ars.els-cdn.com · web viewsupporting information g raphene-based materials for electrochemical co...

27
Supporting Information Graphene-based materials for electrochemical CO 2 reduction Tao Ma, 1,† Qun Fan, 1,† Xin Li, 1 Jieshan Qiu, 1 Tianbin Wu* ,2 and Zhenyu Sun* ,1 1 State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China. E-mail: [email protected] 2 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. E-mail: [email protected] † These authors contributed equally to this work. Table S1 A summary of reported catalysts for ECR with maximum FEs and corresponding overpotentials. Inde x Catalyst Main product Overpotenti al/V Faradaic efficienc y/% Refere nce 1 Dehydrogenase from Carboxydothermus hydrogenoformans CO 0 100 [1] 2 Dehydrogenase from moorella thermoacetica CO 0.092 100 [2] 3 Cobalt phthalocyanine CO 0.14 94 [3] 4 N-doped carbon fibers CO 0.164 98 [4]

Upload: others

Post on 17-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

Supporting Information

Graphene-based materials for electrochemical CO2 reduction

Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and Zhenyu Sun*,1

1 State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China. E-mail: [email protected] Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. E-mail: [email protected]† These authors contributed equally to this work.

Table S1

A summary of reported catalysts for ECR with maximum FEs and corresponding

overpotentials.

Index CatalystMain

productOverpotential/V

Faradaic efficiency/%

Reference

1Dehydrogenase from Carboxydothermus hydrogenoformans

CO 0 100 [1]

2Dehydrogenase from

moorella thermoaceticaCO 0.092 100 [2]

3 Cobalt phthalocyanine CO 0.14 94 [3]4 N-doped carbon fibers CO 0.164 98 [4]5 Ag in IL CO 0.174 99 [5]6 Bi/Bi+3 CO 0.194 96 [6]7 OD-Cu CO 0.194 45 [7]8 Electrodeposited Sn CO 0.244 77 [8]9 OD-Au CO 0.244 96 [9]10 Au nanowire CO 0.244 94 [10]11 Au nanotips CO 0.244 95 [11]12 N-doped CNT CO 0.269 80 [12]

13Zinc‐coordinated nitrogen‐codoped

grapheneCO 0.27 91 [13]

14Cu nanowires on Cu

meshCO 0.294 62 [14]

Page 2: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

15 Au nanotips CO 0.294 98 [15]16 Fe-TTP CO 0.334 43 [16]17 Fe-TTP CO 0.334 80 [16]18 Electrodeposited Pb CO 0.344 81 [8]19 Defective polymer CO 0.37 97 [17]

20Fe–porphyrin-based

metal-organic frameworkCO 0.38 91 [18]

21 Co-TTP CO 0.384 75 [16]22 Au nanoporous CO 0.394 90 [19]23 OD-Au CO 0.394 94 [20]24 Au NPs CO 0.414 97 [21]25 Re (bipy)(CO)3 Cl CO 0.444 98 [22]

26Au concave rhombic

dodecahedraCO 0.464 93 [23]

27 Au rhombic dodecahedra CO 0.464 80 [23]28 Au foil CO 0.474 90 [24]

29Twisted Pd–Au

nanowiresCO 0.48 94.3 [25]

30Atomic iron dispersed on nitrogen‐doped graphene

CO 0.48 80 [26]

31Gold atoms with low

generalized coordinationCO 0.48 94 [27]

32 Au-Cu NPs CO 0.48 96 [28]33 OD-Cu-In CO 0.494 85 [29]34 Cu-In CO 0.494 90 [29]35 OD-Cu-Sn CO 0.494 90 [30]36 Fe-N-C CO 0.494 89 [31]

37

Iron porphyrins embedded into a

supramolecular porous organic cage

CO 0.51 100 [32]

38 Ag GDE CO 0.514 86 [33]39 PON-Ag CO 0.57 96.7 [34]

40N and S co‐doped porous

carbon nanofiberCO 0.58 94.0 [35]

41 Au NPs CO 0.58 90 [36]

42Single nickel atomic dispersed N doped carbon framework

CO 0.58 95 [37]

43 Core/shell Cu/In2O3 NPs CO 0.58 68 [38]44 NiSA‐N‐CNTs CO 0.58 91 [39]45 Pd octahedra CO 0.594 50 [40]46 Cu/SnO2 NPs CO 0.594 93 [41]47 Re film on Au CO 0.604 87 [42]

Page 3: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

48 Re(vbpy)(CO)3Cl CO 0.604 92 [43]49 Pd GDE CO 0.624 58 [33]50 Au3Cu NPs CO 0.624 65 [44]51 Cu NPS on MoS2 CO 0.629 43 [45]52 Mn(bipyridyl)(CO)3Br CO 0.644 100 [46]53 Ag NPs CO 0.644 88 [47]54 Cu dodecahedra CO 0.644 13 [48]55 Cu nanocube CO 0.644 45 [48]56 FeTDHPP CO 0.654 94 [49]

57Polymerized Ru, Re

bpy(CO3)ClCO 0.654 90 [50]

58 MoS2 in IL CO 0.664 98 [51]59 Tabular-Zn electrode CO 0.67 81 [52]60 Sulfur-modified Cu CO 0.68 80 [53]61 Au foil CO 0.684 93 [54]62 Pd icosahedra CO 0.694 90 [40]63 Rh wire CO 0.704 61 [55]64 Ni(cyclam) CO 0.704 90 [56]65 COF-300-AR CO 0.73 80 [57]66 SnO2 CO 0.77 36 [58]67 Au0.2Pd0.8 CO 0.774 10 [59]68 Zn CO 0.78 47.6 [60]69 Pd NPs CO 0.784 91 [61]70 Mn(bpy-tBu)(CO)3Br CO 0.794 100 [62]71 Nitrogen-doped carbon CO 0.81 78.0 [63]72 Fe porphyrin CO 0.824 90 [49]73 Zn-based metal foam CO 0.83 90 [64]74 Hexagonal Zn CO 0.844 92 [65]75 Co(CO3)0.5(OH)·0.11H2O CO 0.86 97 [66]76 Cu2Cd CO 0.88 84 [67]77 AgDAT/C CO 0.884 70 [68]78 In foil CO 0.894 85 [69]79 Au on TiC CO 0.894 68 [70]80 Ag foil CO 0.942 65 [71]81 Au foil CO 0.942 84 [71]82 ZnO nanosheets CO 0.98 83 [72]83 Ag (110) CO 0.994 98 [73]84 Boron doped diamond CO 1.07 68 [74]85 Pd foil CO 1.094 57 [75]86 Au NPs CO 1.094 45 [76]87 Re bpy (CO3)Cl CO 1.244 45 [77]

88Rhenium bipyridine

complexCO 1.52 89 [78]

89 PdPt NPs HCOO 0.0652 20 [79]

Page 4: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

90Formate dehydrogenase from syntrophobacter

fumaroxidansHCOO 0.0712 100 [80]

91 Pd NPs HCOO 0.2065 97 [81]92 Co oxide HCOO 0.229 85 [82]93 Electrodeposited Sb HCOO 0.2452 30 [8]94 Pd-B/C HCOO 0.30 70 [83]95 Pd/Pt NPs HCOO 0.3652 87 [79]96 Pt/NCNFs/Cu-foil HCOO 0.40 93 [84]97 SnO nanoparticle HCOO 0.46 36 [85]

98Sn/N‐doped carbon

nanofibersHCOO 0.49 62 [52]

99

Bismuth oxide nanosheets/nitrogen‐

doped graphene quantum dots

HCOO 0.70 95.6 [86]

100Few‐layer bismuth

subcarbonateHCOO 0.50 85 [87]

101 Bi dendrite HCOO 0.53 90 [88]

102Copper-based nanocatalysts

HCOO 0.60 66 [89]

103 Bi2O3 HCOO 0.65 99 [90]104 Ru(bpy)2(CO)2 HCOO 0.65 84 [91]105 CuSx HCOO 0.70 75 [92]106 In2O3@C HCOO 0.70 88 [93]107 Sn/SnO2 HCOO 0.7065 19 [94]108 OD-Pb HCOO 0.7565 100 [95]109 Sn/SnS2 HCOO 0.7565 84.5 [96]110 SnO2 HCOO 0.7658 69 [97]

111Ru (bpy2)(dmbbbpy)

(PF6)4HCOO 0.768 89 [98]

112 Bi wire HCOO 0.7852 83 [55]113 Sn wire HCOO 0.79 92 [55]114 SnO2 HCOO 0.79 63 [58]115 Cu-In HCOO 0.80 80 [99]116 Pt wire HCOO 0.8452 50 [55]117 AuPd HCOO 0.8452 10 [59]118 Fe wire HCOO 0.87 59 [100]

119Sn nanosheets decorated

with Bi nanoparticlesHCOO 0.90 96 [101]

120 Sn foil HCOO 0.938 94 [102]121 Ir-pincer HCOO 0.9652 93 [103]

122Au functionalized with 4-

pyridylethylmercaptanHCOO 0.9652 21 [104]

