antibody-gated indicator releasing mesoporous...

1
0.01 0.1 1 10 100 1000 0.0 0.2 0.4 0.6 S1.1-AB S1.2-AB C permethrin / μg Kg -1 DF/F 0 CONTACT PERSON REFERENCES ANTIBODY-GATED INDICATOR RELEASING MESOPOROUS MATERIALS: A POTENTIAL BIOSENSOR PLATFORM TO BE USED IN THE DEVELOPMENT OF RAPID TESTS Estela Climent , Elena Costa, Kornelia Gawlitza, Wei Wan, Michael G. Weller, Knut Rurack Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und-prüfung (BAM 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 0.8 t /min DF/F 0 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 DF/F 0 t /min 0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 DF/F 0 t /min Motivation Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we embarked on system optimisation to develop a potential biosensor platform for use in rapid tests. Here, the insecticide permethrin, a type-I pyrethroid, was selected as target analyte, because type-I pyrethroids play an important role in airplane disinfection. Response in solution 1.- Analytical assay optimisation with S1.1-AB (FLU as dye) 200 nm 500 nm 200 nm S5 S3 S4 Materials characterisation Transmission electron microscopy (TEM) N 2 Adsorption/desorption isotherms and pore size distribution Fig. 1 Increase in fluorescence at 522 nm (λ exc = 490 nm) in the presence (red) and the absence (black) of permethrin (6.6 mg kg –1 ) of the supernatants of S1.1-AB suspensions. 95: 5 10 mM PBS : iPrOH, 95: 5 80 mM PBS : iPrOH, 90: 10 80 mM PBS : iPrOH, Elemental (EA) and thermogravimetric (TGA) analysis 10 100 0 2 4 6 8 10 S1 S2 S3 S4 S5 pore diameter / nm (dV/dlogD)/cm 3 g –1 0.00 0.25 0.50 0.75 1.00 0 200 400 600 800 1000 S1 S2 S3 S4 S5 P / P 0 Vol. ads. (cm 3 g –1 ) 0.0010.01 0.1 1 10 100 1000 0.0 0.1 0.2 0.3 permethrin 3-PBA DF/F 0 c pyrethroid /μg kg –1 Fig. 2 Increase in fluorescence at 550 nm (λ exc = 532 nm) in the presence (red) and the absence (black) of 3-PBA (0.5 mg kg –1 ) of the supernatants of S1.1-AB suspensions. 0 5 10 15 20 25 0.0 0.2 0.4 0.6 0 5 10 15 20 25 0.0 0.2 0.4 0.6 DF/F 0 DF/F 0 t /min t /min 0 5 10 15 20 25 0.0 0.2 0.4 0.6 0 5 10 15 20 25 0.0 0.2 0.4 0.6 DF/F 0 DF/F 0 t /min t /min 0 5 10 15 20 25 0.0 0.2 0.4 0.6 DF/F 0 t /min S5.2a-AB (7 nm pores) S2.2a-AB (9 nm pores) S3.2a-AB (10 nm pores) S4.2a-AB (17 nm pores) S2.2b-AB (9 nm pores) 2.- Evaluation of pore size and different loading routes followed using SRG as dye Solid C 10% μg Kg -1 AF S1.1-AB 13 2.5 S1.2-AB 1 860 S2.2a-AB 2.5 1010 S2.2b-AB 4 197 S3.2-AB 4 12 S4.2-AB - - S5.2-AB - - EA TGA FLU % SRG % HAPTEN % PEG % TOTAL % TOTAL % S1.1 6.6 2.0 8.6 9.4 S1.2 29.4 2.0 31.3 29.6 S2.2a 15.0 1.7 15.2 31.9 30.8 S2.2b 17.0 3.2 14.8 35.0 34.3 S3.2a 12.3 1.6 17.6 30.2 30.0 S4.2a 21.4 2.2 11.1 34.7 31.3 S5.2a 16.7 3.5 10.2 30.4 29.3 Signal amplification factor 3.- Concentration-dependent studies (after 5 min of reaction) Design and synthesis routes of materials Antibody at the surface Antibody inside of the pores www.bam.de Incorporation into different sensing platforms Microfluidic chips Conclusions Increase in ionic strength and presence of organic solvents accelerates release kinetics Indicator dye is decisive for the sensitivity Better material response is observed when size of Fab region of the antibody is similar to the pore diameter and hapten is grafted at the entrance of the pores Paper-based assays Dip-stick Lateral flow Antibody inside of the pores (S2.2a-AB) Similar sensitivity SRG Antibody at the surface (with different dyes) FLU 1. E. Climent, A. Bernardos, R. Martinez-Manez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenon, J. Soto, P. Amoros, J. Am. Chem. Soc 131 (2009) 14075. 2. J. Bell, E. Climent, M. Hecht, M. Buurman, K. Rurack, ACS Sens. 1 (2016) 334. 3. E. Climent, D. Groninger, M. Hecht, M. A. Walter, R. Martinez-Manez, M. G. Weller, F. Sancenon, P. Amoros, K. Rurack, Chem. Eur. J. 19 (2013) 4117. 4. E. Costa, E. Climent, S. Ast, M. G. Weller, J. Canning, K. Rurack, Analyst (2020) DOI: 10.1039/D0AN00319K. 5. E. Costa, E. Climent, K. Gawlitza, W. Wan, M. G. Weller, K. Rurack, J. Mat. Chem. B (2020) DOI: 10.1039/d0tb00371a. Estela Climent Terol Chemical and Optical Sensing Divsion Bundesanstalt für Materialforschung und –prüfung (BAM) [email protected]

