approximation problems in the variable exponent lebesgue...

80
Approximation problems in the variable exponent Lebesgue spaces Daniyal Isralov & Ahmet Testici Balikesir University 25 August 2017 Fourier 2017 Daniyal Isralov & Ahmet Testici Balikesir University () Approximation 25 August 2017 Fourier 2017 / 45

Upload: others

Post on 31-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Approximation problems in the variable exponentLebesgue spaces

Daniyal Israfilov & Ahmet TesticiBalikesir University

25 August 2017 Fourier 2017

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 1

/ 45

Page 2: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In this talk we discuss the approximation problems in the variableexponent Lebesgue spaces.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 3: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

1 CONSIDERED PROBLEMS

Direct problems of approxmation theory in Lp(·)([0, 2π])

Inverse problems of approximation theory in Lp(·)([0, 2π])

Direct problems in variable exponent Smirnov classes

Inverse problems in variable exponent Smirnov classes

Constructive characterization problems

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 4: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

1 CONSIDERED PROBLEMS

Direct problems of approxmation theory in Lp(·)([0, 2π])

Inverse problems of approximation theory in Lp(·)([0, 2π])

Direct problems in variable exponent Smirnov classes

Inverse problems in variable exponent Smirnov classes

Constructive characterization problems

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 5: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

1 CONSIDERED PROBLEMS

Direct problems of approxmation theory in Lp(·)([0, 2π])

Inverse problems of approximation theory in Lp(·)([0, 2π])

Direct problems in variable exponent Smirnov classes

Inverse problems in variable exponent Smirnov classes

Constructive characterization problems

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 6: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

1 CONSIDERED PROBLEMS

Direct problems of approxmation theory in Lp(·)([0, 2π])

Inverse problems of approximation theory in Lp(·)([0, 2π])

Direct problems in variable exponent Smirnov classes

Inverse problems in variable exponent Smirnov classes

Constructive characterization problems

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 7: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

1 CONSIDERED PROBLEMS

Direct problems of approxmation theory in Lp(·)([0, 2π])

Inverse problems of approximation theory in Lp(·)([0, 2π])

Direct problems in variable exponent Smirnov classes

Inverse problems in variable exponent Smirnov classes

Constructive characterization problems

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 2

/ 45

Page 8: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

2 INTRODUCTION

The variable exponent Lebesgue spaces are a generalization of theclassical Lebesgue spaces, replacing the constant exponent p with avariable exponent function p(·).

This space originates to:

Orlicz W. : Über konjugierte Exponentenfolgen, Studia Math. 3,(1931), pp. 200-212.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 3

/ 45

Page 9: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

2 INTRODUCTION

The variable exponent Lebesgue spaces are a generalization of theclassical Lebesgue spaces, replacing the constant exponent p with avariable exponent function p(·).This space originates to:

Orlicz W. : Über konjugierte Exponentenfolgen, Studia Math. 3,(1931), pp. 200-212.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 3

/ 45

Page 10: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

2 INTRODUCTION

The variable exponent Lebesgue spaces are a generalization of theclassical Lebesgue spaces, replacing the constant exponent p with avariable exponent function p(·).This space originates to:

Orlicz W. : Über konjugierte Exponentenfolgen, Studia Math. 3,(1931), pp. 200-212.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 3

/ 45

Page 11: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Interest in the variable exponent Lebesgue spaces has increased since1990s, because of their use in the different applications problems inmechanic, especially in fluid dynamic for the modelling ofelectrorheological fluids. These are fluids whose viscosity chances(often dramatically) when exposed to an electric field. The variableexponent Lebesgue spaces are also used in the study of imageprocessing and some physical problems.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 4

/ 45

Page 12: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

See, for example the monographs:

Ruzicka M. : Elektrorheological Fluids: Modeling and MathematicalTheory, Springer, (2000).

Cruz-Uribe D. V. and Fiorenza A. : Variable Lebesgue SpacesFoundation and Harmonic Analysis. Birkhäsuser, (2013),

Diening L., Harjulehto P., Hästö P., Michael Ruzicka M.: Lebesgueand Sobolev Spaces with Variable Exponents, Springer, HeidelbergDordrecht London New York(2011).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 5

/ 45

Page 13: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

See, for example the monographs:

Ruzicka M. : Elektrorheological Fluids: Modeling and MathematicalTheory, Springer, (2000).

Cruz-Uribe D. V. and Fiorenza A. : Variable Lebesgue SpacesFoundation and Harmonic Analysis. Birkhäsuser, (2013),

Diening L., Harjulehto P., Hästö P., Michael Ruzicka M.: Lebesgueand Sobolev Spaces with Variable Exponents, Springer, HeidelbergDordrecht London New York(2011).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 5

/ 45

Page 14: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

See, for example the monographs:

Ruzicka M. : Elektrorheological Fluids: Modeling and MathematicalTheory, Springer, (2000).

Cruz-Uribe D. V. and Fiorenza A. : Variable Lebesgue SpacesFoundation and Harmonic Analysis. Birkhäsuser, (2013),

Diening L., Harjulehto P., Hästö P., Michael Ruzicka M.: Lebesgueand Sobolev Spaces with Variable Exponents, Springer, HeidelbergDordrecht London New York(2011).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 5

/ 45

Page 15: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

See, for example the monographs:

Ruzicka M. : Elektrorheological Fluids: Modeling and MathematicalTheory, Springer, (2000).