Page 5: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

123 Sn-doped Ga2O3 HCOO 0.966 80 [105]124 N-doped CNT HCOO 0.9852 85 [106]125 Bi2O3 HCOO 0.63 91 [107]126 CuO HCOO 1.00 61 [108]127 Cu wire HCOO 1.0032 54 [55]128 Zn foil HCOO 1.016 82 [109]129 Sn foil HCOO 1.0352 88 [110]130 Pb wire HCOO 1.0622 95 [55]131 Hg HCOO 1.0752 99.5 [110]132 In foil HCOO 1.1052 95 [110]133 Pb granules HCOO 1.1152 90 [111]134 Sn NPs HCOO 1.1152 90 [112]135 Sn foil HCOO 1.1565 70 [113]136 Cu@Sn HCOO 1.16 86.7 [114]137 Tl foil HCOO 1.1652 95 [110]138 Cu nanoflower HCOO 1.1652 40 [115]139 SnO2 HCOO 1.166 75 [116]140 Pb foil HCOO 1.1865 90 [117]141 Pb foil HCOO 1.1932 97.4 [110]142 Cd foil HCOO 1.1952 78 [110]143 Sn electrodes HCOO 1.20 80 [118]

144Biomimetic

electrochemical cellHCOO 1.30 92 [119]

145 Indium electrodes HCOO 1.42 94.5 [120]146 Cu nanofoam HCOO 1.4652 37 [121]147 Pb foil HCOO 1.964 79 [69]148 Cu2Pd over polymer CH4 0.86 51 [122]

149Copper(II)

phthalocyanineCH4 0.88 66 [123]

150 Cu overlayer on Pt CH4 0.969 30 [124]151 NixGay CH4 1.049 2 [125]152 Cu foil CH4 1.069 65 [126]153 Cu3Pt NPs CH4 1.0825 22 [127]154 Cu foil CH4 1.119 40 [128]155 Au3Cu NPs CH4 1.149 35 [129]156 Cu single crystals CH4 1.169 49 [130]157 Cu overlayer on Pt CH4 1.169 7 [131]158 Cu NPs CH4 1.519 78 [132]159 Electrodeposited Cu CH4 1.619 55 [133]

160Single-atomic Cu on

ceriaCH4 1.627 58 [134]

161 Cu foil CH4 2.569 20 [135]162 Ru foil CH3OH 0.025 42 [136]163 Cu adatoms on RuOx CH3OH 0.09 41 [137]

Page 6: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

164 Pd-Pyridine CH3OH 0.17 30 [138]165 Mo CH3OH 0.186 84 [139]166 Pd/SnO2 Nanosheets CH3OH 0.207 54.8 [140]167 Mo foil CH3OH 0.238 40 [141]168 Pyridinium cation CH3OH 0.26 30 [138]

169Cu adatoms on

TiO2/RuOxCH3OH 0.28 30 [142]

170 OD CU from MOF CH3OH 0.28 43 [143]171 Cu2O on Cu CH3OH 0.39 38 [144]172 Au3Cu NPs on Cu CH3OH 0.393 16 [145]173 Cu foil CH3OH 0.628 40 [146]174 n-GaAs CH3OH 0.686 1 [147]175 p-InP CH3OH 0.686 0.52 [147]176 Nanoporous Cu films C2H4 0.564 40 [148]

177Graphite/carbon NPs/Cu/PTFE

C2H4 0.614 70 [149]

178 Cu NPs C2H4 0.644 35 [150]

179 Cu NPs/NG C2H4 0.6608 19 [151]

180 CuAu C2H4 0.664 18 [152]

181 CuPd NPs C2H4 0.804 48 [153]182 NGQDs C2H4 0.814 31 [154]

183 CuPd RDs C2H4 0.853 17 [48]

184 NixGay C2H4 0.944 0.5 [125]185 Cu foil C2H4 0.964 20 [126]186 Plasma Cu C2H4 0.964 60 [155]187 Cu nanocrystals C2H4 1.014 32 [156]

188 Pd−decorated Cu C2H4 1.024 11 [157]

189 Cu nanocube C2H4 1.027 32 [158]

190 Cu-porphyrin complex C2H4 1.031 17 [159]

191 OD−Cu C2H4 1.044 32.4 [160]

192 Cu(II) phthalocyanine/C C2H4 1.052 25 [160]

193 Cu/SnOx/CNT C2H4 1.054 26 [161]

194 Cu2O films C2H4 1.064 38 [162]195 Cu single crystals C2H4 1.064 32 [130]196 Cu mesocrystals C2H4 1.064 25 [163]

197 Cu C2H4 1.064 39.6 [164]

198 Plasma Cu nanocubes C2H4 1.064 45 [165]

199 CuOx NPs C2H4 1.064 28 [166]

200 Nanocoral CuAg C2H4 1.064 22 [167]

201Cu Nanowires on Cu

meshC2H4 1.089 55 [168]

202 Cu foil C2H4 1.114 40 [169]

Page 7: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

203 CuAg C2H4 1.124 28.6 [170]

204 Anodized Cu C2H4 1.144 38.1 [171]

205 Cu NPs C2H4 1.15 43 [172]206 Na2S-modified Cu C2H4 1.162 31 [109]

207 Cu meshes C2H4 1.164 34.3 [173]

208 Cu NWs C2H4 1.164 17.4 [174]

209 Cu NCs C2H4 1.164 41 [175]

210 Boron−doped Cu C2H4 1.164 52 [176]

211 Cu ions doped ceria C2H4 1.164 47.6 [177]

212N−substituted pyridinium/Cu

C2H4 1.164 40.5 [178]

213 Cu2O films C2H4 1.164 37 [179]214 Cu NPs C2H4 1.164 36 [180]215 Cu2O on Cu C2H4 1.164 33 [179]216 Electrodeposited Cu2O C2H4 1.224 25 [133]

217 Cu/OLC C2H4 1.252 60 [181]

218 Cu NPs C2H4 1.264 32 [172]219 ERD Cu C2H4 1.264 40 [148]

220 CuO/NxC C2H4 1.314 36 [182]

221 Cu/MoS2 C2H4 1.314 2.93 [45]

222 Electrodeposited Cu C2H4 1.364 10 [183]

223 Porous Cu films C2H4 1.444 34.8 [184]

224 Cu/VC C2H4 1.652 48 [185]

225 OD−Cu C2H4 1.664 29.7 [186]

226 Cu/THH Pd NCs C2H5OH 0.544 20.4 [187]

227 Nanoporous Cu films C2H5OH 0.584 20 [188]

228 OD CU from MOF C2H5OH 0.584 35 [143]

229 [PYD]@CuPt C2H5OH 0.626 24 [189]

230 c-NC C2H5OH 0.644 77 [190]

231 [PYD]@CuPd C2H5OH 0.724 12 [191]

232 Cu/G C2H5OH 0.728 9.93 [192]

233 HKUST−1 C2H5OH 0.728 10.3 [193]

234 OD Cu/C C2H5OH 0.784 34.8 [143]

235 Ag/NG/carbon foams C2H5OH 0.784 85.2 [194]236 CuPd NPs C2H5OH 0.824 15 [195]237 Plasma Cu nanocubes C2H5OH 0.83 22 [165]238 Pt/NCNFs/Cu-foil C2H5OH 0.967 35 [84]239 Electrodeposited Cu C2H5OH 0.984 6 [183]

240 Cu/C3N4 C2H5OH 1.072 6 [196]

241 Cu/BDD C2H5OH 1.084 42.4 [197]

Page 8: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

242 BND C2H5OH 1.084 93.2 [198]243 Cu NPS C2H5OH 1.084 8 [199]244 Cu2O films C2H5OH 1.084 15 [162]

245 CuO C2H5OH 1.124 36.1 [200]

246 Amorphous Cu NPs C2H5OH 1.134 22 [201]

247 OD Cu4Zn C2H5OH 1.134 29.1 [202]

248 Boron−doped Cu C2H5OH 1.184 27 [176]

249 Ag-Cu2O C2H5OH 1.284 34.15 [203]

250 Cu NPs/NG C2H5OH 1.284 63 [204]

251 Cu NPs/TiO2 C2H5OH 1.534 27.4 [205]

252 La1.8Sr0.2CuO4 C2H5OH 1.594 30 [206]253 Cu foam C2H6 0.7 37 [207]

254 Nanoporous Cu films C2H6 0.899 46 [208]

255 OD-Cu C2H6 1 26 [209]

256 Cu(I)/BN−C CH3COOH 0.5 91.8 [210]

257 N-doped diamond CH3COOH 0.56 75 [211]258 NDD CH3COOH 1.059 80.3 [211]

259 MoS2 C3H7OH 0.693 3.5 [212]

260 Cu2O/ZnO/G C3H7OH 0.747 30 [213]

261 Ni3Al films C3H7OH 0.871 1.9 [214]

262 Cu NCs C3H7OH 0.953 10.6 [175]263 Cu nanocrystals C3H7OH 1.04 8 [156]

References[1] A. Parkin, J. Seravalli, K.A. Vincent, S.W. Ragsdale, F.A. Armstrong, Rapid and efficient electrocatalytic

CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode,

J. Am. Chem. Soc. 129 (34) (2007) 10328-10329.

[2] W. Shin, S.H. Lee, J.W. Shin, S.P. Lee, Y. Kim, Highly selective electrocatalytic conversion of CO 2 to

CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from moorella thermoacetica, J. Am. Chem.

