For N ∈ N, let ZN = [N ] (a compact Abelian group with addition

modulo N). Consider the characters

χn(k) = e2πikn/N, n ∈ ZN , k ∈ ZN ,

and the Haar measure

νk =1N

, k ∈ ZN .

For f ∈ l∞(ZN ), define the transform of f by

f(n) =∑

k∈ZN

f(k)χn(k) ν(k).

i. (Orthogonality of characters) For m ∈ ZN and n ∈ ZN , prove∑k∈ZN

χm(k) χn(k) ν(k) = 1 if m = n

0 otherwise.

ii. (Inversion formula, Parseval’s formula, Plancherel’s theorem)Prove that for f ∈ l∞(ZN ),

f(n) =∑

k∈ZN

f(k) χk(n), n ∈ ZN .

Conclude that if f ∈ l∞(ZN ) and g ∈ l∞(ZN ), then∑k∈ZN

f(k) g(k) ν(k) =∑

k∈ZN

f(k) g(k),

and that if f ∈ L2(ZN , ν), then

‖f‖L2(ZN ,ν) = ‖f‖l2(ZN ).

iii. Prove that the 2-array ( e2πi(mn/N)√N

: (m, n) ∈ ZN ×ZN ) representsan isometry of l2(ZN ). Define

β(m, n) =

e2πi(mn/N)

N3/2 if (m, n) ∈ ZN × ZN

0 otherwise,

and verify that ‖β‖F2 ≤ 1.

Page 24: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

Exercises 17

iv. Prove there exists a scalar array β with ‖β‖F2 < ∞ and

‖β‖p = ∞ for all p < 4/3.

5. Prove that Littlewood’s mixed norm inequality (Theorem 10) is aninstance of the Grothendieck inequality (Theorem 12).

6. Let β be the scalar array defined in Exercise 4 iii. Let q ∈ (2,∞)and evaluate

sup

∣∣∣∣∣∑

m∈S,n∈T

β(m, n)〈em,yn〉∣∣∣∣∣ :

yn ∈ Blq , finite sets S ⊂ N, T ⊂ N

.

What does your computation say about an extension of Littlewood’smixed norm inequality (Theorem 10)? In particular, prove thatthe inner product in Grothendieck’s inequality cannot be replacedby the dual action between vectors in the unit balls of lp and lq,

1/p + 1/q = 1 and p ∈ [1, 2).7. Prove that β is a bounded n-linear functional on c0 if and only if∑

k1,...,kn

β(k1, . . . , kn)ei3k1x1 · · · ei3kn xn

represents a continuous function on Tn.8. This exercise, providing yet another example of a function with

bounded Frechet variation and infinite total variation, is a preludeto the ‘probabilistic’ portion of the book.

A stochastic process W = W(t) : t ∈ [0,∞) defined on aprobability space (Ω,A, P) is a Wiener process if it satisfies theseproperties:

(a) for 0 ≤ s < t < ∞,W(t) − W(s) is a normal r.v. with meanzero and variance t − s;

(b) for 0 ≤ t0 < t1 · · · < tm < ∞, W(tk) − W(tk−1), k = 1, . . . , m,

are independent.

Let J denote the algebra generated by the intervals

(s, t] : 0 ≤ s < t ≤ 1,

and let µW be the set-function on A×(s, t] : 0 ≤ s < t ≤ 1 definedby

µW(A, (s, t]) = E1A(W(t) − W(s)), A ∈ A, 0 ≤ s < t ≤ 1.

Page 25: Analysis in Integer and Fractional Dimensionscatdir.loc.gov/catdir/samples/cam031/00064229.pdfAnalysis in integer and fractional dimensions/Ron Blei. p. cm. { (Cambridge studies in

18 I A Prologue: Mostly Historical

i. Extend µW by additivity to A × J.ii. Prove that µW is an F2-measure on A × J which is uniquely

extendible to an F2-measure on A × B, where B is the Borelfield in [0,1].

iii. Prove that µW cannot be extended to a measure on theσ-algebra generated by A × B.

Hints for Exercises in Chapter I

1. i. Here is an outline of a proof using elementary Fourier analysis.First, compute the Fourier coefficients of h(x) = x on T. Let f(x) =Σnf(n) einx and g(x) = Σng(n) einx be trigonometric polynomials,and observe that∣∣∣∣

∫T

xf(x)g(x)dx

∣∣∣∣ ≤ π‖f‖L2‖g‖L2

= π

(∑n

|f(n)|2) 1

2(∑

n

|g(n)|2) 1

2

.

To prove the Hilbert inequality, use spectral analysis of fg, andapply Parseval’s formula to the integral on the left side.

ii. Littlewood let an = bn = 1/√|n|(log|n|)α for n ∈ N, where

1/2 < α < 1, and then defined β(m, n) = anbm/(m−n) for n 6= m.2. For N > 0, consider Ei = Xi > 0, i ∈ [N ], and then for s =

(s1, . . . , sN ) ∈ −1, 1N , let

As = Es11 ∩ Es2

2 . . . ∩ Esk

k ,

where Esii = Ei if si = 1, and Esi

i = (Ei)c if si = −1.3. Cf. Plancherel’s theorem.7. This exercise involves basic notions that are covered at length in

Chapter VII.8. See Remark iv in Chapter VI § 2.