Cruz-Uribe D. V. and Fiorenza A. : Variable Lebesgue SpacesFoundation and Harmonic Analysis. Birkhäsuser, (2013),

Diening L., Harjulehto P., Hästö P., Michael Ruzicka M.: Lebesgueand Sobolev Spaces with Variable Exponents, Springer, HeidelbergDordrecht London New York(2011).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 5

/ 45

Page 16: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Nowadays there are suffi ciently wide investigations relating to thefundamental problems of these spaces, in view of potential theory,maximal and singular integral operator theory and others. Thedetailed presentation of the corresponding results can be found in themonographs mentioned above.

Some of the fundamental problems of approximation theory in thevariable exponent Lebesgue spaces of periodic and non periodicfunctions defined on the intervals of real line were studied and solvedby Sharapudinov. The detailed information can be found in themonograph:

Sharapudinov I. I. : Some questions of approximation theory in theLebesgue spaces with variable exponent:Vladikavkaz, 2012.

Meanwhile, the approximation problems in these spaces, especially inthe complex plane were not investigated suffi ciently wide.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 6

/ 45

Page 17: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Nowadays there are suffi ciently wide investigations relating to thefundamental problems of these spaces, in view of potential theory,maximal and singular integral operator theory and others. Thedetailed presentation of the corresponding results can be found in themonographs mentioned above.

Some of the fundamental problems of approximation theory in thevariable exponent Lebesgue spaces of periodic and non periodicfunctions defined on the intervals of real line were studied and solvedby Sharapudinov. The detailed information can be found in themonograph:

Sharapudinov I. I. : Some questions of approximation theory in theLebesgue spaces with variable exponent:Vladikavkaz, 2012.

Meanwhile, the approximation problems in these spaces, especially inthe complex plane were not investigated suffi ciently wide.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 6

/ 45

Page 18: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Nowadays there are suffi ciently wide investigations relating to thefundamental problems of these spaces, in view of potential theory,maximal and singular integral operator theory and others. Thedetailed presentation of the corresponding results can be found in themonographs mentioned above.

Some of the fundamental problems of approximation theory in thevariable exponent Lebesgue spaces of periodic and non periodicfunctions defined on the intervals of real line were studied and solvedby Sharapudinov. The detailed information can be found in themonograph:

Sharapudinov I. I. : Some questions of approximation theory in theLebesgue spaces with variable exponent:Vladikavkaz, 2012.

Meanwhile, the approximation problems in these spaces, especially inthe complex plane were not investigated suffi ciently wide.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 6

/ 45

Page 19: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Nowadays there are suffi ciently wide investigations relating to thefundamental problems of these spaces, in view of potential theory,maximal and singular integral operator theory and others. Thedetailed presentation of the corresponding results can be found in themonographs mentioned above.

Some of the fundamental problems of approximation theory in thevariable exponent Lebesgue spaces of periodic and non periodicfunctions defined on the intervals of real line were studied and solvedby Sharapudinov. The detailed information can be found in themonograph:

Sharapudinov I. I. : Some questions of approximation theory in theLebesgue spaces with variable exponent:Vladikavkaz, 2012.

Meanwhile, the approximation problems in these spaces, especially inthe complex plane were not investigated suffi ciently wide.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 6

/ 45

Page 20: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Let T := [0, 2π] and let p (·) : T→ [0,∞) be a Lebesguemeasurable 2π periodic function such that

1 ≤ p− := ess infx∈T

p (x) ≤ ess supx∈T

p (x) := p+ < ∞.

In addition to this requirement if

|p (x)− p (y)| ln 2π

|x − y | ≤ d , ∀x , y ∈ [0, 2π]

with a positive constant d , then we say that p (·) ∈ P (T). We alsodefine P0 (T) := p (·) ∈ P (T) : p− > 1.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 7

/ 45

Page 21: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Let T := [0, 2π] and let p (·) : T→ [0,∞) be a Lebesguemeasurable 2π periodic function such that

1 ≤ p− := ess infx∈T

p (x) ≤ ess supx∈T

p (x) := p+ < ∞.

In addition to this requirement if

|p (x)− p (y)| ln 2π

|x − y | ≤ d , ∀x , y ∈ [0, 2π]

with a positive constant d , then we say that p (·) ∈ P (T). We alsodefine P0 (T) := p (·) ∈ P (T) : p− > 1.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 7

/ 45

Page 22: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

The variable exponent Lebesgue space Lp(·) (T) is defined as the setof all Lebesgue measurable 2π periodic functions f such that

ρp(·) (f ) :=2π∫0

|f (x)|p(x ) dx < ∞.

Equipped with the norm

‖f ‖p(·) = inf

λ > 0 : ρp(·) (f /λ) ≤ 1

it becomes a Banach space.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 8

/ 45

Page 23: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

The variable exponent Lebesgue space Lp(·) (T) is defined as the setof all Lebesgue measurable 2π periodic functions f such that

ρp(·) (f ) :=2π∫0

|f (x)|p(x ) dx < ∞.