Soc. 125 (48) (2003) 14688-14689.

[3] X. Lu, Y.S. Wu, X.L. Yuan, L. Huang, Z.S. Wu, J. Xuan, Y.F. Wang, H.L. Wang, High-performance

electrochemical CO2 reduction cells based on non-noble metal catalysts, ACS Energy Lett. 3 (10) (2018)

2527-2532.

[4] B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-

Khojin, Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction, Nat.

Commun. 4 (2013) 2819-2826.

[5] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Ionic

liquid–mediated selective conversion of CO2 to CO at low overpotentials, Science 334 (6056) (2011)

643-644.

[6] J.L. DiMeglio, and J. Rosenthal, Selective conversion of CO2 to CO with high efficiency using an

inexpensive bismuth-based electrocatalyst, J. Am. Chem. Soc. 135 (24) (2013) 8798-8801.

Page 9: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

[7] C.W. Li, and M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the

reduction of thick Cu2O films, J. Am. Chem. Soc. 134 (17) (2012) 7231-7234.

[8] J. Medina-Ramos, R.C. Pupillo, T.P. Keane, J.L. DiMeglio, J. Rosenthal, Efficient conversion of CO 2 to

CO using tin and other inexpensive and easily prepared post-transition metal catalysts, J. Am. Chem.

Soc. 137 (15) (2015) 5021-5027.

[9] Y. Chen, C.W. Li, M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au

nanoparticles, J. Am. Chem. Soc. 134 (49) (2012) 19969-19972.

[10] W.L. Zhu, Y.J. Zhang, H.Y. Zhang, H.F. Lv, Q. Li, R. Michalsky, A.A. Peterson, S.H. Sun, Active and

selective conversion of CO2 to CO on ultrathin Au nanowires, J. Am. Chem. Soc. 136 (46) (2014) 16132-

16135.

[11] M. Liu, Y.J. Pang, B. Zhang, P. De Luna, O. Voznyy, J.X. Xu, X.L. Zheng, C.T. Dinh, F.J. Fan, C.H. Cao,

F.P.G. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O.

Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration,

Nature 537 (2016) 382-386.

[12] J.J. Wu, R.M. Yadav, M.J. Liu, P.P. Sharma, C.S. Tiwary, L.L. Ma, X.L. Zou, X.D. Zhou, B.I. Yakobson,

J. Lou, P.M. Ajayan, Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped

carbon nanotubes, ACS Nano 9 (5) (2015) 5364-5371.

[13] Z.P. Chen, K.W. Mou, S.Y. Yao, L.C. Liu, Zinc-coordinated nitrogen-codoped graphene as an efficient

catalyst for selective electrochemical reduction of CO2 to CO, ChemSusChem 11 (17) (2018) 2944-2952.

[14] D. Raciti, K.J. Livi, C. Wang, Highly dense Cu nanowires for low-overpotential CO2 reduction, Nano

Lett. 15 (10) (2015) 6829-6835.

[15] T. Saberi Safaei, A. Mepham, X.L. Zheng, Y.J. Pang, C.T. Dinh, M. Liu, D. Sinton, S.O. Kelley, E.H.

Sargent, High-density nanosharp microstructures enable efficient CO2 electroreduction, Nano Lett. 16

(11) (2016) 7224-7228.

[16] N. Sonoyama, M. Kirii, T. Sakata, Electrochemical reduction of CO 2 at metal-porphyrin supported gas

diffusion electrodes under high pressure CO2, Electrochem. Commun. 1 (6) (1999) 213-216.

[17] H.H. Wu, M. Zeng, X. Zhu, C.C. Tian, B.B. Mei, Y. Song, X.L. Du, Z. Jiang, L. He, C.G. Xia, S. Dai,

Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO 2

reduction, ChemElectroChem 5 (19) (2018) 2717-2721.

[18] B.X. Dong, S.L. Qian, F.Y. Bu, Y.C. Wu, L.G. Feng, Y.L. Teng, W.L. Liu, Z.W. Li, Electrochemical

reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework,

ACS Appl. Energy Mater. 1 (9) (2018) 4662-4669.

[19] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, A selective and efficient

electrocatalyst for carbon dioxide reduction, Nat. Commun. 5 (2014) 3242-3247.

[20] X.F. Feng, K.L. Jiang, S.S. Fan, M.W. Kanan, Grain-boundary-dependent CO2 electroreduction activity,

J. Am. Chem. Soc. 137 (14) (2015) 4606-4609.

[21] W.L. Zhu, R. Michalsky, Ö. Metin, H.F. Lv, S.J. Guo, C.J. Wright, X.L. Sun, A.A. Peterson, S.H. Sun,

Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO 2 to CO, J. Am. Chem. Soc.

135 (45) (2013) 16833-16836.

[22] J. Hawecker, J.M. Lehn, R. Ziessel, Electrocatalytic reduction of carbon dioxide mediated by Re (bipy)

(CO)3 Cl (bipy= 2, 2′-bipyridine), J. Chem. Soc., Chem. Commun. (6) (1984) 328-330.

[23] H.E. Lee, K.D. Yang, S.M. Yoon, H.Y. Ahn, Y.Y. Lee, H.J. Chang, D.H. Jeong, Y.S. Lee, M.Y. Kim, K.T.

Nam, Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO 2

reduction, ACS Nano 9 (8) (2015) 8384-8393.

Page 10: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

[24] Y. Hori, A. Murata, K. Kikuchi, S. Suzuki, Electrochemical reduction of carbon dioxides to carbon

monoxide at a gold electrode in aqueous potassium hydrogen carbonate, J. Chem. Soc., Chem. Commun.

(10) (1987) 728-729.

[25] S.Q. Zhu, Q. Wang, X.P. Qin, M. Gu, R. Tao, B.P. Lee, L.L. Zhang, Y.Z. Yao, T.H. Li, M.H. Shao,

Tuning structural and compositional effects in Pd–Au nanowires for highly selective and active CO 2

electrochemical reduction reaction, Adv. Energy Mater. 8 (32) (2018) 1802238-1802247.

[26] C.H. Zhang, S.Z. Yang, J.J. Wu, M.J. Liu, S. Yazdi, M.Q. Ren, J.W. Sha, J. Zhong, K.Q. Nie, A.S.

Jalilov, Z.Y. Li, H.M. Li, B.I. Yakobson, Q. Wu, E. Ringe, H. Xu, P.M. Ajayan, J.M. Tour,

Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene, Adv. Energy

Mater. 8 (19) (2018) 1703487-1703495.

[27] W.Q. Zhang, J. He, S.Y. Liu, W.X. Niu, P. Liu, Y. Zhao, F.J. Pang, W. Xi, M.W. Chen, W. Zhang, S.S.

Pang, Y. Ding, Atomic origins of high electrochemical CO2 reduction efficiency on nanoporous gold,

Nanoscale 10 (18) (2018) 8372-8376.

[28] M.N. Hossain, Z.G. Liu, J.L. Wen, A.C. Chen, Enhanced catalytic activity of nanoporous Au for the

efficient electrochemical reduction of carbon dioxide, Appl. Catal., B 236 (2018) 483-489.

[29] S. Rasul, D.H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, K. Takanabe, A highly selective copper-

indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO, Angew.

Chem., Int. Ed. 54 (7) (2015) 2146-2150.

[30] S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo, K. Takanabe, Cu-Sn bimetallic catalyst for

selective aqueous electroreduction of CO2 to CO, ACS Catal. 6 (5) (2016) 2842-2851.

[31] T.N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen, M. Fontecave,

Electrochemical reduction of CO2 catalyzed by Fe-NC materials: A structure-selectivity study, ACS

Catal. 7 (3) (2017) 1520-1525.

[32] P.T. Smith, B.P. Benke, Z. Cao, Y. Kim, E.M. Nichols, K. Kim, C.J. Chang, Iron porphyrins embedded

into a supramolecular porous organic cage for electrochemical CO2 reduction in water, Angew. Chem.

130 (31) (2018) 9832-9836.

[33] K. Hara, and T. Sakata, Large current density CO2 reduction under high pressure using gas diffusion

electrodes, Bull. Chem. Soc. Jpn. 70 (3) (1997) 571-576.

[34] X. Peng, S.G. Karakalos, W.E. Mustain, Preferentially oriented Ag nanocrystals with extremely high

activity and faradaic efficiency for CO2 electrochemical reduction to CO, ACS Appl. Mater. Interfaces 10

(2) (2018) 1734-1742.

[35] H.P. Yang, Y. Wu, Q. Lin, L.D. Fan, X.Y. Chai, Q.L. Zhang, J.H. Liu, C.X. He, Z.Q. Lin, Composition

tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: Metal-free

catalysts for high-performance electrochemical reduction of CO2, Angew. Chem. 130 (47) (2018) 15702-

15706.

