approximate multi-parameter linear inversion by phase

42
Approximate Multi-Parameter Linear Inversion By Phase-Space Scaling and RTM Rami Nammour The Rice Inversion Project December 9, 2010 / TRIP Review Meeting 1 / 42

Upload: others

Post on 09-Nov-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Approximate Multi-Parameter Linear Inversion By Phase

Approximate Multi-Parameter LinearInversion By Phase-Space Scaling and RTM

Rami Nammour

The Rice Inversion Project

December 9, 2010 / TRIP Review Meeting

1 / 42

Page 2: Approximate Multi-Parameter Linear Inversion By Phase

Outline

• Linearization of the inverse problem• Properties of the normal operator• Proposed method• Preliminary results:

• Constant density acoustics• Layered variable density acoustics (2-parameters)

• Work in progress, future work

2 / 42

Page 3: Approximate Multi-Parameter Linear Inversion By Phase

Let:• m(x): model (consists of p-parameters: impedance,

velocity, density,. . . )• p(x, t): state (the solution of the system: pressure,. . . )

Then, if S is the Forward Map:• The Forward Problem:

S[m] = p|surface

• The Inverse Problem:

S[m] ≈ Sobs

Given Sobs, get m(x)

Nonlinear and Large Scale !

3 / 42

Page 4: Approximate Multi-Parameter Linear Inversion By Phase

Linearization

Solution depends nonlinearly on coefficients; if we have anapproximation m0 to the model, Linearization is advantageous:

• Write m = m0 + δmm0: Given reference modelδm: First order perturbation about m0

• Define Linearized Forward Map F[m0] (Born Modeling):

F[m0]δm = δp

• Linear inverse problem:

F[m0]δm ≈ Sobs − S[m0] := d

4 / 42

Page 5: Approximate Multi-Parameter Linear Inversion By Phase

Normal Equations

Interpret as least squares problem: need to solve normalequations

N[m0]δm := F∗[m0]F[m0]δm = F∗[m0]d

N := F∗[m0]F[m0] : Normal Operator (Modeling + Migration),b := F∗d : migrated image• Large Scale: millions of equations/unknowns, alsoδm→ N δm expensive

• Cannot use Gaussian elimination⇒ need rapidlyconvergent iteration⇒ good preconditioner

• Not narrow band (like Laplace in 2D/3D)⇒ matrixpreconditioners ineffective

5 / 42

Page 6: Approximate Multi-Parameter Linear Inversion By Phase

ΨDOs and their symbols

• Pseudodifferential (ΨDO) operators defined by symbolsa(x, ξ)

Op(a)u(x) =∫ ∫

a(x, ξ)u(y)e−i[(x−y).ξ] dξ dy,

• a(x, ξ): Scalar function of position x and wavenumber ξ

|a(x, ξ)| = O(|ξ|m), as |ξ| → ∞;

m = ord(a) := ord(Op(a))• Calculus of scalar symbols:

1. Op(α1a1 + α2a2) = α1Op(a1) + α2Op(a2), α1, α2 scalars2. Op(a1a2) ' Op(a1)Op(a2) ' Op(a2)Op(a1)3. ord(a1a2) ≤ ord(a1) + ord(a2)

( ': difference is lower order ΨDO)

6 / 42

Page 7: Approximate Multi-Parameter Linear Inversion By Phase

Properties of Normal Operator

• Normal operator is a matrix of pseudodifferential operators:

• Smooth background model m0 (Beylkin 1985)• Scalar wave fields• Polarized vector fields (P-P, P-S, S-S). (Beylkin and

Burridge, 1989; De Hoop, 2003)

• N = Op(A), A = p× p matrix of scalar symbols

Op(A)u(x) =∫ ∫

A(x, ξ)u(y)e−i[(x−y).ξ] dξ dy,

7 / 42

Page 8: Approximate Multi-Parameter Linear Inversion By Phase

Cramer’s Rule for ΨDOs

• A is a matrix of symbols• Adjugate of A defined by:

Adj(A) A = A Adj(A) = det(A) I, (1)

• Symbol calculus⇒

Adj(N) N ≈ N Adj(N) ≈ det(N) I. (2)

• Notation: Adj(N) = Op(Adj(A)), det(N) = Op(det(A)).