Equipped with the norm

‖f ‖p(·) = inf

λ > 0 : ρp(·) (f /λ) ≤ 1

it becomes a Banach space.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 8

/ 45

Page 24: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

One of the main problem observed in the investigations on theapproximation theory is the correct definition of themodulus of smoothness. It is a fact that Lp(·) (T) is noninvariant withrespect to the usual shift operator f (·+ h), in general.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 9

/ 45

Page 25: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Nevertheless, the Steklov mean value operator

σh (f ) :=1h

∫ h

0f (x + t) dt, h > 0

is bounded in Lp(·) (T). See,

Diening L., Ruzicka M. : Calderon-Zigmund operators on generalizedLebesgue spaces Lp(x ) and problems related to fluid dynamic, J. ReineAngew. Math., Vol. 563, (2003), pp. 197-220).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 10

/ 45

Page 26: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

By using this boundedness was constructed by us the first ordermodulus of smoothness

Ωp(·) (f , δ) := sup0<h≤δ

∥∥∥∥1h∫ h

0|f (·)− f (·+ t)| dt

∥∥∥∥p(·)

and was obtained the direct theorem of approximation theory in Lp(·) (T),p (·) ∈ P0 (T), and also some results on the approximation by theNörlund means of Fourier series in Lp(·) (T). See:

Guven A. and Israfilov D. M. : Trigonometric Approximation inGeneralized Lebesgue Spaces Lp(x ), Journal of Math. Inequalities,Vol. 4, No: 2, (2010), pp. 285-299.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 11

/ 45

Page 27: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

By using this boundedness was constructed by us the first ordermodulus of smoothness

Ωp(·) (f , δ) := sup0<h≤δ

∥∥∥∥1h∫ h

0|f (·)− f (·+ t)| dt

∥∥∥∥p(·)

and was obtained the direct theorem of approximation theory in Lp(·) (T),p (·) ∈ P0 (T), and also some results on the approximation by theNörlund means of Fourier series in Lp(·) (T). See:

Guven A. and Israfilov D. M. : Trigonometric Approximation inGeneralized Lebesgue Spaces Lp(x ), Journal of Math. Inequalities,Vol. 4, No: 2, (2010), pp. 285-299.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 11

/ 45

Page 28: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Similar results under the condition of p (·) ∈ P0 (T) using some othermodulus of smoothness were stated or proved in the papers:

Israfilov D., Kokilashvili V., Samko S. : Approximation In WeightedLebesgue and Smirnov Spaces With Variable Exponents, Proceed. ofA. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Akgun R. : Trigonometric Approximation of Functions in GeneralizedLebesgue Spaces With Variable Exponent, Ukranian Math. Journal,Vol. 63, No:1, (2011), pp. 3-23.

Akgun R. : Polynomial approximation of functions in weightedLebesgue and Smirnov spaces with nonstandard growth, GeorgianMath. Journal, 18, (2011), pp. 203-235.

Akgun R. and Kokilashvili V. M. : The refined direct and converseinequalities of trigonometric approximation in weighted variableexponent Lebesgue spaces, Georgian Math. Journal, 18, (2011), pp.399-423.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 12

/ 45

Page 29: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Similar results under the condition of p (·) ∈ P0 (T) using some othermodulus of smoothness were stated or proved in the papers:

Israfilov D., Kokilashvili V., Samko S. : Approximation In WeightedLebesgue and Smirnov Spaces With Variable Exponents, Proceed. ofA. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Akgun R. : Trigonometric Approximation of Functions in GeneralizedLebesgue Spaces With Variable Exponent, Ukranian Math. Journal,Vol. 63, No:1, (2011), pp. 3-23.

Akgun R. : Polynomial approximation of functions in weightedLebesgue and Smirnov spaces with nonstandard growth, GeorgianMath. Journal, 18, (2011), pp. 203-235.

Akgun R. and Kokilashvili V. M. : The refined direct and converseinequalities of trigonometric approximation in weighted variableexponent Lebesgue spaces, Georgian Math. Journal, 18, (2011), pp.399-423.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 12

/ 45

Page 30: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Similar results under the condition of p (·) ∈ P0 (T) using some othermodulus of smoothness were stated or proved in the papers:

Israfilov D., Kokilashvili V., Samko S. : Approximation In WeightedLebesgue and Smirnov Spaces With Variable Exponents, Proceed. ofA. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Akgun R. : Trigonometric Approximation of Functions in GeneralizedLebesgue Spaces With Variable Exponent, Ukranian Math. Journal,Vol. 63, No:1, (2011), pp. 3-23.

Akgun R. : Polynomial approximation of functions in weightedLebesgue and Smirnov spaces with nonstandard growth, GeorgianMath. Journal, 18, (2011), pp. 203-235.

Akgun R. and Kokilashvili V. M. : The refined direct and converseinequalities of trigonometric approximation in weighted variableexponent Lebesgue spaces, Georgian Math. Journal, 18, (2011), pp.399-423.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 12

/ 45

Page 31: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Similar results under the condition of p (·) ∈ P0 (T) using some othermodulus of smoothness were stated or proved in the papers:

Israfilov D., Kokilashvili V., Samko S. : Approximation In WeightedLebesgue and Smirnov Spaces With Variable Exponents, Proceed. ofA. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Akgun R. : Trigonometric Approximation of Functions in GeneralizedLebesgue Spaces With Variable Exponent, Ukranian Math. Journal,Vol. 63, No:1, (2011), pp. 3-23.

Akgun R. : Polynomial approximation of functions in weightedLebesgue and Smirnov spaces with nonstandard growth, GeorgianMath. Journal, 18, (2011), pp. 203-235.