[36] J.H. Lee, S. Kattel, Z.H. Xie, B.M. Tackett, J.J. Wang, C.J. Liu, J.G. Chen, Understanding the role of

functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold

nanoparticles, Adv. Funct. Mater. 28 (45) (2018) 1804762-1804767.

[37] P.L. Lu, Y.J. Yang, J.N. Yao, M. Wang, S. Dipazir, M.L. Yuan, J.X. Zhang, X. Wang, Z.J. Xie, G.J.

Zhang, Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient

electrochemical CO2 reduction, Appl. Catal., B 241 (2019) 113-119.

[38] H. Xie, S.Q. Chen, F. Ma, J.S. Liang, Z.P. Miao, T.Y. Wang, H.L. Wang, Y.H. Huang, Q. Li, Boosting

tunable syngas formation via electrochemical CO2 reduction on Cu/In2O3 core/shell nanoparticles, ACS

Appl. Mater. Interfaces 10 (43) (2018) 36996-37004.

Page 11: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

[39] Y. Cheng, S.Y. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu, M.F.

Chisholm, R. De Marco, Atomically dispersed transition metals on carbon nanotubes with ultrahigh

loading for selective electrochemical carbon dioxide reduction, Adv. Mater. 30 (13) (2018) 1706287-

1706293.

[40] H.W. Huang, H.H. Jia, Z. Liu, P.F. Gao, J.T. Zhao, Z.L. Luo, J.L. Yang, J. Zeng, Understanding of strain

effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform, Angew.

Chem. 129 (13) (2017) 3648-3652.

[41] Q. Li, J.J. Fu, W.L. Zhu, Z.Z. Chen, B. Shen, L.H. Wu, Z. Xi, T.Y. Wang, G. Lu, J.J. Zhu, Tuning Sn-

catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure, J. Am. Chem.

Soc. 139 (12) (2017) 4290-4293.

[42] R. Schrebler, P. Cury, F. Herrera, H. Gomez, R. Cordova, Study of the electrochemical reduction of CO2

on electrodeposited rhenium electrodes in methanol media, J. Electroanal. Chem. 516 (1-2) (2001) 23-

30.

[43] T.R. O'Toole, L.D. Margerum, T.D. Westmoreland, W.J. Vining, R.W. Murray, T.J. Meyer,

Electrocatalytic reduction of CO2 at a chemically modified electrode, J. Chem. Soc., Chem. Commun.

(20) (1985) 1416-1417.

[44] D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P.D. Yang, Synergistic geometric and electronic effects for

electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun.

5 (2014) 4948-4955.

[45] G.D. Shi, L. Yu, X. Ba, X.S. Zhang, J.Q. Zhou, Y. Yu, Copper nanoparticle interspersed MoS 2

nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel, Dalton Trans. 46 (32)

(2017) 10569-10577.

[46] M. Bourrez, F. Molton, S. Chardon-Noblat, A. Deronzier, [Mn(bipyridyl)(CO)3Br]: An Abundant Metal

Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction, Angew. Chem., Int. Ed. 50 (42)

(2011) 9903-9906.

[47] C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min, Y.J. Hwang, Achieving selective

and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles, J. Am.

Chem. Soc. 137 (43) (2015) 13844-13850.

[48] Z.N. Wang, G. Yang, Z.R. Zhang, M.S. Jin, Y.D. Yin, Selectivity on etching: Creation of high-energy

facets on copper nanocrystals for CO2 electrochemical reduction, ACS nano 10 (4) (2016) 4559-4564.

[49] C. Costentin, S. Drouet, M. Robert, J.M. Savéant, A local proton source enhances CO 2 electroreduction

to CO by a molecular Fe catalyst, Science 338 (6103) (2012) 90-94.

[50] T.R. O'Toole, B.P. Sullivan, M.R.M. Bruce, L.D. Margerum, R.W. Murray, T.J. Meyer, Electrocatalytic

reduction of CO2 by a complex of rhenium in thin polymeric films, Journal of electroanalytical chemistry

and interfacial electrochemistry 259 (1-2) (1989) 217-239.

[51] M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu,

R. Haasch, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5 (2014)

4470.

[52] M. Morimoto, Y. Takatsuji, K. Hirata, T. Fukuma, T. Ohno, T. Sakakura, T. Haruyama, Visualization of

catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode, Electrochim. Acta 290

(2018) 255-261.

[53] T. Shinagawa, G.O. Larrazábal, A.J. Martín, F. Krumeich, J. Pérez-Ramírez, Sulfur-modified copper

catalysts for the electrochemical reduction of carbon dioxide to formate, ACS Catal. 8 (2) (2018) 837-

844.

Page 12: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

[54] T. Ohmori, A. Nakayama, H. Mametsuka, E. Suzuki, Influence of sputtering parameters on

electrochemical CO2 reduction in sputtered Au electrode, J. Electroanal. Chem. 514 (1-2) (2001) 51-55.

[55] K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of carbon dioxide under high pressure on various

electrodes in an aqueous electrolyte, J. Electroanal. Chem. 391 (1-2) (1995) 141-147.

[56] J.D. Froehlich, and C.P. Kubiak, Homogeneous CO2 reduction by Ni (cyclam) at a glassy carbon

electrode, Inorg. Chem. 51 (7) (2012) 3932-3934.

[57] H.Y. Liu, J. Chu, Z.L. Yin, X. Cai, L. Zhuang, H.X. Deng, Covalent organic frameworks linked by amine

bonding for concerted electrochemical reduction of CO2, Chem 4 (7) (2018) 1696-1709.

[58] L. Fan, Z. Xia, M.J. Xu, Y.Y. Lu, Z.J. Li, 1D SnO2 with wire‐in‐tube architectures for highly selective

electrochemical reduction of CO2 to C1 products, Adv. Funct. Mater. 28 (17) (2018) 1706289-1706297.

[59] C. Hahn, D.N. Abram, H.A. Hansen, T. Hatsukade, A. Jackson, N.C. Johnson, T.R. Hellstern, K.P. Kuhl,

E.R. Cave, J.T. Feaster, Synthesis of thin film AuPd alloys and their investigation for electrocatalytic

CO2 reduction, J. Mater. Chem. A 3 (40) (2015) 20185-20194.

[60] B.H. Qin, Y.H. Li, H.Q. Fu, H.J. Wang, S.Z. Chen, Z.L. Liu, F. Peng, Electrochemical reduction of CO 2

into tunable syngas production by regulating crystal facets of earth-abundant Zn catalyst, ACS Appl.

Mater. Interfaces 10 (24) (2018) 20530–20539.

[61] D.F. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G.X. Wang, J.G. Wang, X.H. Bao, Size-dependent

electrocatalytic reduction of CO2 over Pd nanoparticles, J. Am. Chem. Soc. 137 (13) (2015) 4288-4291.

[62] J.M. Smieja, M.D. Sampson, K.A. Grice, E.E. Benson, J.D. Froehlich, C.P. Kubiak, Manganese as a

substitute for rhenium in CO2 reduction catalysts: The importance of acids, Inorg. Chem. 52 (5) (2013)

2484-2491.

[63] R.M. Wang, X.H. Sun, S. Ould-Chikh, D. Osadchii, F. Bai, F. Kapteijn, J. Gascon, Metal-organic-

framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction, ACS Appl. Mater.

Interfaces 10 (17) (2018) 14751-14758.

[64] P. Moreno-García, N. Schlegel, A. Zanetti, A. Cedeno Lopez, M.a.d.J.s. Gálvez-Vázquez, A. Dutta, M.

Rahaman, P. Broekmann, Selective electrochemical reduction of CO2 to CO on Zn-based foams

produced by Cu2+ and template-assisted electrodeposition, ACS Appl. Mater. Interfaces 10 (37) (2018)

31355-31365.

[65] D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I. Woo, Highly efficient, selective, and stable

CO2 electroreduction on a hexagonal Zn catalyst, Angew. Chem., Int. Ed. 55 (32) (2016) 9297-9300.

[66] J.Z. Huang, Q. Hu, X.R. Guo, Q. Zeng, L.S. Wang, Rethinking Co(CO3)0.5(OH)·0.11H2O: A new

property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous

solution, Green Chem. 20 (13) (2018) 2967-2972.

[67] C.Q. Wang, M.L. Cao, X.X. Jiang, M.K. Wang, Y. Shen, A catalyst based on copper-cadmium bimetal

for electrochemical reduction of CO2 to CO with high faradaic efficiency, Electrochim. Acta 271 (2018)

544-550.

[68] C.E. Tornow, M.R. Thorson, S. Ma, A.A. Gewirth, P.J. Kenis, Nitrogen-based catalysts for the

electrochemical reduction of CO2 to CO, J. Am. Chem. Soc. 134 (48) (2012) 19520-19523.

[69] S. Ikeda, T. Takagi, K. Ito, Selective formation of formic acid, oxalic acid, and carbon monoxide by

electrochemical reduction of carbon dioxide, Bull. Chem. Soc. Jpn. 60 (7) (1987) 2517-2522.