Upload: others

Post on 15-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ANTIBODY-GATED INDICATOR RELEASING MESOPOROUS …phantomsfoundation.com/...Climent_Terol_Estela_34.pdf · Estela Climent, Elena Costa, Kornelia Gawlitza, Wei Wan, Michael G. Weller,

0.01 0.1 1 10 100 1000

0.0

0.2

0.4

0.6 S1.1-AB

S1.2-AB

Cpermethrin / µg Kg-1

DF/

F 0

CONTACT PERSON REFERENCES

ANTIBODY-GATED INDICATOR RELEASING MESOPOROUS MATERIALS: A POTENTIAL BIOSENSOR PLATFORM TO BE USED IN THE DEVELOPMENT OF RAPID TESTS

Estela Climent, Elena Costa, Kornelia Gawlitza, Wei Wan, Michael G. Weller, Knut Rurack Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und-prüfung (BAM

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

t /min

DF

/F0

DF

/F0

t /min

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

DF

/F0

t /min

DF

/F0

t /min

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

t /min

DF

/F0

DF

/F0

t /min

MotivationKeeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal

amplification, we embarked on system optimisation to develop a potential biosensor platform for use in rapid tests. Here, the insecticide

permethrin, a type-I pyrethroid, was selected as target analyte, because type-I pyrethroids play an important role in airplane disinfection.

Response in solution

1.- Analytical assay optimisation with S1.1-AB (FLU as dye)

200 nm 500 nm 200 nm S5S3 S4

Materials characterisation

Transmission electron microscopy (TEM)

N2 Adsorption/desorption isotherms and pore size distribution

Fig. 1 Increase in fluorescence at 522 nm (λexc = 490 nm) in the presence (red) and the absence

(black) of permethrin (6.6 mg kg–1) of the supernatants of S1.1-AB suspensions.

95: 5 10 mM PBS :

iPrOH,

95: 5 80 mM PBS : iPrOH, 90: 10

80 mM PBS : iPrOH,

Elemental (EA) and thermogravimetric (TGA) analysis

10 100

0

2

4

6

8

10 S1

S2

S3

S4

S5

pore diameter / nm

(dV

/dlo

gD

)/cm

3 g

–1

0.00 0.25 0.50 0.75 1.000

200

400

600

800

1000 S1

S2

S3

S4

S5

P / P0V

ol. a

ds.