Akgun R. and Kokilashvili V. M. : The refined direct and converseinequalities of trigonometric approximation in weighted variableexponent Lebesgue spaces, Georgian Math. Journal, 18, (2011), pp.399-423.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 12

/ 45

Page 32: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Similar results under the condition of p (·) ∈ P0 (T) using some othermodulus of smoothness were stated or proved in the papers:

Israfilov D., Kokilashvili V., Samko S. : Approximation In WeightedLebesgue and Smirnov Spaces With Variable Exponents, Proceed. ofA. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Akgun R. : Trigonometric Approximation of Functions in GeneralizedLebesgue Spaces With Variable Exponent, Ukranian Math. Journal,Vol. 63, No:1, (2011), pp. 3-23.

Akgun R. : Polynomial approximation of functions in weightedLebesgue and Smirnov spaces with nonstandard growth, GeorgianMath. Journal, 18, (2011), pp. 203-235.

Akgun R. and Kokilashvili V. M. : The refined direct and converseinequalities of trigonometric approximation in weighted variableexponent Lebesgue spaces, Georgian Math. Journal, 18, (2011), pp.399-423.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 12

/ 45

Page 33: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In the more general case, i.e. in the case of p (·) ∈ P (T) ⊃ P0 (T)using the modulus

Ω (f , δ)p(·) := sup0<h≤δ

∥∥∥∥1h∫ h

0[f (·)− f (·+ t)] dt

∥∥∥∥p(·)

which is more sensitive than Ωp(·) (f , δ) , the direct and inversetheorems were proved by Sharapudinov in the above cited hismonograph.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 13

/ 45

Page 34: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In term of Ω (f , δ)p(·) with p (·) ∈ P (T), one general inversetheorem which generalizes the inverse theorem obtained bySharapudinov was proved in the work:

Israfilov D. M. and Testici A. : Approximation in Smirnov Classeswith Variable Exponent, Complex Variables and Elliptic Equations,Vol. 60, No: 9, (2015), pp.1243-1253.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 14

/ 45

Page 35: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In term of Ω (f , δ)p(·) with p (·) ∈ P (T), one general inversetheorem which generalizes the inverse theorem obtained bySharapudinov was proved in the work:

Israfilov D. M. and Testici A. : Approximation in Smirnov Classeswith Variable Exponent, Complex Variables and Elliptic Equations,Vol. 60, No: 9, (2015), pp.1243-1253.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 14

/ 45

Page 36: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

3 NEW RESULTS

We discuss some results obtained by us on the approximationproblems in Lp(·) (T), p (·) ∈ P (T), in the term of the r th( r = 1, 2, ...) modulus of smoothness Ωr (f , δ)p(·).

Let f ∈ Lp(·) (T) with p (·) ∈ P (T) and let

∆rt f (x) :=r

∑s=0(−1)r+s

(rs

)f (x + st) , r = 1, 2, ... .

Definition (1)We define the r -th modulus of smoothness as

Ωr (f , δ)p(·) := sup0<h≤δ

∥∥∥∥∥∥1hh∫0

∆rt fdt

∥∥∥∥∥∥p(·)

, δ > 0.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 15

/ 45

Page 37: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

3 NEW RESULTS

We discuss some results obtained by us on the approximationproblems in Lp(·) (T), p (·) ∈ P (T), in the term of the r th( r = 1, 2, ...) modulus of smoothness Ωr (f , δ)p(·).

Let f ∈ Lp(·) (T) with p (·) ∈ P (T) and let

∆rt f (x) :=r

∑s=0(−1)r+s

(rs

)f (x + st) , r = 1, 2, ... .

Definition (1)We define the r -th modulus of smoothness as

Ωr (f , δ)p(·) := sup0<h≤δ

∥∥∥∥∥∥1hh∫0

∆rt fdt

∥∥∥∥∥∥p(·)

, δ > 0.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 15

/ 45

Page 38: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

For f ∈ Lp(·) (T) we define the best approximation number

En (f )p(·) := inf‖f − Tn‖p(·) : Tn ∈ Πn

in the class Πn of the trigonometric polynomials of degree notexceeding n.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 16

/ 45

Page 39: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Throughout this talk by c(·), c(·, ·), c1(·, ·), c2(·, ·),... we denote theconstants (which can be different in different relations) dependingonly on the parameters given in the corresponding brackets.

The main direct and inverse results obtained in the spacesLp(·)([0, 2π]) are following.

Theorem (1)

Let p (·) ∈ P (T), r ∈N. Then there exists a positive constant c (p, r)such that for every f ∈ Lp(·) (T) and n ∈N the inequality

En (f )p(·) ≤ c(p, r)Ωr (f , 1/n)p(·)

holds.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 17

/ 45

Page 40: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Throughout this talk by c(·), c(·, ·), c1(·, ·), c2(·, ·),... we denote theconstants (which can be different in different relations) dependingonly on the parameters given in the corresponding brackets.

The main direct and inverse results obtained in the spacesLp(·)([0, 2π]) are following.

Theorem (1)

Let p (·) ∈ P (T), r ∈N. Then there exists a positive constant c (p, r)such that for every f ∈ Lp(·) (T) and n ∈N the inequality

En (f )p(·) ≤ c(p, r)Ωr (f , 1/n)p(·)

holds.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 17

/ 45

Page 41: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Throughout this talk by c(·), c(·, ·), c1(·, ·), c2(·, ·),... we denote theconstants (which can be different in different relations) dependingonly on the parameters given in the corresponding brackets.

The main direct and inverse results obtained in the spacesLp(·)([0, 2π]) are following.