[70] J.H. Kim, H. Woo, J. Choi, H.W. Jung, Y.T. Kim, CO2 electroreduction on Au/TiC: Enhanced activity

due to metal-support interaction, ACS Catal. 7 (3) (2017) 2101-2106.

[71] H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Electrochemical reduction of carbon dioxide at

various metal electrodes in aqueous potassium hydrogen carbonate solution, Bull. Chem. Soc. Jpn. 63 (9)

Page 13: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

(1990) 2459-2462.

[72] Z.G. Geng, X.D. Kong, W.W. Chen, H.Y. Su, Y. Liu, F. Cai, G.X. Wang, J. Zeng, Oxygen vacancies in

ZnO nanosheets enhance CO2 electrochemical reduction to CO, Angew. Chem., Int. Ed. 57 (21) (2018)

6054-6059.

[73] N. Hoshi, M. Kato, Y. Hori, Electrochemical reduction of CO2 on single crystal electrodes of silver Ag

(111), Ag (100) and Ag (110), J. Electroanal. Chem. 440 (1-2) (1997) 283-286.

[74] N.S. Romero Cuellar, K. Wiesner‐Fleischer, O. Hinrichsen, M. Fleischer, Electrochemical reduction of

CO2 in water‐based electrolytes KHCO3 and K2SO4 using boron doped diamond electrodes,

ChemistrySelect 3 (13) (2018) 3591-3595.

[75] S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, Effect of pressure on the electrochemical reduction of CO 2

on Group VIII metal electrodes, Journal of electroanalytical chemistry and interfacial electrochemistry

308 (1-2) (1991) 339-343.

[76] H. Mistry, R. Reske, Z.H. Zeng, Z.J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, Exceptional size-

dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles, J. Am. Chem.

Soc. 136 (47) (2014) 16473-16476.

[77] B.P. Sullivan, C.M. Bolinger, D. Conrad, W.J. Vining, T.J. Meyer, One-and two-electron pathways in the

electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy= 2, 2′-bipyridine), J. Chem. Soc., Chem.

Commun. (20) (1985) 1414-1416.

[78] E. Haviv, D. Azaiza-Dabbah, R. Carmieli, L. Avram, J.M. Martin, R. Neumann, A thiourea tether in the

second coordination sphere as a binding site for CO2 and a proton donor promotes the electrochemical

reduction of CO2 to CO catalyzed by a rhenium bipyridine-type complex, J. Am. Chem. Soc. 140 (39)

(2018) 12451-12456.

[79] R. Kortlever, I. Peters, S. Koper, M.T. Koper, Electrochemical CO 2 reduction to formic acid at low

overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles, ACS

Catal. 5 (7) (2015) 3916-3923.

[80] T. Reda, C.M. Plugge, N.J. Abram, J. Hirst, Reversible interconversion of carbon dioxide and formate by

an electroactive enzyme, Proc. Natl. Acad. Sci. 105 (31) (2008) 10654-10658.

[81] A. Klinkova, P. De Luna, C.T. Dinh, O. Voznyy, E.M. Larin, E. Kumacheva, E.H. Sargent, Rational

design of efficient palladium catalysts for electroreduction of carbon dioxide to formate, ACS Catal. 6

(12) (2016) 8115-8120.

[82] S. Gao, Y. Lin, X.C. Jiao, Y.F. Sun, Q.Q. Luo, W.H. Zhang, D.Q. Li, J.L. Yang, Y. Xie, Partially oxidized

atomic cobalt layers for carbon dioxide electroreduction to liquid fuel, Nature 529 (7584) (2016) 68-71.

[83] B. Jiang, X.-G. Zhang, K. Jiang, D.-Y. Wu, W.-B. Cai, B-doped Pd catalyst to boost formate production in

electrochemical CO2 reduction. In Meeting Abstracts, The Electrochemical Society(2018), pp 1613-1613.

[84] H.P. Yang, Q. Lin, H.W. Zhang, Y. Wu, L.D. Fan, X.Y. Chai, Q.L. Zhang, J.H. Liu, C.X. He, Selective

electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil

catalyst with remarkable efficiency and reusability, Electrochem. Commun. 93 (2018) 138-142.

[85] J. Gu, F. Héroguel, J. Luterbacher, X.L. Hu, Densely packed, ultra small SnO nanoparticles for enhanced

activity and selectivity in electrochemical CO2 reduction, Angew. Chem. 130 (11) (2018) 2993-2997.

[86] Z.P. Chen, K.W. Mou, X.H. Wang, L.C. Liu, Nitrogen‐doped graphene quantum dots enhance the

activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region,

Angew. Chem., Int. Ed. 57 (39) (2018) 12790-12794.

[87] Y. Zhang, X.L. Zhang, Y.Z. Ling, F.W. Li, A.M. Bond, J. Zhang, Controllable synthesis of few‐layer

bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance, Angew.

Page 14: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

Chem., Int. Ed. 57 (40) (2018) 13283-13287.

[88] S.I. Woo, H. Kim, Y.J. Hwang, B.K. Min, High index non-noble metal electrocatalysts for electrochemical

CO2 reduction to C1 products. In Meeting Abstracts, The Electrochemical Society(2018), pp 1827-1827.

[89] X.H. Zhu, K. Gupta, M. Bersani, J.A. Darr, P.R. Shearing, D.J. Brett, Electrochemical reduction of

carbon dioxide on copper-based nanocatalysts using the rotating ring-disc electrode, Electrochim. Acta

283 (2018) 1037-1044.

[90] Y. Qiu, J. Du, C.N. Dai, W. Dong, C.Y. Tao, Bismuth nano-flowers as a highly selective catalyst for

electrochemical reduction of CO2 to formate, J. Electrochem. Soc. 165 (10) (2018) H594-H600.

[91] H. Ishida, H. Tanaka, K. Tanaka, T. Tanaka, Selective formation of HCOO – in the electrochemical CO2

reduction catalysed by [Ru(bpy)2(CO)2]2+(bpy= 2, 2′-bipyridine), J. Chem. Soc., Chem. Commun. (2)

(1987) 131-132.

[92] Y.L. Deng, Y. Huang, D. Ren, A.D. Handoko, Z.W. Seh, P. Hirunsit, B.S. Yeo, On the role of sulfur for

the selective electrochemical reduction of CO2 to formate on CuSx catalysts, ACS Appl. Mater. Interfaces

10 (34) (2018) 28572-28581.

[93] K.W. Mou, Z.P. Chen, S.Y. Yao, L.C. Liu, Enhanced electrochemical reduction of carbon dioxide to

formate with in-situ grown indium-based catalysts in an aqueous electrolyte, Electrochim. Acta 289

(2018) 65-71.

[94] Y.H. Chen, and M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and

enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc. 134 (4) (2012) 1986-1989.

[95] C.H. Lee, and M.W. Kanan, Controlling H+ vs CO2 reduction selectivity on Pb electrodes, ACS Catal. 5

(1) (2015) 465-469.

[96] F.W. Li, L. Chen, M.Q. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J. Zhang, Towards a better Sn:

Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets, Nano

Energy 31 (2017) 270-277.

[97] S. Lee, J.D. Ocon, Y.-i. Son, J. Lee, Alkaline CO2 electrolysis toward selective and continuous HCOO–

production over SnO2 nanocatalysts, J. Phys. Chem. C 119 (9) (2015) 4884-4890.

[98] M. Meser Ali, H. Sato, T. Mizukawa, K. Tsuge, M.-a. Haga, K. Tanaka, Selective formation of HCO 2–

and C2O42– in electrochemical reduction of CO2 catalyzed by mono- and di-nuclear ruthenium

complexes, Chem. Commun. (2) (1998) 249-250.

[99] G. Zangari, Electrochemical reduction of carbon dioxide at alloy systems: Cu-In and Cu-Bi. In Meeting

Abstracts, The Electrochemical Society(2018), pp 1611-1611.

[100] K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of high pressure carbon dioxide on Fe electrodes

at large current density, J. Electroanal. Chem. 386 (1-2) (1995) 257-260.

[101] G.B. Wen, D.U. Lee, B.H. Ren, F.M. Hassan, G.P. Jiang, Z.P. Cano, J. Gostick, E. Croiset, Z.Y. Bai, L.

Yang, Orbital interactions in Bi‐Sn bimetallic electrocatalysts for highly selective electrochemical CO 2

reduction toward formate production, Adv. Energy Mater. 8 (31) (2018) 1802427-1802435.

[102] J.J. Wu, F.G. Risalvato, F.S. Ke, P. Pellechia, X.D. Zhou, Electrochemical reduction of carbon dioxide I.

Effects of the electrolyte on the selectivity and activity with Sn electrode, J. Electrochem. Soc. 159 (7)

(2012) F353-F359.

[103] P. Kang, T.J. Meyer, M. Brookhart, Selective electrocatalytic reduction of carbon dioxide to formate by a

water-soluble iridium pincer catalyst, Chem. Sci. 4 (9) (2013) 3497-3502.

[104] Y.X. Fang, and J.C. Flake, Electrochemical reduction of CO2 at functionalized Au electrodes, J. Am.