8 / 42

Page 9: Approximate Multi-Parameter Linear Inversion By Phase

Cramer’s Rule for ΨDOs

• Want to solve: Nδm = b• Only given ability to apply N• Apply Adjugate, in terms of N (later):

Adj(N) b = Adj(N) N δm ≈ det(N) δm (3)

• Have det(N) δm, want δm• det(N) δm ≈ amplitude scaling of δm

9 / 42

Page 10: Approximate Multi-Parameter Linear Inversion By Phase

Dividing by the determinant

• To undo det(N), apply N to form:

N det(N) δm ≈ det(N) N δm = det(N) b (4)

• given b and det(N) b, approximate scaling factor c:

c = argminc∈ΨDO

‖b− c det(N) b‖2 (5)

• Approximate solution:

δm = N−1b ≈ N−1 c det(N) b ≈ c det(N) N−1b

≈ c det(N) δm := δminv(6)

10 / 42

Page 11: Approximate Multi-Parameter Linear Inversion By Phase

Approximation of ΨDO• How to represent c?• The action of the ΨDO in 2D (Bao and Symes, 1996)

Op(a) u(x, z) ≈∫ ∫

a(x, z, ξ, η)u(ξ, η)ei(xξ+zη) dξ dη, u = F [u]

• Direct Algorithm O(N4 log(N)) complexity (N = O(103))!• Finite Fourier series of length K:

a(x, z, ξ, η) ≈l=K/2∑

l=−K/2

al(x, z)eilθ, θ = arctan(η

ξ

)

• Use FFT⇒ O(KN2[log(N) + log(K)])• K independent of N, depends on smoothness of a• θ captures dip-dependence

11 / 42

Page 12: Approximate Multi-Parameter Linear Inversion By Phase

Recap

To solve Nδm = b,• Apply Adj(N) on b : Adj(N) b ≈ det(N) δm• Apply N : N det(N) δm ≈ det(N) b• Represent scaling factor : c = Qm[q]• Compute c:

c = argminc∈ΨDO

‖b− c det(N) b‖2.

• Approximate the inverse: δminv := c det(N) δm ≈ δm

Pseudodifferential scaling method that resolves multiple dipevents

12 / 42

Page 13: Approximate Multi-Parameter Linear Inversion By Phase

One-Parameter Case: p = 1

• In this case: det(N) ≡ N, Adj(N) ≡ I• Only need c:

c = argminc∈ΨDO

‖b− c N b‖2.

• Method reduces to usual scaling methods (Masters thesis)

13 / 42

Page 14: Approximate Multi-Parameter Linear Inversion By Phase

Scaling Methods

• Hessian ≈ multiplication by a smooth function (Claerboutand Nichols, 1994; Rickett, 2003)

• Near Diagonal Approximation of Hessian (Guitton, 2004)• Special case (well defined dip): normal operator ≈

multiplication by smooth function after composition withpower of Laplacian (correction to Claerbout-Nichols -Symes, 2008)

• Herrmann et al. (2007) derive a scaling method usingcurvelets to approximate eigenvectors

14 / 42

Page 15: Approximate Multi-Parameter Linear Inversion By Phase

Amplitude Versus Offset (AVO)

• AVO variation contains info about anomaly in physicalparameters

• Uses simplification of nonlinear Zoeppritz equations (AkiRichards; Shuey, 85)

• Rutherford and Williams (1989): 3 classes of AVObehaviors

• Lortzer and Berkhout (1989): Statistical Bayesianapproach to approximate anomaly

15 / 42

Page 16: Approximate Multi-Parameter Linear Inversion By Phase

Linearized Multi-Parameter Inversion

• Santosa and Symes (1988): layered acoustic fluid, withconditioning study

• Bourgeois et al. (1989): impedance and velocity in variabledensity acoustics

• Virieux et al. (1992): P and S impedances in linearelasticity (geometric optics computations)

• Foss et al. (2005): anisotropic elasticity, asymptotic inverse• Minkoff (1995): linear inversion successful if you take care

of everything: source estimation, attenuation . . .• Charara et al. (1996): P and S velocities and density in the

linear elasticity

16 / 42

Page 17: Approximate Multi-Parameter Linear Inversion By Phase

Proposed method:

• Not iterative• Uses wave equation migration (Reverse Time Migration)• No geometric optics computations• Relies only on application of normal operator• Novel for p > 1: Few applications of N → approximate

inverse

17 / 42

Page 18: Approximate Multi-Parameter Linear Inversion By Phase

Constant Density Acoustics: p = 1On Marmousi 2D data:

500 1000 1500 2000

100

200

300

400

500

600

700

800−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure: δmtrue

18 / 42

Page 19: Approximate Multi-Parameter Linear Inversion By Phase

Migration Vs Inversion

500 1000 1500 2000

100

200

300

400

500

600

700

800

−6

−4

−2

0

2

4

6

8

Figure: δmmig = F∗d

500 1000 1500 2000

100

200

300

400

500

600

700

800−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure: δmtrue = (F∗F)†F∗d

19 / 42

Page 20: Approximate Multi-Parameter Linear Inversion By Phase

Lessons Learned

• Discontinuities preserved• Amplitudes distorted• Similar relationship between det(N) δm and δm• Multi-parameter problem reduced to one parameter

problem• Solution: amplitude correction

20 / 42

Page 21: Approximate Multi-Parameter Linear Inversion By Phase

Migration - Remigration

500 1000 1500 2000

100

200

300

400

500

600

700

800

−6

−4

−2

0

2

4

6

8

Figure: δmmig = F∗d

500 1000 1500 2000

100

200

300

400

500

600

700

800−600

−400

−200

0

200

400

600

800

Figure: δmremig = F∗Fδmmig

21 / 42

Page 22: Approximate Multi-Parameter Linear Inversion By Phase

Scaling K = 1

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

550

−0.4

−0.2

0

0.2

0.4

0.6

Figure: δminv with K = 1

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

550

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure: δmtrue

22 / 42

Page 23: Approximate Multi-Parameter Linear Inversion By Phase

Scaling K = 5

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

550

−0.4

−0.2

0

0.2

0.4

0.6

Figure: δminv with K = 5

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

550

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure: δmtrue

23 / 42

Page 24: Approximate Multi-Parameter Linear Inversion By Phase

Difference between K = 1 and K = 5

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

550 −0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure: Difference between K = 1 and K = 5

24 / 42

Page 25: Approximate Multi-Parameter Linear Inversion By Phase

Two-Parameter Case: p = 2

In this case:

N =(

N11 N12N12 N22

).

Adjugate given by:

Adj(N) =(

N22 −N12−N12 N11

).

Adj(N) b = JTNJ b (7)

Where,

J =(

0 −11 0

).

25 / 42

Page 26: Approximate Multi-Parameter Linear Inversion By Phase

Explicitly,

N(−b2b1

)= (N11N22 − N2

12)(−x2x1

)(8)

• Normal operator on specific combination of migratedimages→ amplitude scaling of inverse

• Advantage: Only apply N to permutations of entries of b.• Cost of method: 1+1=2 applications of N

26 / 42

Page 27: Approximate Multi-Parameter Linear Inversion By Phase

Application: Layered Variable Density Acoustics• Two parameter inverse problem: density and velocity• Homogeneous background fields• True model:

0

500

1000

1500

0

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.10

Figure: vp

0

500

1000

1500

0

-40

-20

0

20

40

60

80

100

Figure: dn27 / 42

Page 28: Approximate Multi-Parameter Linear Inversion By Phase

Migration: MixMigration mixes effects of reflectors

0

500

1000

1500

0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure: b1

0

500

1000

1500

0

-4

-3

-2

-1

0

1

2

3

x10 -4

Figure: b2

28 / 42

Page 29: Approximate Multi-Parameter Linear Inversion By Phase

Adjugate: Un-Mix

0

500

1000

1500

0 100 200 300

-3

-2

-1

0

1

2

3

x10 -6

Figure: (JTNJ b)1 ≈ det(N) x1

0

500

1000

1500

0 100 200 300

-0.005

0

0.005

0.010

Figure: (JTNJ b)2 ≈ det(N) x2

29 / 42

Page 30: Approximate Multi-Parameter Linear Inversion By Phase

Apply N again

0

500

1000

1500

0

-0.5

0

0.5

1.0

x10 -5

Figure: det(N) b1

0

500

1000

1500

0

-4

-2

0

2

4

6

x10 -9

Figure: det(N) b2

30 / 42

Page 31: Approximate Multi-Parameter Linear Inversion By Phase

Approximate InverseCompute c and approximate the inverse:

0

500

1000

1500

0 100 200 300

-0.04

-0.02

0

0.02

0.04

0.06

Figure: invvp

0

500

1000

1500

0 100 200 300

-40

-20

0

20

40

60

Figure: invdn

31 / 42

Page 32: Approximate Multi-Parameter Linear Inversion By Phase

Work In Progress, Future Work

• In progress:• Apply to complex models: variable density acoustics

Marmousi• Extend to 3D

• Future work• Precondition the nonlinear problem: Full Waveform

Inversion (FWI)• Three-parameter case: Linear elasticity

32 / 42

Page 33: Approximate Multi-Parameter Linear Inversion By Phase

Extension to 3D

• Only need to extend PsiDO algorithm• Truncated spherical harmonics expansion of q:

q(x, y, z, θ, φ) =K∑

l=0

l∑n=−l

cln(x, y, z)Ynl (θ, φ), (9)

• Ynl spherical harmonics, expressed in terms of associated

Legendre Polynomials•

Ynl (θ, φ) =

√(2l + 1)(l− n)!