Theorem (1)

Let p (·) ∈ P (T), r ∈N. Then there exists a positive constant c (p, r)such that for every f ∈ Lp(·) (T) and n ∈N the inequality

En (f )p(·) ≤ c(p, r)Ωr (f , 1/n)p(·)

holds.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 17

/ 45

Page 42: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Theorem (2)

Let p (·) ∈ P (T), r ∈N. Then there exists a positive constant c (p, r)such that for every f ∈ Lp(·) (T) and n ∈N the inequality

Ωr (f , 1/n)p(·) ≤c(p, r)nr

n

∑k=0

(k + 1)r−1 Ek (f )p(·)

holds.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 18

/ 45

Page 43: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Denoting by

W p(·)k (T):=

f : f (k−1) is absolutely continuous and f (k ) ∈ Lp(·) (T)

k = 1, 2, ..., the variable exponent Sobolev space and combiningTheorem 1 with the estimation

En (f )p(·) ≤c(p)nk

En(f (k )

)p(·),

which can be deduced from Sharapudinov’s work : On Direct andInverse Theorems of Approximation Theory In Variable LebesgueSpace And Sobolev Spaces, Azerbaijan Journal of Math., Vol. 4, No1, (2014), pp. 55-72., we have

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 19

/ 45

Page 44: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Corollary (1)

Let p (·) ∈ P (T), k ∈N. Then there exists a positive constant c (p, r)

such that for every f ∈ W p(·)k (T) and, n ∈N the following inequality

holds

En (f )p(·) ≤c(p, r)nk

Ωr

(f (k ), 1/n

)p(·).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 20

/ 45

Page 45: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

On the other hand, Theorem 2 implies

Corollary (2)

If En (f )p(·) = O (n−α), α > 0, then under the conditions of Theorem 2

Ωr (f , δ)p(·) =

O (δα) , r > α

O (δα log (1/δ)) , r = αO (δr ) , r < α.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 21

/ 45

Page 46: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Hence, if we define a generalized Lipschitz class Lipp(·)α (T) for α > 0and r := [α] + 1 ([α] is the integer part of α) as

Lipp(·)α (T) :=f ∈ Lp(·) (T) : Ωr (f , δ)p(·) = O (δ

α) , δ > 0,

then we have

Corollary (3)

If En (f )p(·) = O (n−α), α > 0, then under the conditions of Theorem 2,

f ∈ Lipp(·)α (T).

On the other hand, from Theorem 1 we also get

Corollary (4)

If f ∈ Lipp(·)α (T) with p (·) ∈ P (T) and for some α > 0, thenEn (f )p(·) = O (n−α).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 22

/ 45

Page 47: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Now Corollaries 3 and 4 imply

Theorem (3)

Let f ∈ Lp(·) (T), p (·) ∈ P (T), and let α > 0. The following statementsare equivalent:

i)f ∈ Lipp(·)α (T) ,

ii)En (f )p(·) = O(n−α

), n ∈N.

Note that when p (·) =constant these results coincide with theclassical results, proved by different authors.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 23

/ 45

Page 48: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Now Corollaries 3 and 4 imply

Theorem (3)

Let f ∈ Lp(·) (T), p (·) ∈ P (T), and let α > 0. The following statementsare equivalent:

i)f ∈ Lipp(·)α (T) ,

ii)En (f )p(·) = O(n−α

), n ∈N.

Note that when p (·) =constant these results coincide with theclassical results, proved by different authors.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 23

/ 45

Page 49: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

4 NEW RESULT IN THE COMPLEX DOMAINS

Let G ⊂ C be a finite domain in the complex plane, bounded by arectifiable Jordan curve Γ and let G−:= Ext Γ. Let alsoT:= w ∈ C : |w | = 1, D := Int T and D−:= Ext T.

Definition (2)

The variable exponent Lebesgue spaces Lp(·)(Γ) for a given nonnegativeLebesgue measurable variable exponent p(z) ≥ 1 on Γ we define as the setof Lebesgue measurable functions f , such that∫

Γ

|f (z)|p(z ) |dz |< ∞.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 24

/ 45

Page 50: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

4 NEW RESULT IN THE COMPLEX DOMAINS

Let G ⊂ C be a finite domain in the complex plane, bounded by arectifiable Jordan curve Γ and let G−:= Ext Γ. Let alsoT:= w ∈ C : |w | = 1, D := Int T and D−:= Ext T.

Definition (2)

The variable exponent Lebesgue spaces Lp(·)(Γ) for a given nonnegativeLebesgue measurable variable exponent p(z) ≥ 1 on Γ we define as the setof Lebesgue measurable functions f , such that∫

Γ

|f (z)|p(z ) |dz |< ∞.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 24

/ 45

Page 51: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Equipped with the norm

‖f ‖Lp(·)(Γ) := inf

λ ≥ 0 :∫Γ

∣∣∣∣ f (z)λ

∣∣∣∣p(z ) |dz | ≤ 1< ∞

Lp(·)(Γ) becomes a Banach spaces.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 25

/ 45

Page 52: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In the case of Γ := T we obtain the variable exponent Lebesgue spaceLp(·)(T) with the norm

‖f ‖Lp(·)(T) := inf

λ ≥ 0 :2π∫0

∣∣∣∣ f (e it )λ

∣∣∣∣p(eit )

|dt| ≤ 1

=: ‖f ‖Lp(·)([0,2π]) .