Chem. Soc. 139 (9) (2017) 3399-3405.

[105] T. Sekimoto, M. Deguchi, S. Yotsuhashi, Y. Yamada, T. Masui, A. Kuramata, S. Yamakoshi, Highly

Page 15: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

selective electrochemical reduction of CO2 to HCOOH on a gallium oxide cathode, Electrochem.

Commun. 43 (2014) 95-97.

[106] S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer,

Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon

nanomaterials, J. Am. Chem. Soc. 136 (22) (2014) 7845-7848.

[107] C.C. Miao, and G.Q. Yuan, Morphology‐controlled Bi2O3 nanoparticles as catalysts for selective

electrochemical reduction of CO2 to formate, ChemElectroChem DOI: 10.1002/celc.201801036

[108] K.S. Gupta, Nanocatalysts for the electrochemical reduction of carbon dioxide to fuels. UCL (University

College London)2018.

[109] K. Hara, A. Tsuneto, A. Kudo, T. Sakata, Change in the product selectivity for the electrochemical CO 2

reduction by adsorption of sulfide ion on metal electrodes, J. Electroanal. Chem. 434 (1-2) (1997) 239-

243.

[110] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in

electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochim. Acta 39 (11-12)

(1994) 1833-1839.

[111] F. Köleli, and D. Balun, Reduction of CO2 under high pressure and high temperature on Pb-granule

electrodes in a fixed-bed reactor in aqueous medium, Appl. Catal., A 274 (1-2) (2004) 237-242.

[112] S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of

carbon dioxide to formate, J. Am. Chem. Soc. 136 (5) (2014) 1734-1737.

[113] G.S. Prakash, F.A. Viva, G.A. Olah, Electrochemical reduction of CO2 over Sn-Nafion® coated

electrode for a fuel-cell-like device, J. Power Sources 223 (2013) 68-73.

[114] X.F. Hou, and J.L. Qiao, CO2 electrochemical reduction to formate on Cu@Sn by electrodeposition, ECS

Trans. 85 (10) (2018) 41-46.

[115] J.F. Xie, Y.X. Huang, W.W. Li, X.N. Song, L. Xiong, H.Q. Yu, Efficient electrochemical CO2 reduction

on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite,

Electrochim. Acta 139 (2014) 137-144.

[116] M.F. Baruch, J.E. Pander III, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO 2

on tin electrodes using in situ ATR-IR spectroscopy, ACS Catal. 5 (5) (2015) 3148-3156.

[117] B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.-M. Léger, K. Kokoh, Electro-reduction of carbon

dioxide to formate on lead electrode in aqueous medium, J. Appl. Electrochem. 39 (2) (2009) 227.

[118] S. Rasul, A. Pugnant, E. Yu, Electrochemical reduction of CO2 at multi-metallic nano-interfaces. In

Meeting Abstracts, The Electrochemical Society(2018), pp 1626-1626.

[119] F.J. Li, Z.Z. Fan, J. Tai, H.M. Wei, Y.Q. Zhou, L.X. Lei, Promoting the electrochemical reduction of

carbon dioxide by a specially designed biomimetic electrochemical cell, Ind. Eng. Chem. Res. 57 (37)

(2018) 12307-12313.

[120] R. Hegner, L.F. Rosa, F. Harnisch, Electrochemical CO2 reduction to formate at indium electrodes with

high efficiency and selectivity in pH neutral electrolytes, Appl. Catal., B 238 (2018) 546-556.

[121] S. Sen, D. Liu, G.T.R. Palmore, Electrochemical reduction of CO2 at copper nanofoams, ACS Catal. 4

(9) (2014) 3091-3095.

[122] S. Zhang, P. Kang, M. Bakir, A.M. Lapides, C.J. Dares, T.J. Meyer, Polymer-supported CuPd nanoalloy

as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane, Proc. Natl. Acad.

Sci. 112 (52) (2015) 15809-15814.

[123] Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang, S.J. Huo, X.F. Wang, Q. Ma, G.W. Brudvig, V.S.

Batista, Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction,

Page 16: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

Nat. Commun. 9 (1) (2018) 415-423.

[124] R. Reske, M. Duca, M. Oezaslan, K.J.P. Schouten, M.T. Koper, P. Strasser, Controlling catalytic

selectivities during CO2 electroreduction on thin Cu metal overlayers, J. Phys. Chem. Lett. 4 (15) (2013)

2410-2413.

[125] D.A. Torelli, S.A. Francis, J.C. Crompton, A. Javier, J.R. Thompson, B.S. Brunschwig, M.P. Soriaga,

N.S. Lewis, Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at

low overpotentials, ACS Catal. 6 (3) (2016) 2100-2104.

[126] Y. Hori, K. Kikuchi, A. Murata, S. Suzuki, Production of methane and ethylene in electrochemical

reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution, Chem. Lett. 15

(6) (1986) 897-898.

[127] X. Guo, Y.X. Zhang, C. Deng, X.Y. Li, Y.F. Xue, Y.M. Yan, K.N. Sun, Composition dependent activity of

Cu–Pt nanocrystals for electrochemical reduction of CO2, Chem. Commun. 51 (7) (2015) 1345-1348.

[128] A.S. Varela, W. Ju, T. Reier, P. Strasser, Tuning the catalytic activity and selectivity of Cu for CO 2

electroreduction in the presence of halides, ACS Catal. 6 (4) (2016) 2136-2144.

[129] W.G. Zhao, L.N. Yang, Y.D. Yin, M.S. Jin, Thermodynamic controlled synthesis of intermetallic Au3Cu

alloy nanocrystals from Cu microparticles, J. Mater. Chem. A 2 (4) (2014) 902-906.

[130] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge

transfer on copper single crystal electrodes related with electrochemical reduction of CO 2 to

hydrocarbons, Surf. Sci. 335 (1995) 258-263.

[131] A.S. Varela, C. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E. Stephens, I. Chorkendorff, CO 2

electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211), J. Phys.

Chem. C 117 (40) (2013) 20500-20508.

[132] K. Manthiram, B.J. Beberwyck, A.P. Alivisatos, Enhanced electrochemical methanation of carbon

dioxide with a dispersible nanoscale copper catalyst, J. Am. Chem. Soc. 136 (38) (2014) 13319-13325.

[133] D. Kim, S. Lee, J.D. Ocon, B. Jeong, J.K. Lee, J. Lee, Insights into an autonomously formed oxygen-

evacuated Cu2O electrode for the selective production of C2H4 from CO2, Phys. Chem. Chem. Phys. 17

(2) (2015) 824-830.

[134] Y.F. Wang, Z. Chen, P. Han, Y.H. Du, Z.X. Gu, X. Xu, G.F. Zheng, Single-atomic Cu with multiple

oxygen vacancies on ceria for electrocatalytic CO2 Reduction to CH4, ACS Catal. 8 (8) (2018) 7113-

7119.

[135] S. Kaneco, K. Iiba, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of high pressure CO2 at

a Cu electrode in cold methanol, Electrochim. Acta 51 (23) (2006) 4880-4885.

[136] K.W. Frese, and S. Leach, Electrochemical reduction of carbon dioxide to methane, methanol, and CO

on Ru electrodes, J. Electrochem. Soc. 132 (1) (1985) 259-260.

[137] J. Popić, M. Avramov-Ivić, N. Vuković, Reduction of carbon dioxide on ruthenium oxide and modified

ruthenium oxide electrodes in 0.5 M NaHCO3, J. Electroanal. Chem. 421 (1-2) (1997) 105-110.

[138] G. Seshadri, C. Lin, A.B. Bocarsly, A new homogeneous electrocatalyst for the reduction of carbon

dioxide to methanol at low overpotential, J. Electroanal. Chem. 372 (1-2) (1994) 145-150.

[139] K.W. Frese Jr, S.C. Leach, D.P. Summers, Electrochemical reduction of aqueous carbon dioxide to

methanol. Google Patents(1986)

[140] W.Y. Zhang, Q. Qin, L. Dai, R.X. Qin, X.J. Zhao, X.M. Chen, D.H. Ou, J. Chen, T.T. Chuong, B.H. Wu,

Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO 2 nanosheets with

abundant Pd–O–Sn interfaces, Angew. Chem., Int. Ed. 57 (30) (2018) 9475-9479.

[141] D.P. Summers, S. Leach, K.W. Frese Jr, The electrochemical reduction of aqueous carbon dioxide to

Page 17: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

methanol at molybdenum electrodes with low overpotentials, Journal of electroanalytical chemistry and

interfacial electrochemistry 205 (1-2) (1986) 219-232.

[142] A. Bandi, and H.M. Kühne, Electrochemical reduction of carbon dioxide in water: Analysis of reaction

mechanism on ruthenium‐titanium‐oxide, J. Electrochem. Soc. 139 (6) (1992) 1605-1610.

[143] K. Zhao, Y.M. Liu, X. Quan, S. Chen, H.T. Yu, CO2 electroreduction at low overpotential on oxide-

derived Cu/carbons fabricated from metal organic framework, ACS Appl. Mater. Interfaces 9 (6) (2017)

5302-5311.