4π(l + n)!Pn

l (cos(θ))einφ. (10)

• Express Ynl (θ, φ) = Yn

l (ξ, ζ, η), using spherical coordinatestransformation

33 / 42

Page 34: Approximate Multi-Parameter Linear Inversion By Phase

Extension to 3D

• Plug into the action of a PsiDO

Qm u(x, y, z) =K∑

l=0

l∑n=−l

cl(x, y, z)F−1 {ωmYnl (ξ, ζ, η)u(ξ, ζ, η)}

(11)• Cost: Use FFT⇒ (K + 1)2N3 log(N)

34 / 42

Page 35: Approximate Multi-Parameter Linear Inversion By Phase

Dip Filtering With PsiDOs

50 100 150 200

20

40

60

80

100

120

140

160 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure: Marmousi model

35 / 42

Page 36: Approximate Multi-Parameter Linear Inversion By Phase

Dip Filtering With PsiDOs: Pick Your Symbol

50 100 150 200

20

40

60

80

100

120

140

160 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure: Vertical dips filtered out of Marmousi

36 / 42

Page 37: Approximate Multi-Parameter Linear Inversion By Phase

Summary

• One-parameter case: Pseudodifferential Scaling• Fast and reliable solution if m0 is a good reference model• Preconditioning iterative methods when m0 is not a good

reference model• Extension to 3D

• Multi-parameter case: Cramer’s Rule• Reduced to one-parameter case• Applied to layered variable density acoustics (p = 2)• Testing on more complex models• Formulated for p = 3

37 / 42

Page 38: Approximate Multi-Parameter Linear Inversion By Phase

THANK YOU !

• Dr William Symes• Dr Eric Dussaud, Dr Fuchun Gao, Dr Uwe Albertin

38 / 42

Page 39: Approximate Multi-Parameter Linear Inversion By Phase

Full Waveform Inversion

Back to the nonlinear forward model:

S[m] = d.

Least squares objective function:

J =12‖S[m]− d‖2.

Gradient (migrated image):

g = F∗(S[m]− d).

Hessian:H = F∗F +

∂F∗

∂m(S[m]− d) ≈ F∗F.

39 / 42

Page 40: Approximate Multi-Parameter Linear Inversion By Phase

• Gauss Newton step:

mk+1 = mk − H†g.

• H† is too expensive, need approximation.• Split:

mk = mk0 + δmk

• Compute:

c = argminc∈ΨDO

‖δmk − c F∗[mk0]F[mk0]δmk‖2

• Approximate: H† ≈ c• The scaling factor c preconditions FWI:

mk+1 = mk − c g.

• Similar work: Herrmann et al. (2008), Jang et al. (2009)(different approximations of H†)

40 / 42

Page 41: Approximate Multi-Parameter Linear Inversion By Phase

Three-Parameter Case

N =

N11 N12 N13N12 N22 N23N13 N23 N33

.

Its adjugate is,

Adj(N) =

(N22N33 − N223) −(N12N33 − N13N23) (N12N23 − N13N22)

−(N12N33 − N23N13) (N11N33 − N213) −(N11N23 − N13N12)

(N12N23 − N22N13) −(N11N23 − N13N12) (N11N22 − N212)

.

41 / 42

Page 42: Approximate Multi-Parameter Linear Inversion By Phase

Applying the Adjugate

1. Form N(eT2 e1 − eT

1 e2)b, N(eT1 e3 − eT

3 e1)b and N(eT3 e2 − eT

2 e3)b

2. Form (eT2 e1 − eT

1 e2)N[eT3 e3N(eT

2 e1 − eT1 e2) + eT

2 e3N(eT1 e3 −

eT3 e1) + eT

1 e3N(eT3 e2 − eT

2 e3)]b3. Form −(eT

3 e1)N[eT3 e2N(eT

2 e1 − eT1 e2) + eT

2 e2N(eT1 e3 − eT

3 e1) +eT

1 e2N(eT3 e2 − eT

2 e3)]b4. Sum the last two images to obtain Adj(N) b ≈ det(N) x

• Cost: 5+1 = 6 applications of N• Reduce the cost? (special cases: linear elasticity)

42 / 42