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 26

/ 45

Page 53: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Let E 1(G ) be the classical Smirnov class of analytic functions in G .The Smirnov classes in detail were investigated in the monograph:

Goluzin G. M. : Geometric Theory of Functions of a ComplexVariable. Translation of Mathematical Monographs, Vol. 26, AMS1969.

Definition (3)

Let p (·) : Γ→ [1,∞) be a Lebesgue measurable function. The set

E p(·)(G ):=f ∈ E 1(G ) : f ∈ Lp(·)(Γ)

is called the variable exponent Smirnov class of analytic functions in G .

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 27

/ 45

Page 54: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Let E 1(G ) be the classical Smirnov class of analytic functions in G .The Smirnov classes in detail were investigated in the monograph:

Goluzin G. M. : Geometric Theory of Functions of a ComplexVariable. Translation of Mathematical Monographs, Vol. 26, AMS1969.

Definition (3)

Let p (·) : Γ→ [1,∞) be a Lebesgue measurable function. The set

E p(·)(G ):=f ∈ E 1(G ) : f ∈ Lp(·)(Γ)

is called the variable exponent Smirnov class of analytic functions in G .

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 27

/ 45

Page 55: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

In particular if G := D, then we have variable exponent Hardy spacesHp(·)(D).Let Γ be a Jordan rectifiable curve in the complex plane C and letp (·) : Γ→ R+ be a measurable function defined on Γ such that

1 ≤ p− := ess infz∈Γ

p(z) ≤ ess supz∈Γ

p(z) := p+ < ∞. (1)

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 28

/ 45

Page 56: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Definition (4)

We say that p (·) ∈ P(Γ), if p (·) satisfies the conditions (1 ) and

|p(z1)− p(z2)| ln|Γ|

|z1 − z2|≤ c , ∀z1, z2∈ Γ

with a positive constant c , where |Γ| is the Lebesgue measure of Γ.

If p (·) ∈ P(Γ) with p− > 1, then we say that p (·) ∈ P0(Γ).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 29

/ 45

Page 57: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Let Γ be a smooth Jordan curve and let θ (s) be the angle betweenthe tangent and the positive real axis expressed asa function of arclength s. If Γ has a modulus of continuity ω (θ, s),satisfying the Dini-smooth condition

δ∫0

ω (θ, s) /s ds < ∞, δ > 0,

then we say that Γ is a Dini smooth curve and the set of Dini-smoothcurves we denote by D.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 30

/ 45

Page 58: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

By ϕ we denote the conformal mapping of G− onto D−, normalizedby the conditions

ϕ (∞) = ∞ and limz→∞

ϕ (z) /z > 0.

Let ψ be the inverse mapping of ϕ.

The mappings ϕ and ψ have continuous extensions to Γ and T,respectively. Their derivatives ϕ′ and ψ′ have definite nontangentiallimit values a.e. on Γ and T, and the limit functions are integrablewith respect to Lebesgue measure on Γ and T, respectively.

For a given function f ∈ Lp(·)(Γ) with p ∈ P(Γ) we set

f0 (w) := f [ψ (w)]

p0(w) := p(ψ (w)).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 31

/ 45

Page 59: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

By ϕ we denote the conformal mapping of G− onto D−, normalizedby the conditions

ϕ (∞) = ∞ and limz→∞

ϕ (z) /z > 0.

Let ψ be the inverse mapping of ϕ.

The mappings ϕ and ψ have continuous extensions to Γ and T,respectively. Their derivatives ϕ′ and ψ′ have definite nontangentiallimit values a.e. on Γ and T, and the limit functions are integrablewith respect to Lebesgue measure on Γ and T, respectively.

For a given function f ∈ Lp(·)(Γ) with p ∈ P(Γ) we set

f0 (w) := f [ψ (w)]

p0(w) := p(ψ (w)).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 31

/ 45

Page 60: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

By ϕ we denote the conformal mapping of G− onto D−, normalizedby the conditions

ϕ (∞) = ∞ and limz→∞

ϕ (z) /z > 0.

Let ψ be the inverse mapping of ϕ.

The mappings ϕ and ψ have continuous extensions to Γ and T,respectively. Their derivatives ϕ′ and ψ′ have definite nontangentiallimit values a.e. on Γ and T, and the limit functions are integrablewith respect to Lebesgue measure on Γ and T, respectively.

For a given function f ∈ Lp(·)(Γ) with p ∈ P(Γ) we set

f0 (w) := f [ψ (w)]

p0(w) := p(ψ (w)).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 31

/ 45

Page 61: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

If Γ ∈ D, then as follows from Warschawski’s works, there are thepositive constants ci > 0, i = 1, 2, 3, 4 such that

0 < c1 ≤∣∣∣ψ′ (w)∣∣∣ ≤ c2 < ∞,

0 < c3 ≤∣∣∣ϕ′ (z)∣∣∣ ≤ c4 < ∞,

a.e. on T and on Γ, respectively.

Therefore if Γ ∈ D, then

f ∈ Lp(·)(Γ)⇔ f0 ∈ Lp0(·)(T).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 32

/ 45

Page 62: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

If Γ ∈ D, then as follows from Warschawski’s works, there are thepositive constants ci > 0, i = 1, 2, 3, 4 such that

0 < c1 ≤∣∣∣ψ′ (w)∣∣∣ ≤ c2 < ∞,

0 < c3 ≤∣∣∣ϕ′ (z)∣∣∣ ≤ c4 < ∞,

a.e. on T and on Γ, respectively.Therefore if Γ ∈ D, then

f ∈ Lp(·)(Γ)⇔ f0 ∈ Lp0(·)(T).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 32

/ 45

Page 63: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Moreover,

‖f0‖Lp0 (T)≤ c9 ‖f ‖Lp(·)(Γ)≤ c10 ‖f0‖Lp0 (·)(T)

It is also clear that if Γ ∈ D, then

p0(·) ∈ P(T)⇔ p(·) ∈ P(Γ).