[144] M. Le, M.M. Ren, Z.Y. Zhang, P.T. Sprunger, R.L. Kurtz, J.C. Flake, Electrochemical reduction of CO2

to CH3OH at copper oxide surfaces, J. Electrochem. Soc. 158 (5) (2011) E45-E49.

[145] F.L. Jia, X.X. Yu, L.Z. Zhang, Enhanced selectivity for the electrochemical reduction of CO 2 to alcohols

in aqueous solution with nanostructured Cu–Au alloy as catalyst, J. Power Sources 252 (2014) 85-89.

[146] J.W. Li, and G. Prentice, Electrochemical synthesis of methanol from CO2 in high‐pressure electrolyte, J.

Electrochem. Soc. 144 (12) (1997) 4284-4288.

[147] D. Canfield, and K. Frese Jr, Reduction of carbon dioxide to methanol on n-and p-GaAs and p-InP.

Effect of crystal face, electrolyte and current density, J. Electrochem. Soc. 130 (8) (1983) 1772-1773.

[148] P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev, P. Todorović, T. Regier, S.O.

Kelley, P. Yang, E.H. Sargent, Catalyst electro-redeposition controls morphology and oxidation state for

selective carbon dioxide reduction, Nat. Catal. 1 (2) (2018) 103-110.

[149] C.-T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P.G. de Arquer, A. Kiani, J.P.

Edwards, P. De Luna, O.S. Bushuyev, CO2 electroreduction to ethylene via hydroxide-mediated copper

catalysis at an abrupt interface, Science 360 (6390) (2018) 783-787.

[150] S.C. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P.J. Kenis, One-step electrosynthesis of

ethylene and ethanol from CO2 in an alkaline electrolyzer, J. Power Sources 301 (2016) 219-228.

[151] Q. Li, W.L. Zhu, J.J. Fu, H.Y. Zhang, G. Wu, S.H. Sun, Controlled assembly of Cu nanoparticles on

pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene, Nano Energy 24 (2016) 1-9.

[152] J. Monzo, Y. Malewski, R. Kortlever, F.J. Vidal-Iglesias, J. Solla-Gullon, M. Koper, P. Rodriguez,

Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction, J. Mater.

Chem. A 3 (47) (2015) 23690-23698.

[153] S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P.J. Kenis,

Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different

mixing patterns, J. Am. Chem. Soc. 139 (1) (2016) 47-50.

[154] J.J. Wu, S.C. Ma, J. Sun, J.I. Gold, C. Tiwary, B. Kim, L.Y. Zhu, N. Chopra, I.N. Odeh, R. Vajtai, A

metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates,

Nat. Commun. 7 (2016) 13869-13874.

[155] H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E.A. Stach,

J.C. Yang, P. Strasser, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to

ethylene, Nat. Commun. 7 (2016) 12123-12130.

[156] D. Ren, N.T. Wong, A.D. Handoko, Y. Huang, B.S. Yeo, Mechanistic insights into the enhanced activity

and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-

propanol, J. Phys. Chem. Lett. 7 (1) (2015) 20-24.

[157] Z. Weng, X. Zhang, Y.S. Wu, S.J. Huo, J.B. Jiang, W. Liu, G.J. He, Y.Y. Liang, H.L. Wang, Self‐cleaning

catalyst electrodes for stabilized CO2 reduction to hydrocarbons, Angew. Chem. 129 (42) (2017) 13315-

13319.

[158] K. Jiang, R.B. Sandberg, A.J. Akey, X.Y. Liu, D.C. Bell, J.K. Nørskov, K. Chan, H.T. Wang, Metal ion

Page 18: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction, Nat. Catal. 1 (2) (2018)

111-119.

[159] Z. Weng, J.B. Jiang, Y.S. Wu, Z.S. Wu, X.T. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig,

H.L. Wang, Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in

aqueous solution, J. Am. Chem. Soc. 138 (26) (2016) 8076-8079.

[160] Y. Huang, A.D. Handoko, P. Hirunsit, B.S. Yeo, Electrochemical reduction of CO2 using copper single-

crystal surfaces: Effects of CO* coverage on the selective formation of ethylene, ACS Catal. 7 (3) (2017)

1749-1756.

[161] S.J. Huo, Z. Weng, Z.S. Wu, Y.R. Zhong, Y.S. Wu, J.H. Fang, H.L. Wang, Coupled metal/oxide catalysts

with tunable product selectivity for electrocatalytic CO2 reduction, ACS Appl. Mater. Interfaces 9 (34)

(2017) 28519-28526.

[162] D. Ren, Y.L. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, Selective electrochemical

reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts, ACS Catal. 5 (5)

(2015) 2814-2821.

[163] C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, B.S. Yeo, Stable and selective electrochemical

reduction of carbon dioxide to ethylene on copper mesocrystals, Catal. Sci. Technol. 5 (1) (2015) 161-

168.

[164] M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager III, A.T. Bell, Hydrolysis of electrolyte cations enhances the

electrochemical reduction of CO2 over Ag and Cu, J. Am. Chem. Soc. 138 (39) (2016) 13006-13012.

[165] D.F. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, Plasma-

activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and

alcohols, ACS nano 11 (5) (2017) 4825-4831.

[166] X.L. Wang, A.S. Varela, A. Bergmann, S. Kühl, P. Strasser, Catalyst particle density controls

hydrocarbon product selectivity in CO2 Electroreduction on CuOx, ChemSusChem 10 (22) (2017) 4642-

4649.

[167] J. Bullock, D.F. Sranko, C.M. Towle, Y. Lum, M. Hettick, M. Scott, A. Javey, J. Ager, Efficient solar-

driven electrochemical CO2 reduction to hydrocarbons and oxygenates, Energy Environ. Sci. 10 (10)

(2017) 2222-2230.

[168] Y.F. Li, F. Cui, M.B. Ross, D. Kim, Y.C. Sun, P.D. Yang, Structure-sensitive CO2 electroreduction to

hydrocarbons on ultrathin 5-fold twinned copper nanowires, Nano Lett. 17 (2) (2017) 1312-1317.

[169] Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Enhanced formation of ethylene and alcohols at ambient

temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode, J. Chem.

Soc., Chem. Commun. (1) (1988) 17-19.

[170] Z.Y. Chang, S.J. Huo, W. Zhang, J.H. Fang, H.L. Wang, The tunable and highly selective reduction

products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction, J. Phys. Chem.

C 121 (21) (2017) 11368-11379.

[171] S.Y. Lee, H. Jung, N.K. Kim, H.S. Oh, B.K. Min, Y.J. Hwang, Mixed copper states in anodized Cu

electrocatalyst for stable and selective ethylene production from CO 2 reduction, J. Am. Chem. Soc. 140

(28) (2018) 8681-8689.

[172] R. Kas, R. Kortlever, H. Yılmaz, M.T. Koper, G. Mul, Manipulating the hydrocarbon selectivity of

copper nanoparticles in CO2 electroreduction by process conditions, ChemElectroChem 2 (3) (2015)

354-358.

[173] M. Rahaman, A. Dutta, A. Zanetti, P. Broekmann, Electrochemical reduction of CO 2 into multicarbon

alcohols on activated Cu mesh catalysts: An identical location (IL) study, ACS Catal. 7 (11) (2017) 7946-

Page 19: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

7956.

[174] M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical

reduction of CO2 over Cu nanowire arrays, Angew. Chem. 128 (23) (2016) 6792-6796.

[175] A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, R. Buonsanti, Tailoring copper

nanocrystals towards C2 products in electrochemical CO2 reduction, Angew. Chem., Int. Ed. 55 (19)

(2016) 5789-5792.

[176] Y.S. Zhou, F.L. Che, M. Liu, C.Q. Zou, Z.Q. Liang, P. De Luna, H.F. Yuan, J. Li, Z.Q. Wang, H.P. Xie,

Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons, Nat. Chem. 10 (9) (2018)

974-980.

[177] D. Wu, C.K. Dong, D.Y. Wu, J.Y. Fu, H. Liu, S.W. Hu, Z. Jiang, S.Z. Qiao, X.W. Du, Cuprous ions

embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to

ethylene, J. Mater. Chem. A 6 (20) (2018) 9373-9377.

[178] Z.J. Han, R. Kortlever, H.Y. Chen, J.C. Peters, T. Agapie, CO2 reduction selective for C≥2 products on

polycrystalline copper with N-substituted pyridinium additives, ACS Cent. Sci. 3 (8) (2017) 853-859.

[179] R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO 2 reduction on

Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons, Phys. Chem.

Chem. Phys. 16 (24) (2014) 12194-12201.

[180] W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech, W.J. Durand, S. Dahl, J.K. Nørskov, I.

Chorkendorff, The importance of surface morphology in controlling the selectivity of polycrystalline

copper for CO2 electroreduction, Phys. Chem. Chem. Phys. 14 (1) (2012) 76-81.