(cm

3 g

–1)

0.0010.01 0.1 1 10 100 1000

0.0

0.1

0.2

0.3 permethrin

3-PBA

DF

/F0

cpyrethroid /µg kg–1

Fig. 2 Increase in fluorescence at 550 nm (λexc = 532 nm) in the presence (red)

and the absence (black) of 3-PBA (0.5 mg kg–1) of the supernatants of S1.1-AB

suspensions.

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

DF/

F 0

DF/

F 0D

F/F 0

t /mint /min

t /min

DF/

F 0

t /min

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

DF/

F 0

DF/

F 0

DF/

F 0

DF/

F 0

t /min t /min

t /mint /min

DF/

F 0

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

0 5 10 15 20 250.0

0.2

0.4

0.6

DF/

F 0

DF/

F 0

DF/

F 0

DF/

F 0

DF/

F 0

t /min

t /min

t /mint /min

S5.2a-AB(7 nm pores)

S2.2a-AB(9 nm pores)

S3.2a-AB(10 nm pores)

S4.2a-AB(17 nm pores)

S2.2b-AB(9 nm pores)

2.- Evaluation of pore size and different loadingroutes followed using SRG as dye

Solid C10%

µg Kg-1

AF

S1.1-AB 13 2.5

S1.2-AB 1 860

S2.2a-AB 2.5 1010

S2.2b-AB 4 197

S3.2-AB 4 12

S4.2-AB - -

S5.2-AB - -

EA TGA

FLU%

SRG%

HAPTEN %

PEG %

TOTAL%

TOTAL %

S1.1 6.6 – 2.0 – 8.6 9.4S1.2 – 29.4 2.0 – 31.3 29.6

S2.2a – 15.0 1.7 15.2 31.9 30.8S2.2b – 17.0 3.2 14.8 35.0 34.3S3.2a – 12.3 1.6 17.6 30.2 30.0S4.2a – 21.4 2.2 11.1 34.7 31.3S5.2a – 16.7 3.5 10.2 30.4 29.3

Signal amplification

factor

3.- Concentration-dependent studies (after 5 min of reaction)

Design and synthesis routes of materials

Antibody at the surface

Antibody inside of the pores

www.bam.de

Incorporation into differentsensing platforms

Microfluidic chips

Conclusions

✓ Increase in ionic strength and presence oforganic solvents accelerates release kinetics

✓ Indicator dye is decisive for the sensitivity

✓ Better material response is observed whensize of Fab region of the antibody is similar tothe pore diameter and hapten is grafted atthe entrance of the pores

Paper-based assaysDip-stick Lateral flow

Antibody inside of the pores(S2.2a-AB)

Similar sensitivity

SRG

Antibody at the surface(with different dyes)

FLU

1. E. Climent, A. Bernardos, R. Martinez-Manez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenon, J. Soto, P. Amoros, J. Am. Chem. Soc 131 (2009) 14075.

2. J. Bell, E. Climent, M. Hecht, M. Buurman, K. Rurack, ACS Sens. 1 (2016) 334.3. E. Climent, D. Groninger, M. Hecht, M. A. Walter, R. Martinez-Manez, M. G. Weller, F. Sancenon, P. Amoros, K.

Rurack, Chem. Eur. J. 19 (2013) 4117.4. E. Costa, E. Climent, S. Ast, M. G. Weller, J. Canning, K. Rurack, Analyst (2020) DOI: 10.1039/D0AN00319K.5. E. Costa, E. Climent, K. Gawlitza, W. Wan, M. G. Weller, K. Rurack, J. Mat. Chem. B (2020) DOI:

10.1039/d0tb00371a.

Estela Climent Terol

Chemical and Optical Sensing DivsionBundesanstalt für Materialforschung und

–prüfung (BAM)

[email protected]