For a given function f ∈ Lp(·) (Γ) we define the Cauchy type integral

f +0 (w) :=12πi

∫T

f0 (τ)τ − w dτ

which are analytic in D.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 33

/ 45

Page 64: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Moreover,

‖f0‖Lp0 (T)≤ c9 ‖f ‖Lp(·)(Γ)≤ c10 ‖f0‖Lp0 (·)(T)

It is also clear that if Γ ∈ D, then

p0(·) ∈ P(T)⇔ p(·) ∈ P(Γ).

For a given function f ∈ Lp(·) (Γ) we define the Cauchy type integral

f +0 (w) :=12πi

∫T

f0 (τ)τ − w dτ

which are analytic in D.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 33

/ 45

Page 65: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Moreover,

‖f0‖Lp0 (T)≤ c9 ‖f ‖Lp(·)(Γ)≤ c10 ‖f0‖Lp0 (·)(T)

It is also clear that if Γ ∈ D, then

p0(·) ∈ P(T)⇔ p(·) ∈ P(Γ).

For a given function f ∈ Lp(·) (Γ) we define the Cauchy type integral

f +0 (w) :=12πi

∫T

f0 (τ)τ − w dτ

which are analytic in D.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 33

/ 45

Page 66: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

For a given f ∈ Lp(·)(T), defining the mean value function on theunit circle T as

σhf (w) :=1h

h∫0

f(we it

)dt, w ∈T

we obtain the following modification of the modulus of smoothness off on T:

Ω (f , δ)T,p(·) := sup0<h≤δ

‖f (w)− σhf (w)‖Lp(·)(T) .

If f ∈ E p(·)(G ), then we define the modulus of smoothness

Ω (f , δ)G ,p(·) := Ω(f +0 , δ

)T,p0(·) , δ > 0

for f .

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 34

/ 45

Page 67: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

For a given f ∈ Lp(·)(T), defining the mean value function on theunit circle T as

σhf (w) :=1h

h∫0

f(we it

)dt, w ∈T

we obtain the following modification of the modulus of smoothness off on T:

Ω (f , δ)T,p(·) := sup0<h≤δ

‖f (w)− σhf (w)‖Lp(·)(T) .

If f ∈ E p(·)(G ), then we define the modulus of smoothness

Ω (f , δ)G ,p(·) := Ω(f +0 , δ

)T,p0(·) , δ > 0

for f .

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 34

/ 45

Page 68: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

The best approximation number of f ∈ E p(·)(G ) is defined by

En (f )G ,p(·) := inf‖f − Pn‖Lp(·)(Γ) : Pn ∈ Πn

,

where Πn is the class of algebraic polynomials of degree notexceeding n.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 35

/ 45

Page 69: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

For simplicity we are formulate the results only for the first modulus.For the higher moduli the appropriate results also are true.

Then the direct and inverse results obtained in the classes E p(·)(G )can be formulated as following:

Theorem (4)

Let Γ ∈ D. If f ∈ E p(·)(G ) with p(·) ∈ P0(Γ), then

En (f )G ,p(·) ≤ c (p) Ω (f , 1/n)G ,p(·)

with a constant c > 0 independent of n.

Theorem (5)

Let Γ ∈ D. If f ∈ E p(·)(G ) with p(·) ∈ P0(Γ), then

Ω (f , 1/n)G ,p(·) ≤c (p)n

n

∑v=0

Ev (f )G ,p(·) n = 1, 2, ...,

with a constant c > 0 independent of n.Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 36

/ 45

Page 70: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

For simplicity we are formulate the results only for the first modulus.For the higher moduli the appropriate results also are true.Then the direct and inverse results obtained in the classes E p(·)(G )can be formulated as following:

Theorem (4)

Let Γ ∈ D. If f ∈ E p(·)(G ) with p(·) ∈ P0(Γ), then

En (f )G ,p(·) ≤ c (p) Ω (f , 1/n)G ,p(·)

with a constant c > 0 independent of n.

Theorem (5)

Let Γ ∈ D. If f ∈ E p(·)(G ) with p(·) ∈ P0(Γ), then

Ω (f , 1/n)G ,p(·) ≤c (p)n

n

∑v=0

Ev (f )G ,p(·) n = 1, 2, ...,

with a constant c > 0 independent of n.Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 36

/ 45

Page 71: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Defining the generalized Lipschitz class Lipp(·) (G , α) with α ∈ (0, 1)by

Lipp(·) (G , α) :=f ∈ E p(·)(G ) : Ω (f , δ)G ,p(·) = O (δ

α) , δ > 0,

from Theorem (5) after simple computations we obtain:

Corollary (5)

Let Γ ∈ D and p(·) ∈ P0(Γ). If En (f )G ,p(·) = O (n−α) with α ∈ (0, 1),then f ∈ Lipp(·) (G , α).