[181] O. Baturina, Q. Lu, F. Xu, A. Purdy, B. Dyatkin, X. Sang, R. Unocic, T. Brintlinger, Y. Gogotsi, Effect of

nanostructured carbon support on copper electrocatalytic activity toward CO 2 electroreduction to

hydrocarbon fuels, Catal. Today 288 (2017) 2-10.

[182] H.J. Yang, H. Yang, Y.H. Hong, P.Y. Zhang, T. Wang, L.N. Chen, F.Y. Zhang, Q.H. Wu, N. Tian, Z.Y.

Zhou, Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture

Materials, ChemSusChem 11 (5) (2018) 881-887.

[183] M.R. Goncalves, A. Gomes, J. Condeço, T.R.C. Fernandes, T. Pardal, C.A.C. Sequeira, J.B. Branco,

Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits,

Electrochim. Acta 102 (2013) 388-392.

[184] M. Padilla, O. Baturina, J.P. Gordon, K. Artyushkova, P. Atanassov, A. Serov, Selective CO 2

electroreduction to C2H4 on porous Cu films synthesized by sacrificial support method, J. CO2 Util. 19

(2017) 137-145.

[185] O.A. Baturina, Q. Lu, M.A. Padilla, L. Xin, W. Li, A. Serov, K. Artyushkova, P. Atanassov, F. Xu, A.

Epshteyn, CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles, ACS Catal. 4

(10) (2014) 3682-3695.

[186] Y.J. Pang, T. Burdyny, C.T. Dinh, M.G. Kibria, J.Z.M. Fan, M. Liu, E.H. Sargent, D. Sinton, Joint tuning

of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO 2 reduction to C2H4,

Green Chem. 19 (17) (2017) 4023-4030.

[187] F.Y. Zhang, T. Sheng, N. Tian, L. Liu, C. Xiao, B.A. Lu, B.B. Xu, Z.Y. Zhou, S.G. Sun, Cu overlayers on

tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols, Chem.

Commun. 53 (57) (2017) 8085-8088.

[188] T.T. Hoang, S.C. Ma, J.I. Gold, P.J. Kenis, A.A. Gewirth, Nanoporous copper films by additive-

controlled electrodeposition: CO2 reduction catalysis, ACS Catal. 7 (5) (2017) 3313-3321.

[189] H.P. Yang, Y.N. Yue, S. Qin, H. Wang, J.X. Lu, Selective electrochemical reduction of CO 2 to different

Page 20: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

alcohol products by an organically doped alloy catalyst, Green Chem. 18 (11) (2016) 3216-3220.

[190] Y.F. Song, W. Chen, C.C. Zhao, S.G. Li, W. Wei, Y.H. Sun, Metal‐free nitrogen‐doped mesoporous

carbon for electroreduction of CO2 to ethanol, Angew. Chem. 129 (36) (2017) 10980-10984.

[191] H.P. Yang, S. Qin, Y.N. Yue, L. Liu, H. Wang, J.X. Lu, Entrapment of a pyridine derivative within a

copper-palladium alloy: A bifunctional catalyst for electrochemical reduction of CO2 to alcohols with

excellent selectivity and reusability, Catal. Sci. Technol. 6 (17) (2016) 6490-6494.

[192] R.A. Geioushy, M.M. Khaled, A.S. Hakeem, K. Alhooshani, C. Basheer, High efficiency graphene/Cu2O

electrode for the electrochemical reduction of carbon dioxide to ethanol, J. Electroanal. Chem. 785

(2017) 138-143.

[193] J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano, A. Irabien, Copper‐based meta-organic porous

materials for CO2 electrocatalytic reduction to alcohols, ChemSusChem 10 (6) (2017) 1100-1109.

[194] K.L. Lv, Y.C. Fan, Y. Zhu, Y. Yuan, J.R. Wang, Q.F. Zhang, Elastic Ag-anchored N-doped

graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol, J. Mater.

Chem. A 6 (12) (2018) 5025-5031.

[195] S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P.J. Kenis,

Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different

mixing patterns, J. Am. Chem. Soc. 139 (1) (2016) 47-50.

[196] Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, S.Z. Qiao, Molecular scaffolding strategy with synergistic active

centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol, J. Am. Chem. Soc. 139 (49)

(2017) 18093-18100.

[197] P.K. Jiwanti, K. Natsui, K. Nakata, Y. Einaga, The electrochemical production of C 2/C3 species from

carbon dioxide on copper-modified boron-doped diamond electrodes, Electrochim. Acta 266 (2018) 414-

419.

[198] Y.M. Liu, Y.J. Zhang, K. Cheng, X. Quan, X.F. Fan, Y. Su, S. Chen, H.M. Zhao, Y.B. Zhang, H.T. Yu,

Selective electrochemical reduction of carbon dioxide to ethanol on a boron‐and nitrogen‐co‐doped

nanodiamond, Angew. Chem. 129 (49) (2017) 15813-15817.

[199] Y. Kwon, Y.w. Lum, E.L. Clark, J.W. Ager, A.T. Bell, CO2 electroreduction with enhanced ethylene and

ethanol selectivity by nanostructuring polycrystalline copper, ChemElectroChem 3 (6) (2016) 1012-

1019.

[200] D.H. Chi, H.P. Yang, Y.F. Du, T. Lv, G.J. Sui, H. Wang, J.X. Lu, Morphology-controlled CuO

nanoparticles for electroreduction of CO2 to ethanol, RSC Adv. 4 (70) (2014) 37329-37332.

[201] Y.X. Duan, F.L. Meng, K.H. Liu, S.S. Yi, S.J. Li, J.M. Yan, Q. Jiang, Amorphizing of Cu nanoparticles

toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic

efficiencies, Adv. Mater. 30 (14) (2018) 1706194-1706200.

[202] D. Ren, B.S.H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol

on oxide-derived CuxZn catalysts, ACS Catal. 6 (12) (2016) 8239-8247.

[203] S. Lee, G. Park, J. Lee, Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction

of CO2 to ethanol, ACS Catal. 7 (12) (2017) 8594-8604.

[204] Y. Song, R. Peng, D.K. Hensley, P.V. Bonnesen, L.B. Liang, Z. Wu, H.M. Meyer III, M.F. Chi, C. Ma,

B.G. Sumpter, High‐selectivity electrochemical conversion of CO2 to ethanol using a copper

nanoparticle/N‐doped graphene electrode, ChemistrySelect 1 (19) (2016) 6055-6061.

[205] J. Yuan, L. Liu, R.R. Guo, S. Zeng, H. Wang, J.X. Lu, Electroreduction of CO 2 into ethanol over an

active catalyst: Copper supported on titania, Catalysts 7 (7) (2017) 220.

[206] M. Schwartz, R.L. Cook, V.M. Kehoe, R.C. MacDuff, J. Patel, A.F. Sammells, Carbon dioxide reduction

Page 21: ars.els-cdn.com · Web viewSupporting Information G raphene-based materials for electrochemical CO 2 reduction Tao Ma,1,† Qun Fan,1,† Xin Li,1 Jieshan Qiu,1 Tianbin Wu*,2 and

to alcohols using perovskite-type electrocatalysts, J. Electrochem. Soc. 140 (3) (1993) 614-618.

[207] A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: Tuning the product

distribution of CO2 electroreduction on oxide-derived Cu foam catalysts, ACS Catal. 6 (6) (2016) 3804-

3814.

[208] K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee, M.H. Lee, K.T. Nam, Morphology‐directed selective

production of ethylene or ethane from CO2 on a Cu mesopore electrode, Angew. Chem., Int. Ed. 56 (3)

(2017) 796-800.

[209] C.S. Chen, J.H. Wan, B.S. Yeo, Electrochemical reduction of carbon dioxide to ethane using

nanostructured Cu2O-derived copper catalyst and palladium (II) chloride, J. Phys. Chem. C 119 (48)

(2015) 26875-26882.

[210] X.F. Sun, Q.G. Zhu, X.C. Kang, H.Z. Liu, Q.L. Qian, J. Ma, Z.F. Zhang, G.Y. Yang, B.X. Han, Design of

a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO 2 into acetic acid, Green

Chem. 19 (9) (2017) 2086-2091.

[211] Y.M. Liu, S. Chen, X. Quan, H.T. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on

nitrogen-doped nanodiamond, J. Am. Chem. Soc. 137 (36) (2015) 11631-11636.

[212] S.A. Francis, J.M. Velazquez, I.M. Ferrer, D.A. Torelli, D. Guevarra, M.T. McDowell, K. Sun, X. Zhou,

F.H. Saadi, J. John, Reduction of aqueous CO2 to 1-Propanol at MoS2 electrodes, Chem. Mater. 30 (15)

(2018) 4902-4908.

[213] R.A. Geioushy, M.M. Khaled, K. Alhooshani, A.S. Hakeem, A. Rinaldi, Graphene/ZnO/Cu2O

electrocatalyst for selective conversion of CO2 into n-propanol, Electrochim. Acta 245 (2017) 456-462.

[214] A.R. Paris, and A.B. Bocarsly, Ni-Al films on glassy carbon electrodes generate an array of oxygenated

organics from CO2, ACS Catal. 7 (10) (2017) 6815-6820.