At the same time Theorem (4) implies

Corollary (6)

If f ∈ Lipp(·) (G , α) with p(·) ∈ P0(Γ) and α ∈ (0, 1), then

En (f )G ,p(·)= O(n−α

).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 37

/ 45

Page 72: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Defining the generalized Lipschitz class Lipp(·) (G , α) with α ∈ (0, 1)by

Lipp(·) (G , α) :=f ∈ E p(·)(G ) : Ω (f , δ)G ,p(·) = O (δ

α) , δ > 0,

from Theorem (5) after simple computations we obtain:

Corollary (5)

Let Γ ∈ D and p(·) ∈ P0(Γ). If En (f )G ,p(·) = O (n−α) with α ∈ (0, 1),then f ∈ Lipp(·) (G , α).

At the same time Theorem (4) implies

Corollary (6)

If f ∈ Lipp(·) (G , α) with p(·) ∈ P0(Γ) and α ∈ (0, 1), then

En (f )G ,p(·)= O(n−α

).

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 37

/ 45

Page 73: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

The corollaries (5) and (6) imply the following constructivecharacterization of Lipp(·) (G , α):

Theorem (6)

Let Γ ∈ D and p(·) ∈ P0(Γ), and let α ∈ (0, 1). The following statementsare equivalent:

i f ∈ Lipp(·) (G , α) , ii) En (f )G ,p(·) = O(n−α

), n = 1, 2, 3, ..

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 38

/ 45

Page 74: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Acknowledgement

This work was supported by TUBITAK grant 114F422: "ApproximationProblems in the Variable Exponent Lebesgue Spaces".

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 39

/ 45

Page 75: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

ReferencesOrlicz W. : Über konjugierte Exponentenfolgen, Studia Math. 3,(1931), pp. 200-212.

Sharapudinov I. I. : Approximation of functions in Lp(x )2π bytrigonometric polynomials, Izvestiya RAN : Ser. Math., 77:2, (2013),pp. 197-224; English transl., Izvestiya : Mathematics, 77:2, (2013),pp. 407-434.

Diening L. : Maximal function on generalized Lebesgue spaces Lp(·),Math. Inequal. Appl., 7, (2004), pp. 245-253.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 40

/ 45

Page 76: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Goluzin G. M. : Geometric Theory of Functions of a Complex Variable.Translation of Mathematical Monographs, Vol. 26, AMS 1969.

Guven A. and Israfilov D. M. : Trigonometric Approximation InGeneralized Lebesgue Spaces Lp(x ), Journal of Math. Inequalities, Vol4, No:2 , (2010), pp. 285-299.

Hästö P. and Diening L. : Muckenhoupt weights in variable exponentspaces,(submitted), (2011).

Israfilov D. M. : Approximation by p− Faber polynomials in theweighted Smirnov class E p (G ,ω) and the Bieberbach polynomials.Constr. Approx., 17(2001), pp. 335-351.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 41

/ 45

Page 77: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Israfilov D. M. and Guven A.: Approximation in weighted Smirnovclasses, East J.Approx. 11 (2005), 1—12.

Israfilov D., Kokilashvili V. M., Samko S. : Approximation InWeighted Lebesgue and Smirnov Spaces With Variable Exponents,Proceed. of A. Razmadze Math. Institute, Vol 143, (2007), pp 25-35.

Kokilashvili V. M. and Samko S. : Weighted Boundedness In LebesgueSpaces With Variable Exponents Of Classical Operators On CarlesonCurves, Proc. A. Razmadze Math. Isnt., 138, (2005), pp.106-110.

Kokilashvili V. M., Paatasvili V., Samko S. : Boundary ValueProblems For Analytic Functions In The Class Of Cauchy-typeIntegrals With Density In Lp(·) (Γ), Baundary Value Problems 2005:1,Hindawi Publ. Cor., (2005), pp. 43-71.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 42

/ 45

Page 78: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Kokilashvili V. M. and Paatashvili V. : On Variable Hardy andSmirnov Classes Of Analytic Functions, Georgian Inter. Journal of Sci.,Vol.1, No:2, (2008), pp.181-195.

Kokilashvili V. M. and Samko S. G. : Operators of harmonic analysisin weighted spaces with non-standard growth, Journal of Math. Anal.and Appl., 352, 1(2009), pp. 15-34.

Ruzicka M. : Elektrorheological Fluids: Modeling and MathematicalTheory, Springer, (2000).

Sharapudinov I. I. : Some questions of approximation theory in thespaces Lp(x ) (E ), Anal. Math., 33:2, (2007), pp. 135-153.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 43

/ 45

Page 79: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

Sharapudinov I. I. : Approximation of functions in Lp(x )2π bytrigonometric polynomials, Izvestiya RAN : Ser. Math., 77:2, (2013),pp. 197-224; English transl., Izvestiya : Mathematics, 77:2, (2013),pp. 407-434.

Suetin P. K. : Series of Faber Polynomials. Moscow : Nauka,Newyork: Gordon and Breach Science Publishers (1998).

De Vore R. A.,and Lorentz G. G.: Constructive Approximation,Springer, (1993).

Warschawski S. : Über das Randverhalten der Ableitung derAbbildungsfunktionen bei konformer Abbildung. Math. Z., 35, (1932).pp. 321-456.

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 44

/ 45

Page 80: Approximation problems in the variable exponent Lebesgue spacesfourier2017.ttk.pte.hu/files/slides/Israfilov.pdf · 2017-09-29 · Sharapudinov I. I. : Some questions of approximation

T H A N K S

Daniyal Israfilov & Ahmet Testici Balikesir University () Approximation25 August 2017 Fourier 2017 45

/ 45